
Computational Architecture of Cloud Environments
Michael Schatz

April 1, 2010
NHGRI Cloud Computing Workshop

Cloud Architecture

Input Output

Computation

Nebulous question:
 Cloud computing = Utility computing + Enabling Computational Technologies
 Goal: Many computers working together to analyze huge datasets
 Challenge: 100x processors rarely means 100x faster

Why Parallel?

•  Moore’s Law is valid in 2010
–  But CPU speed is flat
–  Vendors switching to

multicore solutions instead

•  Why parallel
–  Need it done faster
–  Doesn’t fit on one machine

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software
Herb Sutter, http://www.gotw.ca/publications/concurrency-ddj.htm

Parallel Computing Spectrum

Regularly
Parallel

MapReduce
Enabling Technologies Emerging

Align-Shuffle-Scan
Genotyping

K-mer Counting

Embarrassingly
Parallel

Batch Computing
Many Good Solutions

BLAST
HMM Scoring

Parameter Sweep

Deeply
Parallel

MPI & PRAM
Open Research Area

Graph Analysis
Genome Assembly

MD Simulations

Embarrassingly Parallel
•  Batch computing

–  Each item is independent
–  Split input into many chunks
–  Process each chunk separately on a

different computer

•  Challenges
–  Distributing work, load balancing,

monitoring & restart

•  Technologies
–  Condor, Sun Grid Engine
–  Amazon Simple Queue

Elementary School Dance

Regularly Parallel
•  Align-Shuffle-Scan in MapReduce

–  Align a large set of reads
–  Shuffle to group and sort by chromosome
–  Scan alignments for SNPs

•  Challenges
–  Batch computing challenges
–  + Shuffling of huge datasets

•  Technologies
–  Hadoop, Elastic MapReduce, Dryad
–  Parallel Databases

…
 

…
 

Junior High Dance

Crossbow Scaling

•  Even with this relatively simple parallel
application, we do not achieve perfect efficiency.
–  Interesting tradeoffs in time vs. money

Deeply Parallel
•  Computation that cannot be partitioned

–  Graph Analysis
–  Molecular Dynamics
–  Population simulations

•  Challenges
–  Regular parallel challenges
–  + Parallel algorithms design

•  Technologies
–  MPI
–  MapReduce, Dryad

High School Dance

Short Read Assembly

AAGA
ACTT
ACTC
ACTG
AGAG
CCGA
CGAC
CTCC
CTGG
CTTT
…

de Bruijn Graph Potential Genomes

AAGACTCCGACTGGGACTTT

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph
–  Human genome: >3B nodes, >10B edges

•  The new short read assemblers require tremendous computation
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

Reads

AAGACTGGGACTCCGACTTT

Graph Compression
•  After construction, many edges are unambiguous

–  Merge together compressible nodes
–  Graph physically distributed over hundreds of computers

Fast Path Compression
 Challenges

–  Nodes stored on different computers
–  Nodes can only access direct neighbors

 Randomized List Ranking
–  Randomly assign H / T to each

compressible node
–  Compress H T links

 Performance
–  Compress all chains in log(S) rounds

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Contrail

Scalable Genome Assembly with MapReduce
•  Genome: African male NA18507 (Bentley et al., 2008)
•  Input: 3.5B 36bp reads, 210bp insert (SRA000271)
•  Preprocessor: Quality-Aware Error Correction

http://contrail-bio.sourceforge.net

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Cloud Surfing Error Correction Compressed Initial

N
Max
N50

>10 B
27 bp
27 bp

>1 B
303 bp

< 100 bp

5.0 M
14,007 bp

650 bp

4.2 M
20,594 bp

923 bp
In progress

Resolve Repeats

•  Surviving the data deluge means computing in parallel
–  Good solutions for “easy” parallel problems, but

gets fundamentally more difficult as dependencies
get deeper

•  Parallel systems require connecting many components
–  We can get started by agreeing on common input

and output formats, open source software
–  Move the computation to the data

•  Emerging technologies are a great start, but we need
continued research integrating computational biology
with research in HPC
–  A word of caution: new technologies are new

Summary

Acknowledgements

Ben Langmead

Steven Salzberg Mihai Pop

Dan Sommer

Jimmy Lin

David Kelley

Thank You!

http://www.cbcb.umd.edu/~mschatz

@mike_schatz

