Assembly and Validation of Large Genomes from Short Reads Michael Schatz

March 16, 2011 Genome Assembly Workshop / Genome 10k

A Brief Aside

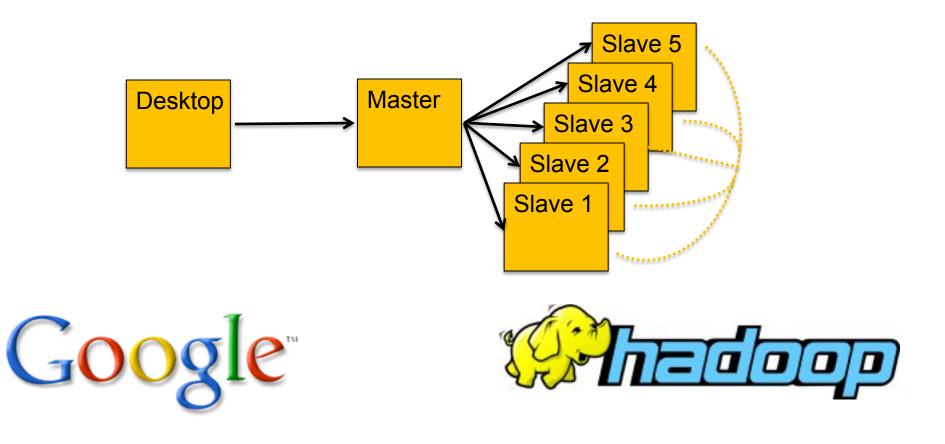
4.7GB / disc ~20 discs / 1G Genome

Х

10,000 Genomes

=

1PB Data 200,000 DVDs



Hadoop MapReduce

http://hadoop.apache.org

- MapReduce is Google's framework for large data computations
 - Data and computations are spread over thousands of computers
 - Indexing the Internet, PageRank, Machine Learning, etc... (Dean and Ghemawat, 2004)
 - 946,460 TB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010)

Hadoop for NGS Analysis

CloudBurst

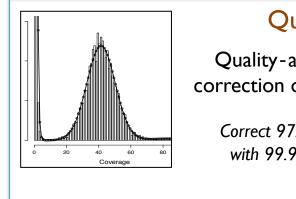
Highly Sensitive Short Read Mapping with MapReduce

> 100x speedup mapping on 96 cores @ Amazon

http://cloudburst-bio.sf.net

(Schatz, 2009)

Crossbow


Searching for SNPs with Cloud Computing

Identify 3M SNPs from 38x coverage in 3 hours on 320 cores

(Langmead, Schatz, Lin, Pop, Salzberg, 2010)

