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Cloud Architecture 

Input Output 

Computation 

Nebulous question:  
 Cloud computing = Utility computing + Enabling Computational Technologies 
 Goal: Many computers working together to analyze huge datasets 
 Challenge: 100x processors rarely means 100x faster 



Why Parallel? 

•  Moore’s Law is valid in 2010 
–  But CPU speed is flat 
–  Vendors switching to 

multicore solutions instead 

•  Why parallel 
–  Need it done faster 
–  Doesn’t fit on one machine 

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software 
Herb Sutter, http://www.gotw.ca/publications/concurrency-ddj.htm 
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Embarrassingly Parallel 
•  Batch computing 

–  Each item is independent 
–  Split input into many chunks 
–  Process each chunk separately on a 

different computer 

•  Challenges 
–  Distributing work, load balancing, 

monitoring & restart 

•  Technologies  
–  Condor, Sun Grid Engine 
–  Amazon Simple Queue 



Elementary School Dance 



Regularly Parallel 
•  Align-Shuffle-Scan in MapReduce 

–  Align a large set of reads 
–  Shuffle to group and sort by chromosome 
–  Scan alignments for SNPs  

•  Challenges 
–  Batch computing challenges  
–  + Shuffling of huge datasets 

•  Technologies 
–  Hadoop, Elastic MapReduce, Dryad 
–  Parallel Databases 

…
 

…
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Crossbow Scaling 

•  Even with this relatively simple parallel 
application, we do not achieve perfect efficiency. 
–  Interesting tradeoffs in time vs. money 



Deeply Parallel 
•  Computation that cannot be partitioned 

–  Graph Analysis 
–  Molecular Dynamics 
–  Population simulations 

•  Challenges 
–  Regular parallel challenges  
–  + Parallel algorithms design 

•  Technologies 
–  MPI 
–  MapReduce, Dryad 
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Short Read Assembly 
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… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph 
–  Human genome: >3B nodes, >10B edges 

•  The new short read assemblers require tremendous computation 
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 
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Reads 

AAGACTGGGACTCCGACTTT 



Graph Compression 
•  After construction, many edges are unambiguous 

–  Merge together compressible nodes 
–  Graph physically distributed over hundreds of computers 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H  T  links 

 Performance 
–  Compress all chains in log(S) rounds 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  



Contrail 

Scalable Genome Assembly with MapReduce 
•  Genome: African male NA18507 (Bentley et al., 2008) 
•  Input: 3.5B 36bp reads, 210bp insert (SRA000271) 
•  Preprocessor: Quality-Aware Error Correction 

http://contrail-bio.sourceforge.net 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

Cloud Surfing Error Correction Compressed Initial 

N 
Max 
N50 

>10 B 
27 bp 
27 bp 

>1 B 
303 bp 

< 100 bp 

5.0 M 
14,007 bp 

650 bp 

4.2 M 
20,594 bp 

923 bp 
In progress 

Resolve Repeats 



•  Surviving the data deluge means computing in parallel 
–  Good solutions for “easy” parallel problems, but 

gets fundamentally more difficult as dependencies 
get deeper 

•  Parallel systems require connecting many components 
–  We can get started by agreeing on common input 

and output formats, open source software 
–  Move the computation to the data 

•  Emerging technologies are a great start, but we need 
continued research integrating computational biology 
with research in HPC 
–  A word of caution: new technologies are new 

Summary 
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Thank You! 

http://www.cbcb.umd.edu/~mschatz 
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