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Milestones in DNA Sequencing
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® X174 DNA

F. Sanger, G. M. Air', B, G, Barrell, N, L. Brown', A. R, Coalson, J, C, Fiddes,
C. A. Hutchison 1115, P, M. Slocombe' & M. Saith*
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Radioactive Chain Termination
5000bp / week / person

1977
Sanger et al.
|s* Complete Organism
Bacteriophage ¢ X174
5375 bp

http://en.wikipedia.org/wiki/File:Sequencing.jpg
http://www.answers.com/topic/automated-sequencer




Milestones in DNA Sequencing
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1987 Fluorescent Dye Termination
Applied Biosystems markets the ABI 370 as 350bp / lane x 16 lanes =
the first automated sequencing machine 5600bp / day / machine

http://commons.wikimedia.org/wiki/File:370A_automated_DNA_sequencer.jpg http://www.answers.com/topic/automated-sequencer



Milestones in DNA Sequencing
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1995 2000 2001
Fleischmann et al. Myers et al. Venter et al.,
|5t Free Living Organism Ist Large WGS Assembly. Human Genome
TIGR Assembler. |.8Mbp Celera Assembler. | 16 Mbp Celera Assembler. 2.9 Gbp

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day.
"The machine was so revolutionary that it could decode in a single day the same amount
of genetic material that most DNA labs could produce in a year." |. Craig Venter



Milestones in DNA Sequencing

2004 2007 2008
454/Roche [llumina ABI / Life Technologies
Pyrosequencing Sequencing by Synthesis SOLID Sequencing
Current Specs (Titanium): Current Specs (HiSeq 2000): Current Specs (5500xl):
IM 400bp reads / run = 2.5B 100bp reads / run = 5B 75bp reads / run =

| Gbp / day 25Gbp / day 30Gbp / day



Second Generation Sequencing Applications
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The DNA Data Tsunami

Current world-wide sequencing capacity exceeds |0Tbp/day (3.6Pbplyear)
and is growing at 5x per year!
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"Will Computers Crash Genomics?"
Elizabeth Pennisi (201 1) Science. 331(6018): 666-668.



Hadoop MapReduce

http://hadoop.apache.org

* MapReduce is Google's framework for large data computations

— Data and computations are spread over thousands of computers

* Indexing the Internet, PageRank, Machine Learning, etc... (Dean and Ghemawat, 2004)
* 946,460 TB processed in May 2010 (Jeff Dean at Stanford, | 1.10.2010)

— Hadoop is the leading open source implementation
* Developed and used by Yahoo, Facebook, Twitter, Amazon, etc

* GATK is an alternative implementation specifically for NGS

* Benefits * Challenges
— Scalable, Efficient, Reliable — Redesigning / Retooling applications
— Easy to Program — Not Condor, Not MPI
— Runs on commodity computers — Everything in MapReduce

Google



System Architecture

Slave 5
Slave 4
Slave 3
Slave 2
Slave 1

Desktop Master

* Hadoop Distributed File System (HDFS)

— Data files partitioned into large chunks (64MB), replicated on multiple nodes

— Computation moves to the data, rack-aware scheduling

* Hadoop MapReduce system won the 2009 GreySort Challenge
— Sorted 100TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks



Amazon Web Services

http://aws.amazon.com

All you need is a credit card, and you can

AT you | 4 amazon
immediately start using one of the largest web services"
datacenters in the world
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Elastic Compute Cloud (EC2)

— On demand computing power

- -

Simple Storage Service (S3)

— Scalable data storage
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Plus many, many more



EC2 Architecture

* Very large cluster of machines
— Effectively infinite resources

— High-end servers with many cores
and many GB RAM

* Machines run in a virtualized
environment

— Amazon can subdivide large nodes
into smaller instances

— You are 100% protected from other
users on the machine

— You get to pick the operating
system, all installed software



Amazon S3

* S3 provides persistent storage for large
volumes of data

* Very high speed connection from S3 to EC2
compute nodes

* Public data sets include s3://1000genomes

— Tiered pricing by volume
* Pricing starts at |15¢ / GB / month

 5.5¢/ GB/ month for over 5 PB
* Pay for transfer in and out of Amazon

— Import/Export service for large volumes

* FedEx your drives to Amazon



Hadoop on AWS

* If you don’ t have 1000s of machines, rent them from Amazon

* After machines spool up, ssh to master as if it was a local machine.

* Use S3 for persistent data storage, with very fast interconnect to EC2.