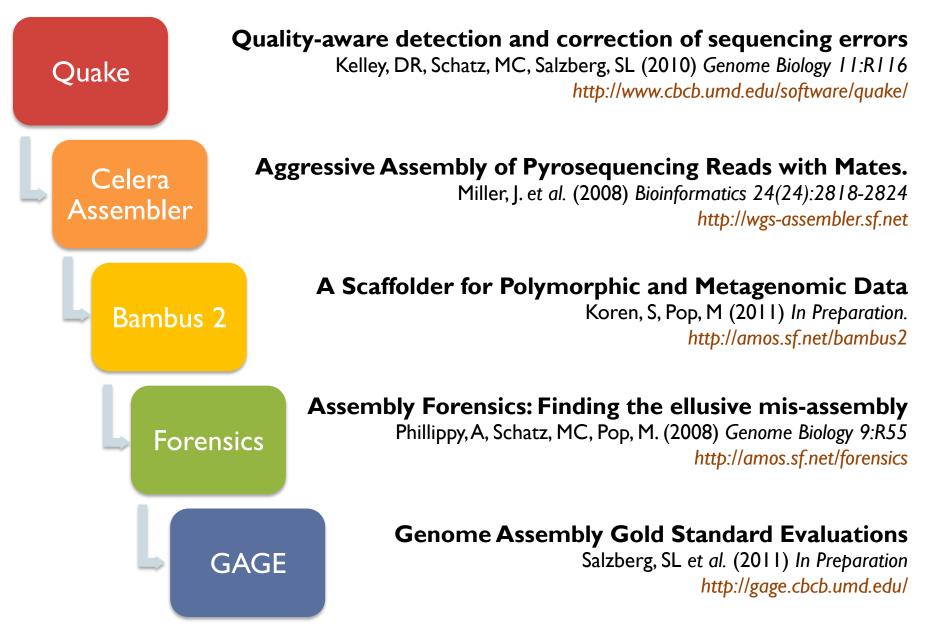
http://bowtie-bio.sf.net/crossbow/

http://www.cbcb.umd.edu/software/guake/

Quake

Quality-aware error correction of short reads

Correct 97.9% of errors with 99.9% accuracy


(Kelley, Schatz, Salzberg, 2010)

Genome Indexing\$GATTACA
A\$GATTACRapid Parallel Construction
of the Genome IndexACA\$GATT
ACA\$GATT
ATTACA\$G
CA\$GATTACA\$G
CA\$GATTACA\$C
CA\$GATTACA\$C
CA\$GATTACA\$C
TACA\$GAT
TACA\$GAT

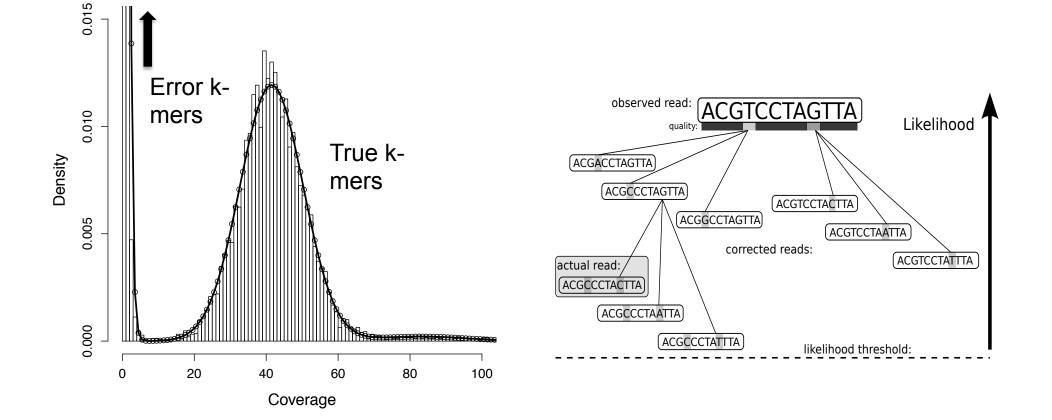
(Menon, Bhat, Schatz, 2011*) http://code.google.com/p/ genome-indexing/

Assembly of Large Genomes with Cloud Computing. Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Outline & Acknowledgements

Detection and Correction with Quake

http://www.cbcb.umd.edu/software/quake/

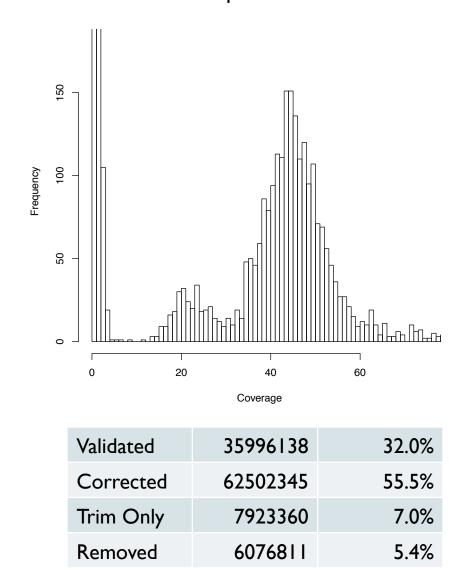

I. Count all "Q-mers" in reads

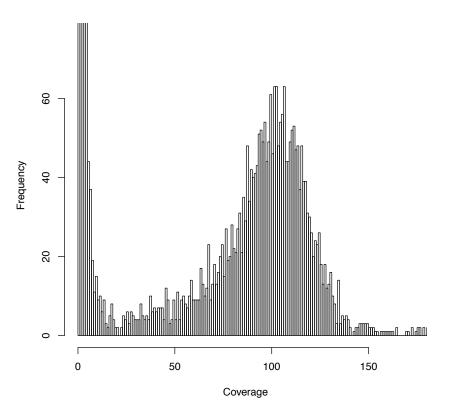
Quake

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically decide threshold for trusted k-mers

