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Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

of times, it was the 

times, it was the age 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

it was the worst of 

was the worst of times, 

worst of times, it was 

of times, it was the 

times, it was the age 

it was the age of 

was the age of wisdom, 

the age of wisdom, it 

age of wisdom, it was 

of wisdom, it was the 

wisdom, it was the age 

it was the age of 

was the age of foolishness, 

the worst of times, it 

 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 Model sequence reconstruction as a graph problem. 



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 

it was the age 

was the age of 
the age of wisdom, 

age of wisdom, it 

of wisdom, it was 

wisdom, it was the 

A unique Eulerian tour of 
the graph reconstructs the 

original text 

If a unique tour does not 
exist, try to simplify the 

graph as much as possible 



 Generally an exponential number of compatible sequences 
–  Value computed by application of the BEST theorem (Hutchinson, 1975) 

          L = n x n matrix with ru-auu along the diagonal and -auv in entry uv 
   ru = d+(u)+1 if u=t, or d+(u) otherwise 
   auv = multiplicity of edge from u to v 

Counting Eulerian Tours 

ARBRCRD 
or 

ARCRBRD 
A R D 

B 

C 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.  



Genomics 

 Your genome influences (almost) all aspects of your life 
–  Anatomy & Physiology: 10 fingers & 10 toes, organs, neurons 
–  Diseases: Sickle Cell Anemia, Down Syndrome, Cancer 
–  Psychological: Intelligence, Personality, Bad Driving 

 Your environment also influences your life 
–  Genome as a recipe, not a blueprint 



Genomics across the Tree of Life 

Selected Genomes 
•  M. gallopavo (Folkerts et al., 2010*) 
•  A. dorsata (Ruepell et al., 2010*) 
•  V. destructor (Cornman et al., 2010*) 
•  N. ceranae (Cornman et al., 2009) 
•  B. taurus (Zimin et al., 2009) 
•  C. papaya (Ming et al., 2008)  
•  X. oryzae (Salzberg et al., 2008) 
•  T. vaginalis (Carlton et al., 2007) 
•  Drosophila (Drosophila 12 genomes 

consortium, 2007) 
•  B. malayi (Ghedin et al., 2007) 
•  A. aegypti (Nene et al., 2007) 
•  Campylobacter (Fouts et al., 2005) 

* In preparation or under review 



DNA Sequencing 

ATCTGATAAGTCCCAGGACTTCAGT 

GCAAGGCAAACCCGAGCCCAGTTT 

TCCAGTTCTAGAGTTTCACATGATC 

GGAGTTAGTAAAAGTCCACATTGAG 

 Genome of an organism encodes the genetic information 
in long sequence of 4 DNA nucleotides: ACGT 
–  Bacteria: ~3 million bp 
–  Humans: ~3 billion bp 

 Current DNA sequencing machines can generate 1-2 
Gbp of sequence per day, in millions of short reads 
–  Per-base error rate estimated at 1-2% (Simpson et al, 2009) 

–  Sequences originate from random positions of the genome 

 Recent studies of entire human genomes analyzed 3.3B 
(Wang, et al., 2008) & 4.0B (Bentley, et al., 2008) 36bp 
reads 
–  ~100 GB of compressed sequence data 



The Evolution of DNA Sequencing 
Year Genome Technology Cost 

2001 Venter et al. Sanger (ABI) $300,000,000 

2007 Levy et al. Sanger (ABI) $10,000,000 

2008 Wheeler et al. Roche (454) $2,000,000 

2008 Ley et al. Illumina $1,000,000 

2008 Bentley et al. Illumina $250,000 

2009 Pushkarev et al. Helicos $48,000 

2009 Drmanac et al. Complete Genomics $4,400 

(Pushkarev et al., 2009)  

Critical Computational Challenges:  Alignment and Assembly of Huge Datasets 



•  MapReduce is the parallel distributed framework invented by 
Google for large data computations.  
–  Data and computations are spread over thousands of computers, processing 

petabytes of data each day (Dean and Ghemawat, 2004) 
–  Indexing the Internet, PageRank, Machine Learning, etc… 
–  Hadoop is the leading open source implementation 

