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Outline

• Background
– Long read sequencing technology

• The limitations of short read mapping illustrated by the Genome 
Mappability Score (GMS)

• The Resurgence of reference quality genome (3Cs)
– The next version of Lander-Waterman Statistics (Contiguity)
– Historical human genome quality by gene block analysis (Completeness)
– The effectiveness of long reads in de novo assembly (Correctness)

• Sugarcane de novo genome assembly challenges
– The effectiveness of accurate long reads in de novo assembly especially for highly 

heterozygous aneuploid genome
– Pure long read de novo assembly, combine with accurate long reads and 

erroneous long reads

• Contributions
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Background

3

• BAC-by-BAC + Sanger Era (1995 to 2007)
– Very high quality reference genomes for human, mouse, worm, fly, rice, 

Arabidopsis and a select few other high value species. 
– Contig sizes in the megabases, but costs in the 10s to 100s of millions of dollars

• Next-Gen Era (2007 to current)
– Costs dropped, but genome quality suffered
– Genome finishing almost completely abandoned; “exon-sized” contigs
– These low quality draft sequences are (1) missing important sequences, (2) lack 

context to discover regulatory elements or evolutionary patterns, and (3) 
contain many errors

• Third-Gen Era (current)
– New biotechnologies (single molecule, chromatin assays, etc) and new 

algorithms (MHAP, LACHESIS, etc) are leading to a Resurgence of Reference 
Quality Genomes 

– De novo assemblies of human and other large genomes with contig sizes over 
1Mbp.
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Third-Gen Sequencing Technology

Illumina/Moleculo

3-5kbp
(Kuleshov et al. 2014)

Pacific Biosciences

10-15kbp
(Berlin et al, 2014)

Oxford Nanopore

5-10kbp
(Quick et al, 2014)

• Long Read Sequencing: De novo assembly, SV analysis, phasing

• Long Span Sequencing: Chromosome Scaffolding, SV analysis, phasing

Molecular Barcoding

30-60kbp
(10Xgenomics.com)

Optical Mapping

100-150kbp
(Cao et al, 2014)

Chromatin Assays

25-100kbp
(Putnam et al, 2015)
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Short read mapping (Resequencing)

• Discovering genome variations

• Investigating the relationship between variations and phenotypes

• Profiling epigenetic activations and inactivations

• Measuring transcription rates

6
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Repeats

GACTGATTACAACGTGCGATTACATAACTGATATGCC
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Read Quality Score – MAQ
Sensitivity of Read Mapping Score
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• There is inherent uncertainty to mapping
• Read quality score is very sensitive to a minute change
• Base quality score is useful only inside a single read
• Read quality score is assigned to each read not a position of 

a genome, thus provides only local view
• However, there is no tool to measure the reliability of 

mapped reads to the reference genome in a global 
perspective.

It does not consider all possible reads
We need more stable “GPS” for a genome

Challenges
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Genome Mappability Score (GMS)

• u is a position
• x is a reference

• z is a read
• l is read length
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Genome Mappability Analyzer (GMA)
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GMS vs. MAQ
Sensitivity of Read Mapping Score
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Read Length
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Variation Accuracy Simulator (VAS)

• Simulation of resequencing 
experiments to measure 
the accuracy of variation 
detection
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Genomic Dark Matter

• Unlike false negatives in high GMS region that can be 
discovered in high coverage (>=20-fold), false negatives in low 
GMS regions cannot be discovered, because variation calling 
program will not use poorly mapped reads
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1. Shear & Sequence DNA

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

De novo genome assembly

19

 

…AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC

CAACCTCGGACGGACCTCAGCGAA…
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Many Genomes Are Sequenced… 
Many Questions Are Raised…

But…

20

• How long should the read length be?

• What coverage should be used? 

Given the read length and coverage,  

• How long are contigs? <- Contiguity prediction

• How many contigs? 

• How many reads are in each contigs? 

• How big are the gaps? 
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Lander-Waterman Statistics

21
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Lander-Waterman Statistics

22

In practice, it’s useful only in low coverage (3-5x) but becomes nonsensical in high coverage.
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HG19 Genome Assembly Performance
by Lander-Waterman Statistics

Technology vs. Money

23

Two key observations
1. Contig over genome size
2. Read Length vs. Coverage

=  
(𝒆(𝟏−𝜽)𝑪−𝟏)𝑳

𝐶
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Empirical Data-driven Approach

• We selected 26 species across tree of life and 
exhaustively analyzed their assemblies using 
simulated reads for 4 different length (6 for HG19) 
and 4 different coverage per species

• For the extra long reads, we fixed the Celera 
Assembler(CA) to support reads up to 0.5Mbp

Data
(X, Y)

Machine Learning
Algorithm 

(SVR)

Learned  
Model

Learned  
Model

Data
(X, ?)

Predicted 
Result
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26 Species Across Tree of Life
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HG19 Genome Assembly Performance
by Our Simulation

Read Length has stronger 
impact than coverage

Lengths selected to represent 
idealized biotechnologies:
mean32: ~Optical mapping
mean16: ~10x / Chromatin
mean8: ~10x / Chromatin
mean4: PacBio/ONT
mean2: PacBio/ONT
mean1: Moleculo
(log-normal with increasing means)

𝑇𝑎𝑟𝑔𝑒𝑡 𝑁50 ≡
𝑁50 𝑜𝑓 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
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Why?