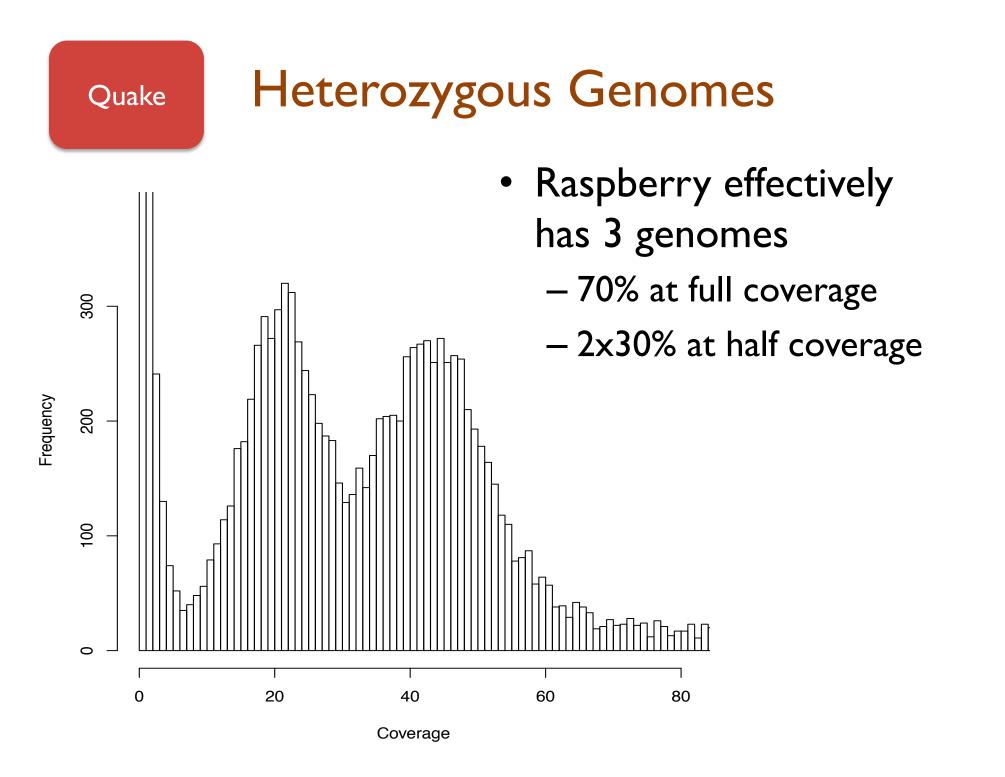
2. Correction Algorithm

- Consider editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/ nucleotide substitution rate



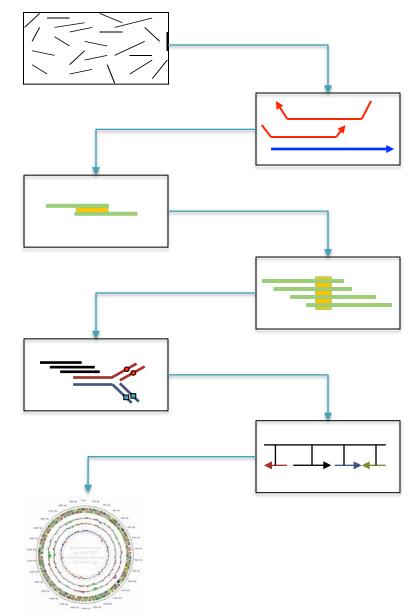

Assemblathon Results

Species A


Quake

Rice

Validated	304488985	52.1%
Corrected	86383318	14.8%
Trim Only	190890445	27.5%
Removed	32648755	5.6%