Hadoop MapReduce 

•  Benefits 
–  Scalable, Efficient, Reliable 
–  Easy to Program 
–  Runs on commodity computers 

•  Challenges 
–  Redesigning / Retooling applications 

–  Not Condor, Not MPI 
–  Everything in MapReduce 



(ATG:1)
(TGA:1)
(GAA:1)
(AAC:1)

(ACC:1)
(CCT:1)
(CTT:1)
(TTA:1)

(GAA:1)
(AAC:1)
(ACA:1)
(CAA:1)

(AAC:1)
(ACT:1)
(CTT:1)
(TTA:1)

(TTT:1)
(TTA:1)
(TAG:1)
(AGG:1)

(GGC:1)
(GCA:1)
(CAA:1)
(AAC:1)

map reduce 

K-mer Counting 
•  Application developers focus on 2 (+1 internal) functions 

–  Map: input  key:value pairs 
–  Shuffle: Group together pairs with same key 
–  Reduce: key, value-lists  output 

ATGAACCTTA

GAACAACTTA

TTTAGGCAAC

ACA -> 1
ATG -> 1
CAA -> 1,1
GCA -> 1
TGA -> 1
TTA -> 1,1,1

ACT -> 1
AGG -> 1
CCT -> 1
GGC -> 1
TTT -> 1

AAC -> 1,1,1,1
ACC -> 1
CTT -> 1,1
GAA -> 1,1
TAG -> 1

ACA:1
ATG:1
CAA:2
GCA:1
TGA:1
TTA:3

ACT:1
AGG:1
CCT:1
GGC:1
TTT:1

AAC:4
ACC:1
CTT:1
GAA:1
TAG:1

Map, Shuffle & Reduce 
All Run in Parallel 

shuffle 



Slave 5 

Slave 4 

Slave 3 

 Hadoop Architecture 

Slave 2 

Slave 1 

Master Desktop 

•  Hadoop Distributed File System (HDFS) 
–  Data files partitioned into large chunks (64MB),  replicated on multiple nodes 
–  NameNode stores metadata information (block locations, directory structure) 

•  Master node (JobTracker) schedules and monitors work on slaves 
–  Computation moves to the data, rack-aware scheduling 

•  Hadoop MapReduce system won the 2009 GreySort Challenge 
–  Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks 



Short Read Mapping 

•  Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read 
–  Find where the read most likely originated 
–  Fundamental computation for many assays 

•  Genotyping    RNA-Seq    Methyl-Seq 
•  Structural Variations   Chip-Seq    Hi-C-Seq 

•  Desperate need for scalable solutions 
–  Single human requires >1,000 CPU hours / genome 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

Identify variants 

Reference 

Subject 



Crossbow 

•  Align billions of reads and find SNPs 
–  Reuse software components: Hadoop Streaming 

•  Map: Bowtie (Langmead et al., 2009) 
–  Find best alignment for each read 
–  Emit (chromosome region, alignment) 

…
 

…
 

•  Shuffle: Hadoop 
–  Group and sort alignments by region 

•  Reduce: SOAPsnp (Li et al., 2009) 
–  Scan alignments for divergent columns 
–  Accounts for sequencing error, known SNPs 

h$p://bow+e‐bio.sourceforge.net/crossbow 



Performance in Amazon EC2 

Asian Individual Genome 

Data Loading 3.3 B reads 106.5 GB $10.65 

Data Transfer 1h :15m 40 cores $3.40 

Setup 0h : 15m 320 cores $13.94 

Alignment 1h : 30m 320 cores $41.82 

Variant Calling 1h : 00m 320 cores $27.88 

End-to-end 4h : 00m $97.69 

Analyze an entire human genome for ~$100 in an afternoon. 
Accuracy validated at >99% 

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology.  

h$p://bow+e‐bio.sourceforge.net/crossbow 



Related Approaches 
MUMmerGPU 

High Throughput Sequence Alignment  
using GPGPUs 

~10x speedup on nVidia GTX 8800 

(Schatz, Trapnell, et al., 2007) 
(Trapnell & Schatz, 2008) 

