### Cloud Computing and the DNA Data Race Michael Schatz

April 14, 2011 Data-Intensive Analysis, Analytics, and Informatics





### Outline

- I. Genome Assembly by Analogy
- 2. DNA Sequencing and Genomics
- 3. Large Scale Sequence Analysis
  - I. Mapping & Genotyping
  - 2. Genome Assembly

### Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools



- How can he reconstruct the text?
  - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
  - The short fragments from every copy are mixed together
  - Some fragments are identical



## **Greedy Reconstruction**



The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

### de Bruijn Graph Construction

- $D_k = (V, E)$ 
  - V = All length-k subfragments (k < l)</li>
  - E = Directed edges between consecutive subfragments
    - Nodes overlap by k-1 words



- Locally constructed graph reveals the global sequence structure
  - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001



### de Bruijn Graph Assembly

### de Bruijn Graph Assembly



## **Dickens & DNA Sequencing**



Genome of an organism encodes the genetic information in long sequence of 4 DNA nucleotides: ACGT

- Bacteria: ~3 million bp
- Humans: ~3 billion bp





Current DNA sequencing machines sequence hundreds of millions of short (25-500bp) reads from random positions of the genome

- ~25 GB / day / machine
- Per-base error rate estimated at 1-2% (Simpson et al, 2009)

Like Dickens, we can only sequence small fragments of the genome at once.

- Must substantially oversample each genome
- A single human genome requires ~150 GB of raw data

### Sequencing Applications





## The DNA Data Tsunami

Current world-wide sequencing capacity exceeds 10Tbp/day (3.6Pbp/year) and is growing at 5x per year!



#### "Will Computers Crash Genomics?" Elizabeth Pennisi (2011) Science. 331(6018): 666-668.

## Hadoop MapReduce

http://hadoop.apache.org

- MapReduce is Google's framework for large data computations
  - Data and computations are spread over thousands of computers
    - Indexing the Internet, PageRank, Machine Learning, etc... (Dean and Ghemawat, 2004)
    - 946 PB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010)
  - Hadoop is the leading open source implementation
    - Developed and used by Yahoo, Facebook, Twitter, Amazon, etc
  - Benefits
    - Scalable, Efficient, Reliable
    - Easy to Program
    - Runs on commodity computers



- Challenges
  - Redesigning / Retooling applications
    - Not Condor, Not MPI
    - Everything in MapReduce



### **Distributed Graph Processing**



MapReduce Message Passing

| Input:                                                                              | A: (N E:B W:42)                                           |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|
| – Graph stored as node tuples                                                       | B: (N E:I,J,K W:33)                                       |
| Map<br>– For all nodes, re-emit node tuple<br>– For all neighbors, emit value tuple | A: (N E:B W:42)<br>B: (V A 42)<br>B: (N E:I,J,K W:33)<br> |
| Shuffle                                                                             | B: (N E:I,J,K W:33)                                       |
| – Collect tuples with same key                                                      | B: (V A 42)                                               |
| Reduce <ul> <li>Add together values, save updated node tuple</li> </ul>             | B: (N E:I,J,K W:75)                                       |



• Given a reference and many subject reads, report one or more "good" end-toend alignments per alignable read

Methyl-Seq

Hi-C-Seq

- Find where the read most likely originated
- Fundamental computation for many assays
  - Genotyping
     RNA-Seq
  - Structural Variations
     Chip-Seq
- Desperate need for scalable solutions
  - Single human requires >1,000 CPU hours / genome





http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
  - Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
  - Find best alignment for each read
  - Emit (chromosome region, alignment)
- Shuffle: Hadoop
  - Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
  - Scan alignments for divergent columns
  - Accounts for sequencing error, known SNPs



## Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

|                 | Asian Individual Genome |           |         |
|-----------------|-------------------------|-----------|---------|
| Data Loading    | 3.3 B reads             | 106.5 GB  | \$10.65 |
| Data Transfer   | lh :15m                 | 40 cores  | \$3.40  |
|                 |                         |           |         |
| Setup           | 0h : I 5m               | 320 cores | \$13.94 |
| Alignment       | Ih : 30m                | 320 cores | \$41.82 |
| Variant Calling | I h : 00m               | 320 cores | \$27.88 |
|                 |                         |           |         |
| End-to-end      | 4h : 00m                |           | \$97.69 |

Discovered 3.7M SNPs in one human genome for ~\$100 in an afternoon. Accuracy validated at >99%

#### Searching for SNPs with Cloud Computing.

Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134

## Map-Shuffle-Scan for Genomics



Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693

## De novo Assembly



- Genome assembly as finding an Eulerian tour of the de Bruijn graph
   Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
  - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
  - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
  - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

### Graph Compression

- After construction, many edges are unambiguous
  - Merge together compressible nodes
  - Graph physically distributed over hundreds of computers





## Warmup Exercise

• Who here was born closest to April 14?