Celera Assembler

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Vector trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

Celera Assembler

Recent CA Results

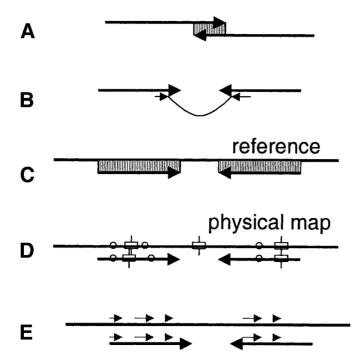
	Species A	Bumble Bee ^l	Argentine Ant ²	Parrot ³
Species		Bombus impatiens	Linepithema humile	Melopsittacus undulatus
Total Scaffolds	137	1,896	3,030	25,212
Scaffolds Bases	121,259,411	287,738,041	215,552,578	1,086,605,544
Scaffold N50	3,254,796	1,124,853	1,386,360	11,201,952
Max Scaffold	8,283,751	4,021,294	-	39,665,220
Total Contigs*	37,571	92,307	18,227	404,592
Contig N50	139,666	23,515	35,858	55,633
Max Contig	1,442,666	297,795	-	465,633

*Includes "degenerate contigs" ¹Robertson, H. *et al.* (2011) *Under Review.*

²Smith, C.D. *et al.* (2011) *PNAS*.

³Jarvis, E. *et al.* (2011) *Details Friday.*

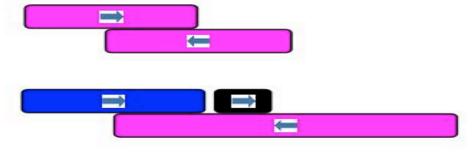
Illumina: 75x 400bp, 14x 4kbp, 13x 8kbp


Illumina: 8x unpaired, 4x 3kbp, 1x 8kbp 454: 8x unpaired, 1x 3kbp, .3x 8kbp

Illumina 12x, 454: 6x

Scaffolding with Bambus

http://amos.sf.net/bambus2


- Algorithm Overview
 - Hierarchical scaffolding of the most "strongly" connected contigs
- Design
 - Identify consistent bundles of "links"
 - Mate-pairs, but also any other relationships
 - Prioritize link types, link requirements
 - Prefer mate-links to distant synteny
 - Standalone module that can be used with any assembler
 - Support for strobed-reads in development

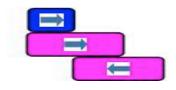
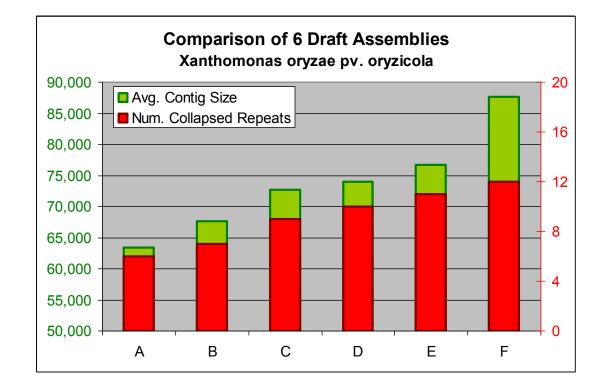


Figure 3 Sources of linking information between contigs. (*A*) overlaps, (*B*) clone mates, (*C*) alignments to reference genome, (*D*) alignments to physical maps, (*E*) conservation of gene synteny.