1 

2 3 

4 

CloudBurst 
Highly Sensitive Short Read Mapping 

with MapReduce 

100x speedup on 96 cores @ Amazon 

(Schatz, 2009) 

… 

… 



Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph 
–  Human genome: >3B nodes, >10B edges 

•  The new short read assemblers require tremendous computation 
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



(ATG:1)
(TGA:1)
(GAA:1)
(AAC:1)

(ACC:1)
(CCT:1)
(CTT:1)
(TTA:1)

(GAA:1)
(AAC:1)
(ACA:1)
(CAA:1)

(AAC:1)
(ACT:1)
(CTT:1)
(TTA:1)

(TTT:1)
(TTA:1)
(TAG:1)
(AGG:1)

(GGC:1)
(GCA:1)
(CAA:1)
(AAC:1)

map reduce 

K-mer Counting 
•  Application developers focus on 2 (+1 internal) functions 

–  Map: input  key:value pairs 
–  Shuffle: Group together pairs with same key 
–  Reduce: key, value-lists  output 

ATGAACCTTA

GAACAACTTA

TTTAGGCAAC

ACA -> 1
ATG -> 1
CAA -> 1,1
GCA -> 1
TGA -> 1
TTA -> 1,1,1

ACT -> 1
AGG -> 1
CCT -> 1
GGC -> 1
TTT -> 1

AAC -> 1,1,1,1
ACC -> 1
CTT -> 1,1
GAA -> 1,1
TAG -> 1

ACA:1
ATG:1
CAA:2
GCA:1
TGA:1
TTA:3

ACT:1
AGG:1
CCT:1
GGC:1
TTT:1

AAC:4
ACC:1
CTT:1
GAA:1
TAG:1

Map, Shuffle & Reduce 
All Run in Parallel 

shuffle 



(ATG:A)
(TGA:A)
(GAA:C)
(AAC:C)

(ACC:T)
(CCT:T)
(CTT:A)

(GAA:C)
(AAC:A)
(ACA:A)
(CAA:C)

(AAC:T)
(ACT:T)
(CTT:A)

(TTT:A)
(TTA:G)
(TAG:G)
(AGG:C)

(GGC:A)
(GCA:A)
(CAA:C)

map reduce 

Graph Construction 
•  Application developers focus on 2 (+1 internal) functions 

–  Map: input  key:value pairs 
–  Shuffle: Group together pairs with same key 
–  Reduce: key, value-lists  output 

ATGAACCTTA

GAACAACTTA

TTTAGGCAAC

ACA -> A
ATG -> A
CAA -> C,C
GCA -> A
TGA -> A
TTA -> G

ACT -> T
AGG -> C
CCT -> T
GGC -> A
TTT -> A

AAC -> C,A,T
ACC -> T
CTT -> A,A
GAA -> C,C
TAG -> G

ACA:CAA
ATG:TGA
CAA:AAC
GCA:CAG
TGA:GAA
TTA:TAG

ACT:CTT
AGG:GGC
CCT:CTT
GGC:GCA
TTT:TTA

AAC:ACC,ACA,ACT
ACC:CCT
CTT:TTA
GAA:AAC
TAG:AGG

Map, Shuffle & Reduce 
All Run in Parallel 

shuffle 



Graph Compression 
•  After construction, many edges are unambiguous 

–  Merge together compressible nodes 
–  Graph physically distributed over hundreds of computers 



Distributed Graph Processing 
I X 

Z K 

Y A: 42 B: 33 J 

 Input:  
–  Graph stored as node tuples 

A: (N E:B W:42)
B: (N E:I,J,K W:33)

 Map 
–  For all nodes, re-emit node tuple 
–  For all neighbors, emit value tuple 

A: (N E:B W:42)
B: (V A 42)
B: (N E:I,J,K W:33)
…

 Shuffle 
–  Collect tuples with same key 

B: (N E:I,J,K W:33)
B: (V A 42)

 Reduce 
–  Add together values, save updated node tuple 

B: (N E:I,J,K W:75)