Programming Models

Embarrassingly Parallel

|

Map-only
Each item is Independent
Traditional Batch Computing

Loosely Coupled
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MapReduce
Independent-Shuffle-Independent
Batch Computing + Data Exchange

Tightly Coupled

|terative MapReduce
Nodes interact with other nodes
Big Data MPI




|. Embarrassingly Parallel

* Batch computing
— Each item is independent = —

— Split input into many chunks —

— Process each chunk separately on a
different computer

* Challenges

— Distributing work, load balancing,
monitoring & restart

g
l

* Technologies

— Condor, Sun Grid Engine

— Amazon Simple Queue

<_H<_




2. Loosely Coupled

* Divide and conquer

— Independently process many items

S @ — [l

> @ —
> @ < [l

— Group partial results

— Scan partial results into final answer

— Batch computing challenges

!
* Challenges ¢
/N

— + Shuffling of huge datasets

* Technologies

— Hadoop, Elastic MapReduce, Dryad
— Parallel Databases



Short Read Mapping

Identify variants

( GGTATAC...

...CCATAG TATGCGCCC  CGGAAATTT CGGTATAC
...CCAT CTATATGCG TCGGQAAATT CGGTATAC
: ...CCAT GGCTATATG CTATCGGAAA GCGGTATA

Subject | T'GCA AGGCTATAT CCTATCG TTGCGGTA C...
...CCA AGGCTATAT GCCCTATCG TTTGCGGT _ C...
...CC _AGGCTATAT _ GCCCTATCG |AAATTTGC ATAC...
...CC TAGGCTATA GCGCCCTA APAATTTGC GTATAC...

Reference . .CCATAGGCTATATGCGCCCTATCGGlCAATTTGCGGTATAC. .

« Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read
— Find where the read most likely originated
— Fundamental computation for many assays
* Genotyping RNA-Seq Methyl-Seq
* Structural Variations Chip-Seq Hi-C-Seq

* Desperate need for scalable solutions
— Single human requires >1,000 CPU hours / genome



Crossbow

http://bowtie-bio.sourceforge.net/crossbow

Align billions of reads and find SNPs

— Reuse software components: Hadoop Streaming

Map: Bowtie (Langmead et al., 2009) N .
— Find best alignment for each read g’ pg”

— Emit (chromosome region, alignment)

— Group and sort alignments by region

Reduce: SOAPsnp (Li et al., 2009) =)

— Scan alignments for divergent columns

— Accounts for sequencing error, known SNPs £J E



Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

_ Asian Individual Genome

Data Loading 3.3 B reads 106.5 GB $10.65
Data Transfer lh:I5m 40 cores $3.40
Setup Oh: 15m 320 cores $13.94
Alignment lh:30m 320 cores $41.82
Variant Calling lh : 00m 320 cores $27.88
End-to-end 4h : 00m $97.69

Discovered 3.7M SNPs in one human genome for ~$100 in an afternoon.
Accuracy validated at >99%

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin |, Pop M, Salzberg SL (2009) Genome Biology. 10:R 134



Map-Shuffle-Scan for Genomics

Cloud Cluster

Cloud Computing and the DNA Data Race.
Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693

Internet

Unaligned — Mapto —»  Shuffle — Scan Assay
Reads Genome into Bins Alignments Results

g L D <’ o G — g
=| - e <> | — [&E =
E R \w <, ................................ o i"_ E

|

Cloud
Storage



MicroSeq: NextGen Microsatellite Profiling

Mitchell Bekritsky, WSBS

* Class of simple sequence repeats

— ...GCACACACACAT... = ...G(CA)T...

— Created and mutate primarily through
slippage during replication

— Highly variable & ubiquitous

* Genotyping with MicroSeq
— Map reads using a new MS-mapper
— Collect MS-reads into MS-genotypes

— Analyze profiles in cells, across cells, & across
populations
* Loss of heterozygosity
* Development of somatic & cancer cells
* Relations across strains, across species

* etc...

(Salipante et al. 2006)




3. Tightly Coupled

* Computation that cannot be partitioned
— Graph Analysis
— Molecular Dynamics

— Population simulations

* Challenges
— Loosely coupled challenges

— + Parallel algorithms design

* Technologies
— MPI

— MapReduce, Dryad, Pregel
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Short Read Assembly

Reads de Bruijn Graph Potential Genomes
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* Genome assembly as finding an Eulerian tour of the de Bruijn graph
— Human genome: >3B nodes, >10B edges

* The new short read assemblers require tremendous computation
— Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
— ABYSS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
— SOAPdenovo (Li et al.,, 2010) pthreads: 40 cores x 40 hours,>140 GB RAM



Graph Compression

* After construction, many edges are unambiguous
— Merge together compressible nodes

— Graph physically distributed over hundreds of computers
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Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>
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Initial Graph: 42 nodes

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>

T

links

\ ﬁ

[©— Lo+ @H@—> @l - @

»
"B

Round 1: 26 nodes (38% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking

— Randomly assign (H)/[T
compressible node

— Compress (H)>

T

links

to each
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Round 2: 15 nodes (64% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>

Randomized Speed-ups in Parallel Computation.
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Round 2: 8 nodes (81% savings)

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>

Randomized Speed-ups in Parallel Computation.