- Augment contig-links & mate-links with synteny-links discovered by promer + DAGchainer
- Modest improvements:
 - Max: 10,924,052 (+30%)
 - N50: Unchanged

Assembly Forensics

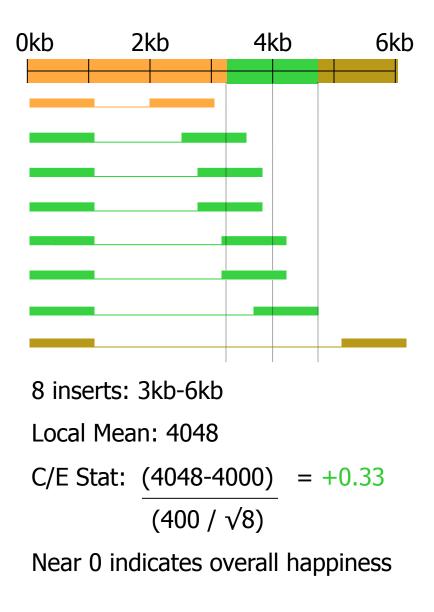
http://amos.sf.net/forensics

- Assembly is often a balancing act
 - Tension between sequencing errors, repeats, coverage, other factors
 - Size statistics alone can be misleading

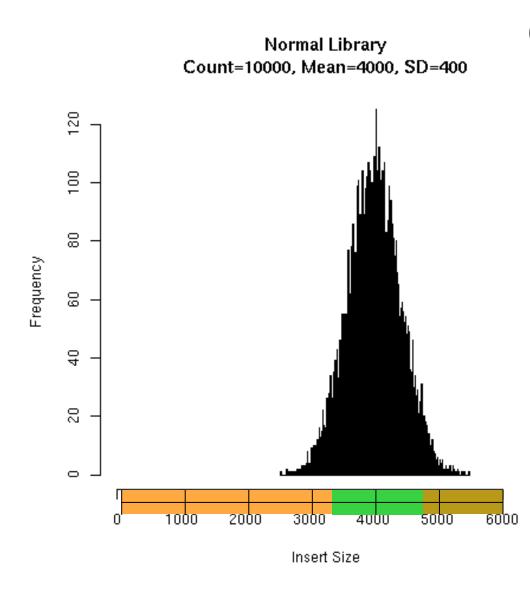
Forensics Pipeline

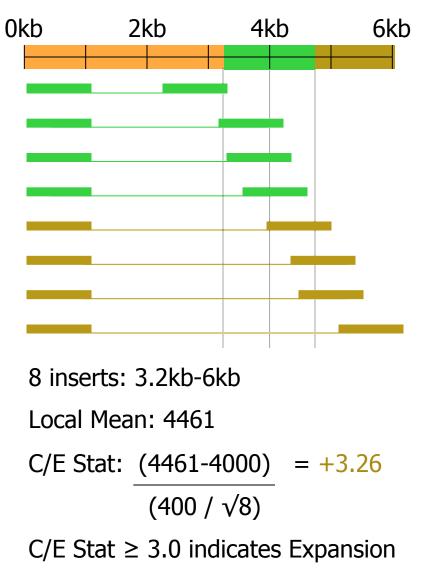
Computationally scan an assembly for mis-assemblies.

- Data inconsistencies are indicators for mis-assembly
- Some inconsistencies are merely statistical variations

