Scikit-ribo - Accurate A-site prediction and robust modeling of translational control

Han Fang

October 29, 2015 Genome Informatics

Acknowledgments

Lyon Lab Max Doerfel Yiyang Wu Jonathan Crain

Jason O'Rawe

Gholson Lyon

Cold Spring Harbor Laboratory:

Yifei Huang Noah Dukler Melissa Kramer Eric Antoniou Elena Ghiban Stephanie Muller

Michael Schatz

Stony Brook University:

Rob Patro

Schatz Lab

Fritz Sedlazeck Tyler Garvin Hayan Lee James Gurtowski Maria Nattestad Srividya Ramakrishnan

Central dogma of biology – Classic view

What is ribosome profiling (Riboseq)?

Ingolia. Science. (2009) Ingolia. Nat Rev Genet. (2014) Normal translation efficieny (TE)

Less efficient translation

More efficient translation

Calculate translational efficiency (TE)

 $TE = \frac{Riboseq \ rpkm}{RNAseq \ rpkm}$

Hypothesis: TE distribution could be skewed by ribosome pausing events.

Simulated S. cerevisiae data - TE distribution are negatively-skewed by ribosome pausing events

Analytical Challenges

What and where is the ribosome A-site?

Figure adapted from Ingolia et al. Science (2009)

How to predict A-site?

Training data and features:

Classifier and model tuning:

- SVM with RBF kernel (scikit-learn)
- 10 fold cross-validation for grid search
- Make predictions on all reads genome-wide

Prediction performance by cross validation

Scikit-ribo has much higher accuracy of identifying A-site than the previous method (0.86 vs. 0.64, 10-fold CV).

Scikit-ribo accurately predicted codon usage fraction and codon normalized TE

Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding, Pechmann, Frydman (2013).

Finding ribosome pausing sites (peaks) is hard. But it is easier after knowing the A-site location.

Q: how to robustly identify ribosome pausing sites while accounting for over-dispersion?

Ribosome pausing site identification by negative binomial mixture model

$$P(\mathbf{X}_i|\pi_i,\mu_i,k_i,r_i) = \prod_j \pi_i \mathcal{NB}(X_{ij}|\mu_i,r_i) + (1-\pi_i)\mathcal{NB}(X_{ij}|k_i\mu_i,r_i),$$

for gene i at position j, where $k \ge 5$

mRNA with stronger secondary structure tend to have ribosome pausing events

Kertesz et al. Nature (2010)

TE distributions are negatively-skewed in many studies. Over-structured mRNA show inflated TE.

Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Weinberg, Shah et al. (2015)

Summary

Discussed:

- 1) Introduce scikit-ribo for joint analysis of Riboseq & RNAseq data.
- 2) Learn from data itself to determine ribosome A-site location.
- 3) Reveal biases in Riboseq data due to ribosome pausing.
- 4) How Riboseq biases lead to issues with estimating TE.

Ongoing work:

- 1) Adjust for those biases and provide an unbiased estimate of TE.
- 2) Extend the ribosome pausing calling to a HMM based method.
- 3) Joint inference of translation initiation and elongation rates.

https://github.com/hanfang/