
Scalable Solutions for DNA Sequence Analysis
Michael Schatz

March 11, 2010
Argonne National Lab

Outline

1.  Genome Assembly by Analogy

2.  DNA Sequencing and Genomics

3.  MapReduce for Sequence Analysis
1.  K-mer counting
2.  Read Mapping & Genotyping
3.  Genome Assembly

Shredded Book Reconstruction

•  Dickens accidentally shreds the first printing of A Tale of Two Cities
–  Text printed on 5 long spools

•  How can he reconstruct the text?
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments
–  The short fragments from every copy are mixed together
–  Some fragments are identical

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

Greedy Reconstruction

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

of times, it was the

times, it was the age

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

it was the worst of

was the worst of times,

worst of times, it was

of times, it was the

times, it was the age

it was the age of

was the age of wisdom,

the age of wisdom, it

age of wisdom, it was

of wisdom, it was the

wisdom, it was the age

it was the age of

was the age of foolishness,

the worst of times, it

 The repeated sequence make the correct
reconstruction ambiguous
•  It was the best of times, it was the [worst/age]

 Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

•  Dk = (V,E)
•  V = All length-k subfragments (k < l)
•  E = Directed edges between consecutive subfragments

•  Nodes overlap by k-1 words

•  Locally constructed graph reveals the global sequence structure
•  Overlaps between sequences implicitly computed

It was the best was the best of It was the best of

Original Fragment Directed Edge

de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

the age of foolishness

It was the best

best of times, it

was the best of

the best of times,

of times, it was

times, it was the

it was the worst

was the worst of

worst of times, it

the worst of times,

it was the age

was the age of
the age of wisdom,

age of wisdom, it

of wisdom, it was

wisdom, it was the

A unique Eulerian tour of
the graph reconstructs the

original text

If a unique tour does not
exist, try to simplify the

graph as much as possible

 Generally an exponential number of compatible sequences
–  Value computed by application of the BEST theorem (Hutchinson, 1975)

 L = n x n matrix with ru-auu along the diagonal and -auv in entry uv
 ru = d+(u)+1 if u=t, or d+(u) otherwise
 auv = multiplicity of edge from u to v

Counting Eulerian Tours

ARBRCRD
or

ARCRBRD
A R D

B

C

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Genomics

 Your genome influences (almost) all aspects of your life
–  Anatomy & Physiology: 10 fingers & 10 toes, organs, neurons
–  Diseases: Sickle Cell Anemia, Down Syndrome, Cancer
–  Psychological: Intelligence, Personality, Bad Driving

 Your environment also influences your life
–  Genome as a recipe, not a blueprint

Genomics across the Tree of Life

Selected Genomes
•  M. gallopavo (Folkerts et al., 2010*)
•  A. dorsata (Ruepell et al., 2010*)
•  V. destructor (Cornman et al., 2010*)
•  N. ceranae (Cornman et al., 2009)
•  B. taurus (Zimin et al., 2009)
•  C. papaya (Ming et al., 2008)
•  X. oryzae (Salzberg et al., 2008)
•  T. vaginalis (Carlton et al., 2007)
•  Drosophila (Drosophila 12 genomes

consortium, 2007)
•  B. malayi (Ghedin et al., 2007)
•  A. aegypti (Nene et al., 2007)
•  Campylobacter (Fouts et al., 2005)

* In preparation or under review

DNA Sequencing

ATCTGATAAGTCCCAGGACTTCAGT

GCAAGGCAAACCCGAGCCCAGTTT

TCCAGTTCTAGAGTTTCACATGATC

GGAGTTAGTAAAAGTCCACATTGAG

 Genome of an organism encodes the genetic information
in long sequence of 4 DNA nucleotides: ACGT
–  Bacteria: ~3 million bp
–  Humans: ~3 billion bp

 Current DNA sequencing machines can generate 1-2
Gbp of sequence per day, in millions of short reads
–  Per-base error rate estimated at 1-2% (Simpson et al, 2009)

–  Sequences originate from random positions of the genome

 Recent studies of entire human genomes analyzed 3.3B
(Wang, et al., 2008) & 4.0B (Bentley, et al., 2008) 36bp
reads
–  ~100 GB of compressed sequence data