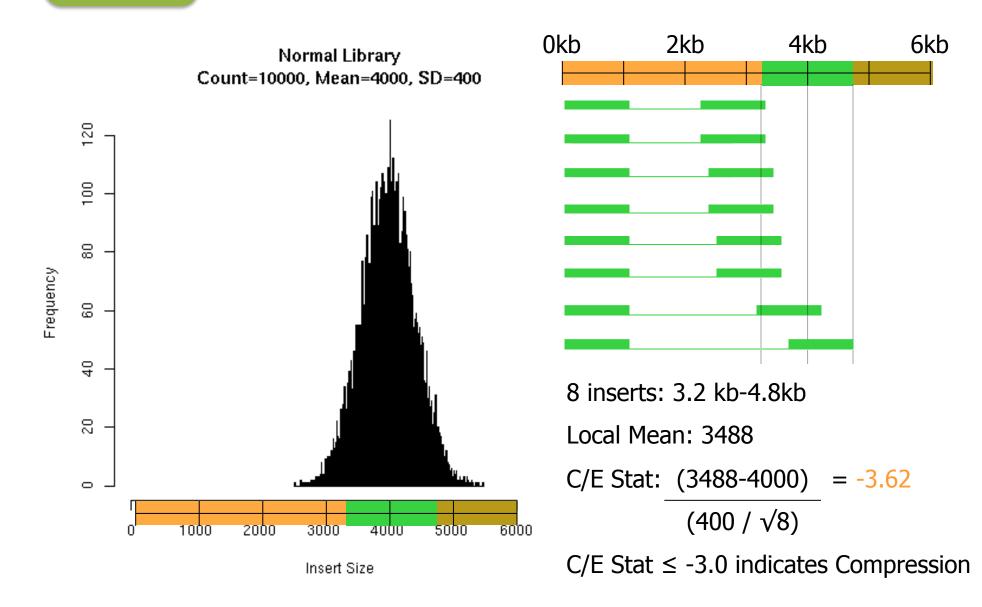

AMOSvalidate

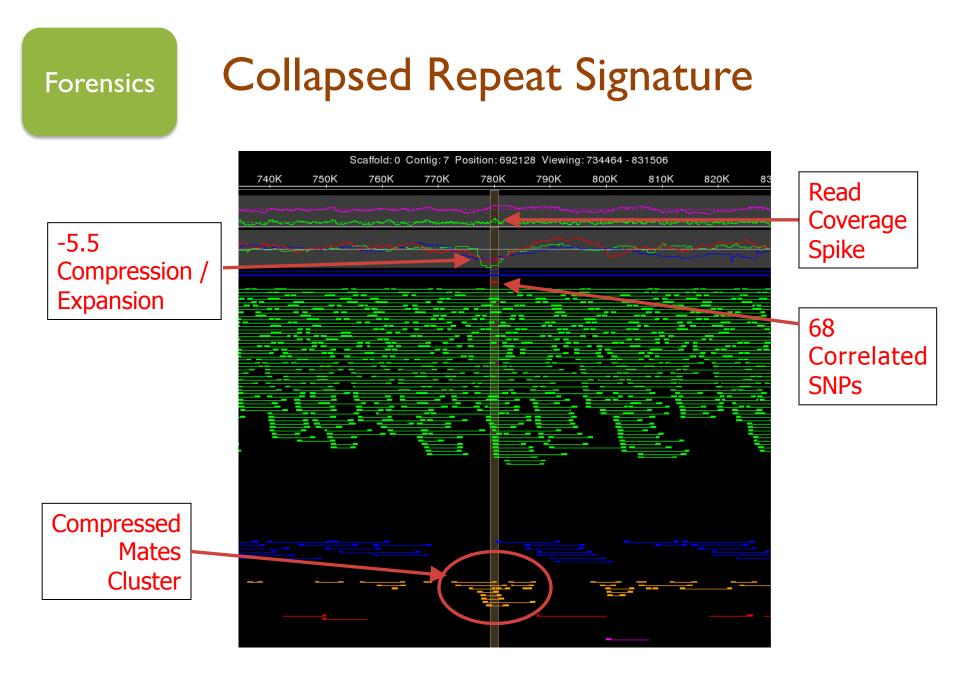
- 1. Load Assembly Data into Bank
- 2. Analyze Mate Pairs & Libraries
- 3. Analyze Depth of Coverage
- 4. Analyze Normalized K-mers
- 5. Analyze Read Alignments
- 6. Analyze Read Breakpoints


- AMOS Bank
- 7. Load Mis-assembly Signatures into Bank


Compression/Expansion Statistic

Forensics




CE Expansion

CE Compression

Hawkeye: a visual analytics tool for genome assemblies. Schatz, MC, Phillippy, AM, Shneiderman, B, Salzberg, SL. (2007) Genome Biology 8:R34.