T
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Round 3: 6 nodes (86% savings)

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>

Performance

T

links

— Compress all chains in log(S) rounds

Randomized Speed-ups in Parallel Computation.

Round 4: 5 nodes (88% savings)

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Counting Eulerian Tours
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Generally an exponential number of compatible sequences
— Value computed by application of the BEST theorem (Hutchinson, 1975)

1
W(G,t) = (et L){ T] (ru - }{ [T et}
ueV u,v)EE
L = n x n matrix with r-a , along the diagonal and -a,, in entry uv

r, = d*(u)* 1 if u=t, or d*(u) otherwise

a,, = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.



Contrail

http://contrail-bio.sourceforge.net

De novo bacterial assembly
* Genome:E. coli K12 MG1655, 4.6Mbp
* Input: 20.8M 36bp reads, 200bp insert (~150x coverage)

* Preprocessor: Quake Error Correction

Initial Compressed Error Correction Resolve Repeats Cloud Surfing
V-‘ ek A o /—\ O)
N 51 M 245,131 2,769 1,909 300
Max 27 bp 1,079 bp 70,725 bp 90,088 bp 149,006 bp
N50 27 bp 156 bp 15,023 bp 20,062 bp 54,807 bp

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.




Contrail

http://contrail-bio.sourceforge.net

De novo Assembly of the Human Genome
* Genome: African male NA 18507 (SRA000271, Bentley et al., 2008)
* Input: 3.5B 36bp reads, 210bp insert (~40x coverage)

Initial

Compressed

Error Correction

Resolve Repeats

Cloud Surfing

A
o»«»o::;-»»»x;x;» o o—»(‘_} / \ B P - _ - —»(‘, ;
“V«««-"‘ = /\' o>
N >7 B >| B 42 M 41 M 3.3 M
Max 27 bp 303 bp 20,594 bp 20,594 bp 20,594 bp
N50 27 bp < 100 bp 995 bp 1,050 bp 1,427 bp*

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.




De novo mutations and de Bruijn Graphs

MRCILI

Unique to affected

/' Shared by all

Searching for de novo mutations in
the families of 3000 autistic children.

— Assemble together reads from mom,
dad, affected & unaffected children

— Look for sequence paths unique to
affected child



Hadoop for NGS Analysis

CloudBurst Myrna J——
Highly Sensitive Short Read Cloud-scale differential gene SN
Mapping with MapReduce expression for RNA-seq N, fg
o= 55 SEEEESS
100x speedup mapping Expression of 1.1 billion RNA-Seq U jj:!__:
on 96 cores @ Amazon reads in ~2 hours for ~$66 s

(Langmead,

(Schatz, 2009) Hansen, Leek, 2010)
Quake Genome Indexing $GATTACA
,|.l="~,, . . . A$GATTAC
] i Quality-aware error Rapid Parallel Construction ACAS$GATT
/ correction of short reads of Genome Index ATTACASG
LA | "o
Il ||||||| |||||isﬁ..=, ) orrect 97.9% of errors Construct the BWT of GATTACAL
_—— with 99.9% accuracy the human genome in 9 minutes TACASGAT
TTACAS$GA
(Kelley, Schatz, (Menom,
Salzberg, 2010) Bhat, Schatz, 201 | %) genome-indexing/




Research Directions

* Scalable Sequencing
— Genomes, Metagenomes, *-Seq, Personalized Medicine

— How do we survive the tsunami of sequence data!?

o Improved indexing & algorithms, multi-core & multi-disk systems

* Practically Parallel
— Managing n-tier memory hierarchies, crossing the PRAM chasm

— How do we solve problems with 1000s of cores!?

o Locality, Fault Tolerance, Programming Languages & Parallel Systems

* Computational Discovery
— Abundant data and computation are necessary, but not sufficient
— How do we gain insight?
o Statistics & Modeling, Machine Learning, Databases, Visualization & HCI



Summary

Staying afloat in the data deluge means
computing in parallel

— Hadoop + Cloud computing is an attractive
platform for large scale sequence analysis and
computation

Significant obstacles ahead
— Price
— Transfer time
— Privacy / security requirements
— Time and expertise required for development

Emerging technologies are a great start, but
we need continued research

— Need integration across disciplines
— A word of caution: new technologies are new
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Thank You!

http://schatzlab.cshl.edu
@mike schatz