The Evolution of DNA Sequencing
Year Genome Technology Cost

2001 Venter et al. Sanger (ABI) $300,000,000

2007 Levy et al. Sanger (ABI) $10,000,000

2008 Wheeler et al. Roche (454) $2,000,000

2008 Ley et al. Illumina $1,000,000

2008 Bentley et al. Illumina $250,000

2009 Pushkarev et al. Helicos $48,000

2009 Drmanac et al. Complete Genomics $4,400

(Pushkarev et al., 2009)

Critical Computational Challenges: Alignment and Assembly of Huge Datasets

•  MapReduce is the parallel distributed framework invented by
Google for large data computations.
–  Data and computations are spread over thousands of computers, processing

petabytes of data each day (Dean and Ghemawat, 2004)
–  Indexing the Internet, PageRank, Machine Learning, etc…
–  Hadoop is the leading open source implementation

Hadoop MapReduce

•  Benefits
–  Scalable, Efficient, Reliable
–  Easy to Program
–  Runs on commodity computers

•  Challenges
–  Redesigning / Retooling applications

–  Not Condor, Not MPI
–  Everything in MapReduce

(ATG:1)
(TGA:1)
(GAA:1)
(AAC:1)

(ACC:1)
(CCT:1)
(CTT:1)
(TTA:1)

(GAA:1)
(AAC:1)
(ACA:1)
(CAA:1)

(AAC:1)
(ACT:1)
(CTT:1)
(TTA:1)

(TTT:1)
(TTA:1)
(TAG:1)
(AGG:1)

(GGC:1)
(GCA:1)
(CAA:1)
(AAC:1)

map reduce

K-mer Counting
•  Application developers focus on 2 (+1 internal) functions

–  Map: input key:value pairs
–  Shuffle: Group together pairs with same key
–  Reduce: key, value-lists output

ATGAACCTTA

GAACAACTTA

TTTAGGCAAC

ACA -> 1
ATG -> 1
CAA -> 1,1
GCA -> 1
TGA -> 1
TTA -> 1,1,1

ACT -> 1
AGG -> 1
CCT -> 1
GGC -> 1
TTT -> 1

AAC -> 1,1,1,1
ACC -> 1
CTT -> 1,1
GAA -> 1,1
TAG -> 1

ACA:1
ATG:1
CAA:2
GCA:1
TGA:1
TTA:3

ACT:1
AGG:1
CCT:1
GGC:1
TTT:1

AAC:4
ACC:1
CTT:1
GAA:1
TAG:1

Map, Shuffle & Reduce
All Run in Parallel

shuffle

Slave 5

Slave 4

Slave 3

 Hadoop Architecture

Slave 2

Slave 1

Master Desktop

•  Hadoop Distributed File System (HDFS)
–  Data files partitioned into large chunks (64MB), replicated on multiple nodes
–  NameNode stores metadata information (block locations, directory structure)

•  Master node (JobTracker) schedules and monitors work on slaves
–  Computation moves to the data, rack-aware scheduling

•  Hadoop MapReduce system won the 2009 GreySort Challenge
–  Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks

Short Read Mapping

•  Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read
–  Find where the read most likely originated
–  Fundamental computation for many assays

•  Genotyping RNA-Seq Methyl-Seq
•  Structural Variations Chip-Seq Hi-C-Seq

•  Desperate need for scalable solutions
–  Single human requires >1,000 CPU hours / genome

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
GCGCCCTA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA
AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATATG
CTATATGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TATGCGCCC

GGTATAC…
CGGTATAC

Identify variants

Reference

Subject

Crossbow

•  Align billions of reads and find SNPs
–  Reuse software components: Hadoop Streaming

•  Map: Bowtie (Langmead et al., 2009)
–  Find best alignment for each read
–  Emit (chromosome region, alignment)

…
 

…
 

•  Shuffle: Hadoop
–  Group and sort alignments by region

•  Reduce: SOAPsnp (Li et al., 2009)
–  Scan alignments for divergent columns
–  Accounts for sequencing error, known SNPs

h$p://bow+e‐bio.sourceforge.net/crossbow 

Performance in Amazon EC2

Asian Individual Genome

Data Loading 3.3 B reads 106.5 GB $10.65

Data Transfer 1h :15m 40 cores $3.40

Setup 0h : 15m 320 cores $13.94

Alignment 1h : 30m 320 cores $41.82

Variant Calling 1h : 00m 320 cores $27.88

End-to-end 4h : 00m $97.69

Analyze an entire human genome for ~$100 in an afternoon.
Accuracy validated at >99%

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology.