Forensics Performance

Accuracy of amosvalidate mis-assembly signatures and suspicious regions summarized for 16 bacterial genomes assembled with Phrap										
Species	Len	Ctgs	Errs	Mis-assembly signatures		Suspicious regions				
				Num	Valid	Sens	Num	Valid	Sen	
B. anthracis	5.2	87	2	1,336	21	100.0	127	2	100.	
B. suis	3.4	120	10	1,047	30	80.0	158	9	90.	
C. burnetii	2.0	55	22	1,375	70	100.0	124	19	100.	
C. caviae	1.4	270	12	625	16	83.3	50	8	66.	
C. jejuni	1.8	53	5	290	11	80.0	61	3	60.	
D. ethenogenes	1.8	632	12	688	22	91.7	88	9	100.	
F. succinogenes	4.0	455	21	1,670	27	95.2	266	14	66.	
L. monocytogenes	2.9	172	1	1,381	5	100.0	201	1	100.	
M. capricolum	1.0	17	3	83	0	0.0	16	0	0.	
N. sennetsu	0.9	16	0	91	0	NA	13	0	N	
P. intermedia	2.7	243	21	1,655	57	100.0	201	20	100.	
P. syringae	6.4	274	64	2,841	200	98.4	366	55	98.	
S. agalactiae	2.1	127	21	687	53	95.2	112	18	85.	
S. aureus	2.8	824	41	1,850	69	97.6	227	18	75.	
W. pipientis	3.3	2017	31	761	92	100.0	132	30	100.	
X. oryzae	5.0	50	151	2,569	379	100.0	100	69	100.	
Totals	46.8	5412	417	18,949	1,052	96.9	2,242	275	92.	

Species name, genome length (Len), number of assembled contigs (Ctgs), and alignment inferred mis-assemblies (Errs) are given in the first four columns. Number of mis-assembly signatures output by *amosvalidate* (Num) is given in column 5, along with the number of signatures coinciding with a known mis-assembly in column 6 (Valid), and percentage of known mis-assemblies identified by one or more signatures in column 7 (Sens). The same values are given in columns 8-10 for the suspicious regions output by *amosvalidate*. The suspicious regions represent at least two different, coinciding lines of evidence, whereas the signatures represent a single line of evidence. A signature or region is deemed 'validated' if its location interval overlaps a mis-assembled region identified by *dnadiff*. Thus, a single signature or region can identify multiple mis-assembles, and *vice versa*, a single mis-assembly can be identified by multiple signatures or regions.

Phillippy et al. Genome Biology 2008 9:R55 doi:10.1186/gb-2008-9-3-r55

96.9% sensitivity of mis-assemblies Combining signatures into suspicious regions greatly improves specificity.

Genome Assembly Gold-Standard Evaluation

http://gage.cbcb.umd.edu/

Ongoing Internal Evaluation Gone Public

- How much sequencing coverage do I need for my genome project?
- What can I expect the resulting assembly to look like?
- Which assembly software should I use?
- What parameters should I use when I run the software?

Genomes

Staphylococcus aureus Human chromosome 14 **Bombus** impatiens Linepithema humile

Assemblers

ALLPATHS-LG Celera Assembler Contrail SOAPdenovo Velvet

Evaluations

Connectivity Correctness "Effort"

Final Thoughts

- Assembling 10,000 large vertebrate genomes requires substantial computational and human resources
 - Automate and parallelize as much as possible
 - Every genome seems to have its own challenges
- Any specific characteristics we focus on today will be hopelessly out of date tomorrow (or the next day)
 - Cost, read lengths, error model, pairs & strobes, bias
 - Software methods
- The consensus sequence is not sufficient
 - Where are the reads placed?
 - Where are the ambiguities?
 - How are the contigs related?

Acknowledgements

Univ. of Maryland Steven Salzberg Mihai Pop Art Delcher David Kelley Daniella Puiu James Yorke Aleksey Zimin <u>NBACC</u> Adam Phillippy Sergey Koren

<u>JCVI</u> Granger Sutton Jason Miller Brain Wallenz <u>CSHL</u> Dick McCombie

Thank You

http://schatzlab.cshl.edu @mike_schatz