- You can only compare to I other person at a time



Find winner among 64 teams in just 6 rounds

#### Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

#### Randomized List Ranking

- Randomly assign (H) (T) to each compressible node
- Compress (Ĥ)→T links



Initial Graph: 42 nodes

#### Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

### Randomized List Ranking

- Randomly assign (H)/ T to each compressible node
- Compress  $(H) \rightarrow T$  links



Round 1: 26 nodes (38% savings)

#### Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

#### Randomized List Ranking

- Randomly assign (H)/ T to each compressible node
- Compress  $(H) \rightarrow T$  links



Round 2: 15 nodes (64% savings)

#### Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

#### Randomized List Ranking

- Randomly assign (H) / T to each compressible node
- Compress  $(H) \rightarrow T$  links



Round 2: 8 nodes (81% savings)

#### Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

### Randomized List Ranking

- Randomly assign (H) / T to each compressible node
- Compress  $(H) \rightarrow T$  links



Round 3: 6 nodes (86% savings)

#### Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

#### Randomized List Ranking

- Randomly assign (H)/ T to each compressible node
- Compress (Ĥ)→T links

### Performance

- Compress all chains in log(S) rounds
- If <1024 nodes to compress (from any number of chains), assign them all to the same reducer (save 10 rounds)



Round 4: 5 nodes (88% savings)



## Node Types



(Chaisson, 2009)

Contrail

http://contrail-bio.sourceforge.net

#### De novo bacterial assembly

- Genome: E. coli K12 MG1655, 4.6Mbp
- Input: 20.8M 36bp reads, 200bp insert (~150x coverage)
- Preprocessor: Quake Error Correction



#### Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.







#### De novo assembly of a human genome

- Genome: African male NA18507 (SRA000271, Bentley et al., 2008)
- Input: 3.5B 36bp reads, 210bp insert (~40x coverage)



#### Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

## Hadoop for NGS Analysis



#### CloudBurst

Highly Sensitive Short Read Mapping with MapReduce

> 100x speedup mapping on 96 cores @ Amazon

http://cloudburst-bio.sf.net

(Schatz, 2009)

#### Myrna

Cloud-scale differential gene expression for RNA-seq

Expression of 1.1 billion RNA-Seq reads in ~2 hours for ~\$66



(Langmead, Hansen, Leek, 2010)

http://bowtie-bio.sf.net/myrna/



#### Quake

Quality-aware error correction of short reads

Correct 97.9% of errors with 99.9% accuracy

http://www.cbcb.umd.edu/software/quake/

(Kelley, Schatz, Salzberg, 2010)

#### **Genome Indexing**

Rapid Parallel Construction of Genome Index

Construct the BWT of the human genome in 9 minutes

\$GATTAC<u>A</u> A\$GATTA<u>C</u> ACA\$GAT<u>T</u> ATTACA\$<u>G</u> CA\$GATT<u>A</u> GATTACA<u>£</u> TACA\$GA<u>T</u> TTACA\$G<u>A</u>

(Menon, Bhat, Schatz, 2011\*)

http://genome-indexing.googlecode.com



### Summary

- Staying afloat in the data deluge means computing in parallel
  - Hadoop + Cloud computing is an attractive platform for large scale sequence analysis and data intensive computation
- Significant obstacles ahead
  - Bandwidth & Storage
  - Diverse applications, complex workflows
  - Rapidly changing data types
  - Time and expertise required for development
- Emerging technologies are a great start, but we need continued research
  - Need integration across disciplines

### Acknowledgements

#### <u>CSHL</u>

Mike Wigler Zach Lippman Dick McCombie Doreen Ware Mitch Bekritsky <u>SBU</u> Steve Skiena Matt Titmus Rohith Menon Goutham Bhat Hayan Lee <u>JHU</u> Ben Langmead Jeff Leek

Univ. of Maryland Steven Salzberg Mihai Pop Art Delcher Jimmy Lin Adam Phillippy David Kelley Dan Sommer

# Thank You!

Want to help? http://schatzlab.cshl.edu/apply/

@mike\_schatz