h$p://bow+e‐bio.sourceforge.net/crossbow 

Related Approaches
MUMmerGPU

High Throughput Sequence Alignment
using GPGPUs

~10x speedup on nVidia GTX 8800

(Schatz, Trapnell, et al., 2007)
(Trapnell & Schatz, 2008)

1

2 3

4

CloudBurst
Highly Sensitive Short Read Mapping

with MapReduce

100x speedup on 96 cores @ Amazon

(Schatz, 2009)

… 

… 

Short Read Assembly

AAGA
ACTT
ACTC
ACTG
AGAG
CCGA
CGAC
CTCC
CTGG
CTTT
…

de Bruijn Graph Potential Genomes

AAGACTCCGACTGGGACTTT

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph
–  Human genome: >3B nodes, >10B edges

•  The new short read assemblers require tremendous computation
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

Reads

AAGACTGGGACTCCGACTTT

(ATG:1)
(TGA:1)
(GAA:1)
(AAC:1)

(ACC:1)
(CCT:1)
(CTT:1)
(TTA:1)

(GAA:1)
(AAC:1)
(ACA:1)
(CAA:1)

(AAC:1)
(ACT:1)
(CTT:1)
(TTA:1)

(TTT:1)
(TTA:1)
(TAG:1)
(AGG:1)

(GGC:1)
(GCA:1)
(CAA:1)
(AAC:1)

map reduce

K-mer Counting
•  Application developers focus on 2 (+1 internal) functions

–  Map: input key:value pairs
–  Shuffle: Group together pairs with same key
–  Reduce: key, value-lists output

ATGAACCTTA

GAACAACTTA

TTTAGGCAAC

ACA -> 1
ATG -> 1
CAA -> 1,1
GCA -> 1
TGA -> 1
TTA -> 1,1,1

ACT -> 1
AGG -> 1
CCT -> 1
GGC -> 1
TTT -> 1

AAC -> 1,1,1,1
ACC -> 1
CTT -> 1,1
GAA -> 1,1
TAG -> 1

ACA:1
ATG:1
CAA:2
GCA:1
TGA:1
TTA:3

ACT:1
AGG:1
CCT:1
GGC:1
TTT:1

AAC:4
ACC:1
CTT:1
GAA:1
TAG:1

Map, Shuffle & Reduce
All Run in Parallel

shuffle

(ATG:A)
(TGA:A)
(GAA:C)
(AAC:C)

(ACC:T)
(CCT:T)
(CTT:A)

(GAA:C)
(AAC:A)
(ACA:A)
(CAA:C)

(AAC:T)
(ACT:T)
(CTT:A)

(TTT:A)
(TTA:G)
(TAG:G)
(AGG:C)

(GGC:A)
(GCA:A)
(CAA:C)

map reduce

Graph Construction
•  Application developers focus on 2 (+1 internal) functions

–  Map: input key:value pairs
–  Shuffle: Group together pairs with same key
–  Reduce: key, value-lists output

ATGAACCTTA

GAACAACTTA

TTTAGGCAAC

ACA -> A
ATG -> A
CAA -> C,C
GCA -> A
TGA -> A
TTA -> G

ACT -> T
AGG -> C
CCT -> T
GGC -> A
TTT -> A

AAC -> C,A,T
ACC -> T
CTT -> A,A
GAA -> C,C
TAG -> G

ACA:CAA
ATG:TGA
CAA:AAC
GCA:CAG
TGA:GAA
TTA:TAG

ACT:CTT
AGG:GGC
CCT:CTT
GGC:GCA
TTT:TTA

AAC:ACC,ACA,ACT
ACC:CCT
CTT:TTA
GAA:AAC
TAG:AGG

Map, Shuffle & Reduce
All Run in Parallel

shuffle

Graph Compression
•  After construction, many edges are unambiguous

–  Merge together compressible nodes
–  Graph physically distributed over hundreds of computers

Distributed Graph Processing
I X

Z K

Y A: 42 B: 33 J

 Input:
–  Graph stored as node tuples

A: (N E:B W:42)
B: (N E:I,J,K W:33)

 Map
–  For all nodes, re-emit node tuple
–  For all neighbors, emit value tuple

A: (N E:B W:42)
B: (V A 42)
B: (N E:I,J,K W:33)
…

 Shuffle
–  Collect tuples with same key

B: (N E:I,J,K W:33)
B: (V A 42)

 Reduce
–  Add together values, save updated node tuple

B: (N E:I,J,K W:75)