B: 75 
MapReduce 

Message Passing 

A is 42 



Iterative Path Compression 
 Iteratively identify and collapse the 
beginning of each chain 

 Map:  
–  Emit messages to the neighbors of the 

head of each chain 

 Reduce: 
–  Update links, node label 

 Requires S MapReduce cycles, where S is the length of the longest simple path 
•  B. anthracis:   L=5.2Mbp  S=268,925 
•  H. sapiens chr 22:  L=49.6Mbp  S=33,832 
•  H. sapiens chr 1:  L=247.2Mbp  S=37,172 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H  T  links 

 Performance 
–  Compress all chains in log(S) rounds (<20) 
–  If <1024 nodes to compress (from any 

number of chains), assign them all to the 
same reducer (save 10 rounds) 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  



Node Types 

(Chaisson, 2009) 

 Isolated nodes (10%) 
–  Contamination 

 Tips (46%) 
–  Clip short tips 

 Bubbles/Non-branch (9%) 
–  Pop bubbles 

 Dead Ends (.2%) 
–  Split forks 

 Half Branch (25%) 
–  Unzip 

 Full Branch (10%) 
–  Thread reads, cloud surfing 



Contrail 

Scalable Genome Assembly with MapReduce 
•  Genome: E. coli 4.6Mbp bacteria 
•  Input: 20M 36bp reads, 200bp insert 
•  Preprocessor: Quality-Aware Error Correction 

http://contrail-bio.sourceforge.net 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

Cloud Surfing Error Correction Compressed Initial 

N 
Max 
N50 

5.1 M 
27 bp 
27 bp 

245,131 
1,079 bp 

156 bp 

2,769 
70,725 bp 
15,023 bp 

1,909 
90,088 bp 
17,058 bp 

300 
149,006 bp 

54,807 bp 

Resolve Repeats 



Selected Related Work 
AutoEditor & AutoJoiner 

Improving Genome Assemblies 
without Resequencing 

(Gajer, Schatz, Salzberg, 2004) 
(Carlton et al., 2007) 

Assembly Forensics 

Finding the Elusive  
Mis-assembly 

(Phillippy, Schatz, Pop, 2008) 

Hawkeye 

Assembly Visualization & 
Analytics 

(Schatz, Phillippy, Shneiderman, 
 Salzberg, 2007) 

PhyloTrac 

Integrated survey analysis of  
prokaryotic communities 

(Schatz, Phillippy, et al., 2010*) 

Graph Summarization 

Revealing Biological Modules 
 via Graph Summarization. 

(Navlakha, Schatz, Kingsford, 2008) 

Transgenic Hunt 

Characterization of Insertion 
Sites in Rainbow Papaya 

(Suzuki et al., 2008) 



Research Directions 
•  Scalable Sequencing 

–  Genomes, Metagenomes, *-Seq, Personalized Medicine 
–  How do we survive the tsunami of sequence data? 

o  Efficient indexing & algorithms, multi-core & multi-disk systems 

•  Practically Parallel 
–  Managing n-tier memory hierarchies, crossing the PRAM chasm 
–  How do we solve problems with 1000s of cores? 

o  Locality, Fault Tolerance, Programming Languages & Parallel Systems 

•  Computational Discovery 
–  Abundant data and computation are necessary, but not sufficient 
–  How do we gain insight? 

o  Modeling, Machine Learning, Databases, Visualization & HCI 



 “NextGen sequencing has completely outrun 
the ability of good bioinformatics people to 
keep up with the data and use it well… We 
need a MASSIVE effort in the development of 
tools for ‘normal’ biologists to make better 
use of massive sequence databases.” 

    Jonathan Eisen – JGI Users Meeting – 3/28/09 

•  Computational Biology 
–  Make the problems of genotyping and assembly of 

large genomes from short reads feasible and 
accessible to individual researchers 

•  High Performance Computing 
–  Developed Novel Parallel Algorithms for 

MapReduce and Multicore systems 

Summary 
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Genome Coverage 
Idealized assembly 
•  Uniform probability of a read 

starting at a given position 
–  p = G/N 

•  Poisson distribution in coverage 
along genome 
–  Contigs end when there is no 

overlapping read 

•  Contig length is a function of 
coverage and read length 
–  Short reads require much 

higher coverage 

Large-Scale Genome Assembly from Short Reads. 
Schatz MC, Delcher AL, Salzberg SL (2010) Manuscript Under Review.  



