Scikit-ribo reveals precise codon-level translational control by dissecting ribosome pausing and codon elongation

Han Fang

October 26, 2016 Biological Data Science

The hidden treasure in genomics

The hidden treasure in genomics

 Ribosome-Mediated Specificity

 in Ho

 Verte

 Ribosome Profiling Reveals a Cell-Type-Specific

 Tr

 Dynamics of ribosome scanning and recycling

 rev

 Ribosome profiling reveals features of normal and disease-associated mitochondrial translation

What is ribosome profiling (Riboseq)?

Ingolia et al. Science. (2009) Ingolia. Nat Rev Genet. (2014)

What is ribosome profiling (Riboseq)?

Normal translation efficieny (TE)

Ingolia et al. Science. (2009) Ingolia. Nat Rev Genet. (2014)

What is ribosome profiling (Riboseq)?

Ingolia et al. Science. (2009) Ingolia. Nat Rev Genet. (2014)

Calculate translational efficiency (TE)

Less efficient translation

Normal translation efficieny (TE)

More efficient translation

 $\log_2(TE) < 0$

 $\log_2(TE) = 0$

 $\log_2(TE) > 0$

$$TE = \frac{Riboseq \ rpkm}{RNAseq \ rpkm}$$

Hypothesis: TE distribution could be skewed by ribosome pausing events.

Ribosome footprints without bias

Ribosome footprints with pausing

Simulated S. cerevisiae data

Simulated S. cerevisiae data - TE distribution are negatively-skewed by ribosome pausing events

Randomly imputed ribosome pausing sites to 20% of the genes

Ribosome pausing sites (peaks) finding by negative binomial mixture model

 $P(\mathbf{X}_i|\pi_i,\mu_i,k_i,r_i) = \prod_j \pi_i \mathcal{NB}(X_{ij}|\mu_i,r_i) + (1-\pi_i)\mathcal{NB}(X_{ij}|k_i\mu_i,r_i),$

for gene i at position j, where $k \ge 5$

Yifei Huang

Ribosome pausing sites (peaks) finding by negative binomial mixture model

$$P(\mathbf{X}_i|\pi_i,\mu_i,k_i,r_i) = \prod_j \pi_i \mathcal{NB}(X_{ij}|\mu_i,r_i) + (1-\pi_i)\mathcal{NB}(X_{ij}|k_i\mu_i,r_i),$$

for gene i at position j, where $k \ge 5$

mRNA with stronger secondary structure tend to have ribosome pausing events

mRNA with stronger secondary structure tend to have ribosome pausing events

PARS scores obtained from Kertesz et al. Nature (2010)

mRNA with stronger secondary structure tend to have ribosome pausing events

PARS scores obtained from Kertesz et al. Nature (2010)

RNA 🔺 count 🛉

Secondary **▲** count **▲** structure

count 🔺

count **▲**

Dwell time ★ count ★

Joint inference of protein TE and codon dwell time using GLM, while accounting for secondary structure

GLM for joint inference of TE and codon dwell time:

 $Y_{ij} \sim NB(mean = \mu_{ij}, dispersion = \alpha)$, for gene i, position j

$$\begin{split} g(\mu^{ij}) &= \beta_0 + \underbrace{x_m^i}_{\text{mRNA}} + \underbrace{\beta_t^i}_{\text{TE}} + \underbrace{\beta_c^k}_{\text{codon}} + \underbrace{\beta_s x^{ij}}_{\text{secondary structure}} \\ \text{where } g(.) \text{ is a log link function, } \mu_{ij} = E(Y_{ij}), \\ x_m^i \text{ is mRNA abundance for gene i,} \\ \beta_t^i \text{ is translational efficiency for gene i,} \\ \beta_c^k \text{ is dwell time for codon k,} \\ \beta_s x^{ij} \text{ is secondary structure effect at position j for gene i.} \end{split}$$

Scikit-ribo perfectly reproduced relative codon dwell time from Weinberg et al

Scikit-ribo perfectly reproduced relative codon dwell time from Weinberg et al

Significant correlation between tRNA abundance and codon elongation rates

GLM estimates vs. RPKM-based estimates reveals systematic bias in typical Riboseq analysis

GLM estimates vs. RPKM-based estimates reveals systematic bias in typical Riboseq analysis

The rpkm based approach overestimated TE of highly structured mRNA, while the rest of the mRNA were slightly under-estimated, as hypothesized.

Accurate TE estimation supported by proportional synthesis for heterodimeric complexes in S. cerevisiae.

Discussed:

- Introduced scikit-ribo for joint analysis of Riboseq and RNAseq data.
- 2) Identified biases in Riboseq data due to ribosome pausing.
- 3) Corrected biases and revealed underlying biology
- 4) Joint inference of codon elongation rate and protein TE
- 5) Revealed precise translational control at codon level

Acknowledgments

Lyon Lab Max Doerfel Yiyang Wu Jonathan Crain Jason O'Rawe

Schatz Lab

Fritz Sedlazeck Tyler Garvin James Gurtowski Maria Nattestad Srividya Ramakrishnan

Michael Schatz

CSHL

Yifei Huang Adam Siepel Noah Dukler

UCSF

JHU

Rachel Green

Jonathan Weissman Joshua Dunn David Weinberg

Rutgers

Premal Shah

Stony Brook University

Rob Patro