B: 75
MapReduce

Message Passing

A is 42

Iterative Path Compression
 Iteratively identify and collapse the
beginning of each chain

 Map:
–  Emit messages to the neighbors of the

head of each chain

 Reduce:
–  Update links, node label

 Requires S MapReduce cycles, where S is the length of the longest simple path
•  B. anthracis: L=5.2Mbp S=268,925
•  H. sapiens chr 22: L=49.6Mbp S=33,832
•  H. sapiens chr 1: L=247.2Mbp S=37,172

Fast Path Compression
 Challenges

–  Nodes stored on different computers
–  Nodes can only access direct neighbors

 Randomized List Ranking
–  Randomly assign H / T to each

compressible node
–  Compress H T links

 Performance
–  Compress all chains in log(S) rounds (<20)
–  If <1024 nodes to compress (from any

number of chains), assign them all to the
same reducer (save 10 rounds)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Node Types

(Chaisson, 2009)

 Isolated nodes (10%)
–  Contamination

 Tips (46%)
–  Clip short tips

 Bubbles/Non-branch (9%)
–  Pop bubbles

 Dead Ends (.2%)
–  Split forks

 Half Branch (25%)
–  Unzip

 Full Branch (10%)
–  Thread reads, cloud surfing

Contrail

Scalable Genome Assembly with MapReduce
•  Genome: E. coli 4.6Mbp bacteria
•  Input: 20M 36bp reads, 200bp insert
•  Preprocessor: Quality-Aware Error Correction

http://contrail-bio.sourceforge.net

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Cloud Surfing Error Correction Compressed Initial

N
Max
N50

5.1 M
27 bp
27 bp

245,131
1,079 bp

156 bp

2,769
70,725 bp
15,023 bp

1,909
90,088 bp
17,058 bp

300
149,006 bp

54,807 bp

Resolve Repeats

Selected Related Work
AutoEditor & AutoJoiner

Improving Genome Assemblies
without Resequencing

(Gajer, Schatz, Salzberg, 2004)
(Carlton et al., 2007)

Assembly Forensics

Finding the Elusive
Mis-assembly

(Phillippy, Schatz, Pop, 2008)

Hawkeye

Assembly Visualization &
Analytics

(Schatz, Phillippy, Shneiderman,
 Salzberg, 2007)

PhyloTrac

Integrated survey analysis of
prokaryotic communities

(Schatz, Phillippy, et al., 2010*)

Graph Summarization

Revealing Biological Modules
 via Graph Summarization.

(Navlakha, Schatz, Kingsford, 2008)

Transgenic Hunt

Characterization of Insertion
Sites in Rainbow Papaya

(Suzuki et al., 2008)

Research Directions
•  Scalable Sequencing

–  Genomes, Metagenomes, *-Seq, Personalized Medicine
–  How do we survive the tsunami of sequence data?

o  Efficient indexing & algorithms, multi-core & multi-disk systems

•  Practically Parallel
–  Managing n-tier memory hierarchies, crossing the PRAM chasm
–  How do we solve problems with 1000s of cores?

o  Locality, Fault Tolerance, Programming Languages & Parallel Systems

•  Computational Discovery
–  Abundant data and computation are necessary, but not sufficient
–  How do we gain insight?

o  Modeling, Machine Learning, Databases, Visualization & HCI

 “NextGen sequencing has completely outrun
the ability of good bioinformatics people to
keep up with the data and use it well… We
need a MASSIVE effort in the development of
tools for ‘normal’ biologists to make better
use of massive sequence databases.”

 Jonathan Eisen – JGI Users Meeting – 3/28/09

•  Computational Biology
–  Make the problems of genotyping and assembly of

large genomes from short reads feasible and
accessible to individual researchers

•  High Performance Computing
–  Developed Novel Parallel Algorithms for

MapReduce and Multicore systems

Summary

Acknowledgements

Advisor
Steven Salzberg

UMD Faculty
Mihai Pop, Art Delcher, Amitabh Varshney,
Carl Kingsford, Ben Shneiderman,
 James Yorke, Jimmy Lin, Dan Sommer

CBCB Students
Adam Phillippy, Cole Trapnell,
 Saket Navlakha, Ben Langmead,
 James White, David Kelley

Thank You!

http://www.cbcb.umd.edu/~mschatz

Genome Coverage
Idealized assembly
•  Uniform probability of a read

starting at a given position
–  p = G/N

•  Poisson distribution in coverage
along genome
–  Contigs end when there is no

overlapping read

•  Contig length is a function of
coverage and read length
–  Short reads require much

higher coverage

Large-Scale Genome Assembly from Short Reads.
Schatz MC, Delcher AL, Salzberg SL (2010) Manuscript Under Review.