Two Paradigms for Assembly 

R1: GACCTACA
R2:  ACCTACAA
R3:   CCTACAAG
R4:    CTACAAGT
A:     TACAAGTT
B:      ACAAGTTA
C:       CAAGTTAG
X:     TACAAGTC
Y:      ACAAGTCC
Z:       CAAGTCCG

a) Read Layout 

c) de Bruijn Graph 

b) Overlap Graph 

GTT 

GTC 

TTA 

TCC 

TAG 

CCG 

AGT AAG CAA ACA TAC CTA CCT ACC GAC 

A 

B 

X 

Y 

C 

Z 

R2 R3 R4 R1 

Large-Scale Genome Assembly from Short Reads. 
Schatz MC, Delcher AL, Salzberg SL (2010) Manuscript Under Review.  



Short Reads and Mate-pairs 

•  Explore the relationship between read length and contig N50 size 
–  Perfect reads, lengths: 25, 35, 50, 100, 250, 500, 1000 
–  Long reads are limiting case for short mated reads, perfectly compute the 

insert sequence 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0 250 500 750 1000 
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g 
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e 
(M

bp
) 

Read Length 

Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Yersinia pestis         
4.70Mbp 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.  



ABySS Results 
•  Assemble 42x 36bp 

reads 

•  Mate pairs double the 
size of the contigs 
–  Insert size 210bp 

•  Identify 100k insertions 
and deletions 
–  Pronounced deletion peak 

corresponds to Alu family 
of retrotransposons 



Bidirectional de Bruijn Graph 
•  Designate a representative mer 

for each mer/rc(mer) pair 
–  Use the lexigraphically smaller mer 

•  Bidirected edges record if 
connection is between forward 
or reverse mer 

•  In practice, keep separate 
adjacency lists for the forward 
and reverse mers 

AAG CTT 
AGG CCT 

ACT AGT 

AAGG [CCTT]:  AAG+ -> AGG+ 

ACTT  [AAGA]:  ACT+ -> AAG-   
GCTT [AAGC]:  AGC- -> AAG- 

                          AAG+ -> AGC+ 

AGC GCT 

(Medvedev et al, 2007) 



Find Compressible Nodes 
 Input: Graph stored as (n : (nodeinfo, ni)) 

 Reduce: 
–  If node n has unique successor s, and received (unique-pred, s), 

•  Mark ni as compressible 
–  Save (n : (nodeinfo, ni)) 

Compressible 

Not Compressible 

 Map:  
–  For all nodes, emit (n : (nodeinfo, ni)) 
–  If node n has unique predecessor p, emit (p : (unique-pred, n)) 



Error Correction 
 Sequencing error distorts graph structure 

–  Errors at end of read 
•  Trim off ‘dead-end’ tips 
•  B’ passes trim message to A 

–  Errors in middle of read 
•  Pop Bubbles 
•  B’ and B pass bubble messages to A 

–  A is lexicographically smaller than C 

–  Recursively apply, rerun path compression between each iteration 

B 

B’ 

A 
B A 

B 

B’ 

A C B* A C 

Parallel Network Motif Finding 



Repeat Analysis 
•  X-cut 

–  Annotate edges with spanning reads 
–  Separate fully spanned nodes 

•  (Pevzner et al., 2001) 

•  Scaffolding 
–  If mate pairs are available search for a 

path consistent with mate distance 
–  Use message passing to iteratively 

collect linked and neighboring nodes 

•  Other simplifications possible   

C 

B A 

R 

D C 

B A R 

D R 

C 

A D R 

B 

A C D R B R R 

Parallel Frontier Search 



MUMmerGPU 

Optimizing data intensive GPGPU computations for DNA sequence alignment. 
Trapnell C, Schatz MC. (2009) Parallel Computing. 35(8-9):429-440. 