Two Paradigms for Assembly

R1: GACCTACA
R2: ACCTACAA
R3: CCTACAAG
R4: CTACAAGT
A: TACAAGTT
B: ACAAGTTA
C: CAAGTTAG
X: TACAAGTC
Y: ACAAGTCC
Z: CAAGTCCG

a) Read Layout 

c) de Bruijn Graph 

b) Overlap Graph 

GTT

GTC

TTA

TCC

TAG

CCG

AGT AAG CAA ACA TAC CTA CCT ACC GAC

A

B

X

Y

C

Z

R2 R3 R4 R1

Large-Scale Genome Assembly from Short Reads.
Schatz MC, Delcher AL, Salzberg SL (2010) Manuscript Under Review.

Short Reads and Mate-pairs

•  Explore the relationship between read length and contig N50 size
–  Perfect reads, lengths: 25, 35, 50, 100, 250, 500, 1000
–  Long reads are limiting case for short mated reads, perfectly compute the

insert sequence

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 250 500 750 1000

C
on

ti
g

N
50

 S
iz

e
(M

bp
)

Read Length

Bacillus anthracis
5.22Mbp

Colwellia psychrerythraea
5.37Mbp

Escherichia coli K12
4.64Mbp

Salmonella typhi
4.80Mbp

Yersinia pestis
4.70Mbp

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

ABySS Results
•  Assemble 42x 36bp

reads

•  Mate pairs double the
size of the contigs
–  Insert size 210bp

•  Identify 100k insertions
and deletions
–  Pronounced deletion peak

corresponds to Alu family
of retrotransposons

Bidirectional de Bruijn Graph
•  Designate a representative mer

for each mer/rc(mer) pair
–  Use the lexigraphically smaller mer

•  Bidirected edges record if
connection is between forward
or reverse mer

•  In practice, keep separate
adjacency lists for the forward
and reverse mers

AAG CTT
AGG CCT

ACT AGT

AAGG [CCTT]: AAG+ -> AGG+

ACTT [AAGA]: ACT+ -> AAG-
GCTT [AAGC]: AGC- -> AAG-

 AAG+ -> AGC+

AGC GCT

(Medvedev et al, 2007)

Find Compressible Nodes
 Input: Graph stored as (n : (nodeinfo, ni))

 Reduce:
–  If node n has unique successor s, and received (unique-pred, s),

•  Mark ni as compressible
–  Save (n : (nodeinfo, ni))

Compressible

Not Compressible

 Map:
–  For all nodes, emit (n : (nodeinfo, ni))
–  If node n has unique predecessor p, emit (p : (unique-pred, n))

Error Correction
 Sequencing error distorts graph structure

–  Errors at end of read
•  Trim off ‘dead-end’ tips
•  B’ passes trim message to A

–  Errors in middle of read
•  Pop Bubbles
•  B’ and B pass bubble messages to A

–  A is lexicographically smaller than C

–  Recursively apply, rerun path compression between each iteration

B

B’

A
B A

B

B’

A C B* A C

Parallel Network Motif Finding

Repeat Analysis
•  X-cut

–  Annotate edges with spanning reads
–  Separate fully spanned nodes

•  (Pevzner et al., 2001)

•  Scaffolding
–  If mate pairs are available search for a

path consistent with mate distance
–  Use message passing to iteratively

collect linked and neighboring nodes

•  Other simplifications possible

C

B A

R

D C

B A R

D R

C

A D R

B

A C D R B R R

Parallel Frontier Search

MUMmerGPU

Optimizing data intensive GPGPU computations for DNA sequence alignment.
Trapnell C, Schatz MC. (2009) Parallel Computing. 35(8-9):429-440.