1 

2 3 

4 

h$p://mummergpu.sourceforge.net 

•  Index reference using a suffix tree 
•  Each suffix represented by path from root 
•  Reorder tree along space filling curve 

•  Map many reads simultaneously on GPU 
•  Find matches by walking the tree 
•  Find coordinates with depth first search 

•  Performance on nVidia GTX 8800 
•  Match kernel was ~10x faster than CPU 
•  Search kernel was ~4x faster than CPU 
•  End-to-end runtime ~4x faster than CPU 



Amazon Elastic MapReduce 



EC2 Pricing 



h$p://cloudburst‐bio.sourceforge.net 

Human chromosome 1 

Read 1 

Read 2 

map  shuffle 

… 

… 

reduce 

Read 1, Chromosome 1, 12345-12365

Read 2, Chromosome 1, 12350-12370

CloudBurst 

CloudBurst: Highly Sensitive Read Mapping with MapReduce. 
Schatz MC (2009) Bioinformatics. 25:1363-1369  

•  Leverage Hadoop to build a distributed inverted index of k-mers 
and find end-to-end alignments 

•  100x speedup over RMAP with 96 cores at Amazon EC2 



1.  Map: Catalog K-mers 
•  Emit every k-mer in the genome and non-overlapping k-mers in the reads 
•  Non-overlapping k-mers sufficient to guarantee an alignment will be found 

Human chromosome 1 

Read 1 

Read 2 

map 

2.  Shuffle: Coalesce Seeds 
•  Hadoop internal shuffle groups together k‐mers shared by the reads and the reference 
•  Conceptually build a hash table of k‐mers and their occurrences 

shuffle 

… 

… 

3.  Reduce: End‐to‐end alignment 
•  Locally extend alignment beyond seeds by coun+ng mismatches, or with 

Landau‐Vishkin k‐difference algorithm to allow for indels. 
•  If read aligns end‐to‐end, record the alignment 

reduce 

Read 1, Chromosome 1, 12345-12365

Read 2, Chromosome 1, 12350-12370

CloudBurst: Highly Sensitive Read Mapping with MapReduce 

(Schatz, 2009) 



CloudBurst Results on Local CBCB Cluster 
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•  Evaluation of CloudBurst running time 
while scaling the number of reads and 
the number of allowed mismatches 
while mapping to human chromosomes 
1 (top) and 22 (bottom) on the local 
cluster with 24 cores. 

•  Colored lines indicate timings allowing 
0 (fastest) through 4 (slowest) 
mismatches between a read and the 
reference.  

•  As the number of reads increases, the 
running time increases linearly.  

•  As the number of allowed mismatches 
increases, the running time increases 
super-linearly from the exponential 
increase in seed instances.  



Comparison to RMAP 

•  CloudBurst running time compared to RMAP for mapping 7M reads, showing the 
speedup of CloudBurst running on 24 cores compared to RMAP running on 1 
core.  

•  As the number of allowed mismatches increases, the relative overhead decreases 
allowing CloudBurst to meet and exceed 24x linear speedup.  

•  Produces identical results in a fraction of the time, especially for highly sensitive 
alignments. 
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Amazon EC2 Evaluation 

•  CloudBurst running times for mapping 7M reads to human chromosome 22 with 
at most 4 mismatches on the local and EC 2 clusters. 

•  The 24-core Amazon High-CPU Medium Instance EC2 cluster is faster than the 
24-core Small Instance EC2 cluster, and the 24-core local dedicated cluster. 

•  As the number of cores increase, the running time decreases with near linear 
speedup. The 96-core cluster is 3.5x faster than the 24-core, and 100x faster than 
a serial run of RMAP. 
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Burrows-Wheeler Transform 

•  Reversible permutation of the characters in a text 

•  BWT(T) is the index for T 

Burrows-Wheeler 
Matrix BWM(T) 

BWT(T) T 

A block sorting lossless data compression algorithm. 
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124 

Rank: 2 

Rank: 2 

LF Property  
implicitly encodes 
Suffix Array 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 
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Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 