1

2 3

4

h$p://mummergpu.sourceforge.net 

•  Index reference using a suffix tree
•  Each suffix represented by path from root
•  Reorder tree along space filling curve

•  Map many reads simultaneously on GPU
•  Find matches by walking the tree
•  Find coordinates with depth first search

•  Performance on nVidia GTX 8800
•  Match kernel was ~10x faster than CPU
•  Search kernel was ~4x faster than CPU
•  End-to-end runtime ~4x faster than CPU

Amazon Elastic MapReduce

EC2 Pricing

h$p://cloudburst‐bio.sourceforge.net 

Human chromosome 1 

Read 1 

Read 2 

map  shuffle 

… 

… 

reduce 

Read 1, Chromosome 1, 12345-12365

Read 2, Chromosome 1, 12350-12370

CloudBurst

CloudBurst: Highly Sensitive Read Mapping with MapReduce.
Schatz MC (2009) Bioinformatics. 25:1363-1369

•  Leverage Hadoop to build a distributed inverted index of k-mers
and find end-to-end alignments

•  100x speedup over RMAP with 96 cores at Amazon EC2

1.  Map: Catalog K-mers
•  Emit every k-mer in the genome and non-overlapping k-mers in the reads
•  Non-overlapping k-mers sufficient to guarantee an alignment will be found

Human chromosome 1 

Read 1 

Read 2 

map 

2.  Shuffle: Coalesce Seeds 
•  Hadoop internal shuffle groups together k‐mers shared by the reads and the reference 
•  Conceptually build a hash table of k‐mers and their occurrences 

shuffle 

… 

… 

3.  Reduce: End‐to‐end alignment 
•  Locally extend alignment beyond seeds by coun+ng mismatches, or with 

Landau‐Vishkin k‐difference algorithm to allow for indels. 
•  If read aligns end‐to‐end, record the alignment 

reduce 

Read 1, Chromosome 1, 12345-12365

Read 2, Chromosome 1, 12350-12370

CloudBurst: Highly Sensitive Read Mapping with MapReduce

(Schatz, 2009)

CloudBurst Results on Local CBCB Cluster

0
2000
4000
6000
8000

10000
12000
14000
16000

0 2 4 6 8

R
un

ti
m

e
(s

)

Millions of Reads

Running Time vs Number of Reads on Chr 1

0
1
2
3
4

0

500

1000

1500

2000

2500

3000

0 2 4 6 8

R
un

ti
m

e
(s

)

Millions of Reads

Running Time vs Number of Reads on Chr 22

0
1
2
3
4

•  Evaluation of CloudBurst running time
while scaling the number of reads and
the number of allowed mismatches
while mapping to human chromosomes
1 (top) and 22 (bottom) on the local
cluster with 24 cores.

•  Colored lines indicate timings allowing
0 (fastest) through 4 (slowest)
mismatches between a read and the
reference.

•  As the number of reads increases, the
running time increases linearly.

•  As the number of allowed mismatches
increases, the running time increases
super-linearly from the exponential
increase in seed instances.

Comparison to RMAP

•  CloudBurst running time compared to RMAP for mapping 7M reads, showing the
speedup of CloudBurst running on 24 cores compared to RMAP running on 1
core.

•  As the number of allowed mismatches increases, the relative overhead decreases
allowing CloudBurst to meet and exceed 24x linear speedup.

•  Produces identical results in a fraction of the time, especially for highly sensitive
alignments.

0

5

10

15

20

25

30

35

40

0 1 2 3 4

Sp
ee

du
p

Number of Mismatches

Speedup over serial RMAP
chr1

chr22

Amazon EC2 Evaluation

•  CloudBurst running times for mapping 7M reads to human chromosome 22 with
at most 4 mismatches on the local and EC 2 clusters.

•  The 24-core Amazon High-CPU Medium Instance EC2 cluster is faster than the
24-core Small Instance EC2 cluster, and the 24-core local dedicated cluster.

•  As the number of cores increase, the running time decreases with near linear
speedup. The 96-core cluster is 3.5x faster than the 24-core, and 100x faster than
a serial run of RMAP.

0

1000

2000

3000

4000

Local Cluster Small Instance EC2
Cluster

High-CPU Medium
Instance EC2

Cluster

R
un

ni
ng

 t
im

e
(s

)

Running Time on Local vs EC2 Clusters

0

500

1000

1500

2000

24 48 72 96

R
un

ni
ng

 t
im

e
(s

)

Number of Cores

Running Time on EC2
High-CPU Medium Instance Cluster

Burrows-Wheeler Transform

•  Reversible permutation of the characters in a text

•  BWT(T) is the index for T

Burrows-Wheeler
Matrix BWM(T)

BWT(T) T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Rank: 2

Rank: 2

LF Property
implicitly encodes
Suffix Array

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