Lander-Waterman Statistics

• Assumptions!!!

• If genome is a random 
sequence, it will work

• It works only in low 
coverage 3-5x

• It works for small genomes 
(< yeast)

27

Our Approach

• Stop assuming that we cannot 
guarantee!!!

• We tried to assume as least as 
possible. 

• Instead of building on top of 
assumptions, we let the model 
learn from the data

• Empirical data-driven 
approach
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Repeats
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Repeats in Rice

29
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Our Goal

• To                genome assembly

30

predict contiguity

≈

𝑅𝑒𝑎𝑑 𝐿𝑒𝑛𝑔𝑡ℎ
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒
𝑅𝑒𝑝𝑒𝑎𝑡𝑠

𝐺𝑒𝑛𝑜𝑚𝑒 𝑆𝑖𝑧𝑒

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(%) ≡
𝑁50 𝑓𝑟𝑜𝑚 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑦

𝑁50 𝑜𝑓 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
× 100

𝑓
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Assembly Challenge (1)

Read Length

• Read length is very important 

• A matter of technology

• The longer is the better

• Quality was important but can be corrected 

– PacBio produces long reads, but low quality (~15% 
error rate)

– Error correction pipeline are developed

– Errors are corrected very accurately up to 99%

31
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- Assembly Challenge (1) -

Read Length

32
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Assembly Challenge (2)

Coverage

• A matter of money

• Using perfect reads, assembly performance 
increased for most genomes : Lower bound

• Using real reads, overall performance line 
will shift to the higher coverage

• The higher is the better (?)

• But still it suggests that there would be a 
threshold that can maximize your return on 
investment (ROI)

33
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Assembly Challenge (2)

Coverage

34



Stony Brook University                                                                                          Dept. of Computer Science

Simons Center for Quantitative Biology

Assembly Challenge (3)

Repeats

• Genome is not a random sequence

• Repeat hurts genome assembly performance

• Isolating the impact of repeats is not trivial

• Quantifying repeat characteristics is not 
trivial as well

– The longest repeat size

– # of repeats > read length

35
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Assembly Challenge (4)

Genome Size

• Increase the assembly complexity

• Make a hard problem harder. 

37
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Assembly Challenge (4)
Genome Size

38
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Assembly Challenge (4)

Genome Size
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Challenges for Prediction

• Sample size is small

• Quality is not guaranteed

• Predictive Power 

• Overfitting

40

Support Vector Regression (SVR)
Cross Validation
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The resurgence of reference genome qaultiy
Lee, H, Gurtowski, J, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2015) In preparation
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Predictive Power

• Average of residual is 15%

• We can predict the new genome assembly 
performance in 15% of error residual 
boundary

• Genome size, read length and coverage used 
explicitly

• Repeats are included implicitly

42
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Http://qb.cshl.edu/asm_model/predict.html

Web Service for Contiguity Prediction
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Reference Genome Quality

MHAP

MHAP
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Contiguity
de novo human genome assembly

What happens as we sequence the 
human genome with longer reads?
• Red: Sizes of the chromosome arms 

of HG19 from largest to shortest
• Green: Results of our assemblies 

using progressively longer and 
longer reads

• Orange: Results of Allpaths/Illumina 
assemblies

Lengths selected to represent the 
biotechnologies:
• mean1: ~Moleculo
• mean2: ~PacBio/ONT
• mean16: ~10x / Chromatin
• mean32: ~Optical mapping
(log-normal with increasing means)
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Validated by MHAP 
Add results
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Preprint
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Completeness 
Human Reference Genome Quality by gene block analysis
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Completeness 
Human Reference Genome Quality by gene block analysis

gene1

gene2

gene1

gene2

gene5 

gene10

gene20

gene50 

gene100

gene200

gene500 

gene1000

Regulatory  elements

Synteny blocks

- Chromosome structure

- Gene
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Completeness 
Human Reference Genome Quality by gene block analysis

Larger contigs and scaffolds 
empowers analysis at every 
possible level.
• SNPs (~10k clinically relevant)

• Genes

• Regulatory elements

• Synteny blocks

• Chromosome structure

50

Regulatory  elements

Synteny blocks

- Chromosome structure

- Gene
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Correctness Summary in HG19
N50 misleading

HG19 (major) misassembly (major) breaks

False Positive False Negative

Increase N50
(falsely lengthen contiguity)

Decrease N50
(shorten contiguity)

Mislead us in biological meaning Negatively impact on downstream research

Mean1 209 4069

Mean2 70 462

Mean4 49 296

Mean8 33 197

Mean16 9 42

Mean32 7 5
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Misassembly
A critical error in de novo assembly



Stony Brook University                                                                                          Dept. of Computer Science

Misassembly Analysis in HG19

53
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Misassembly Analysis in HG19

54

Long read sequencing technology helps to reduce both misassembly and breaks 
thus increase correctness of de novo genome assembly
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Summary & Recommendations

Reference quality genome assembly is here
– Use the longest possible reads and spans for the best assembly

– Coverage and algorithmics overcome most random errors

Megabase N50 improves the analysis in every dimension
– Better resolution of genes and flanking regulatory regions

– Better resolution of transposons and other complex sequences

– Better resolution of chromosome organization

Need to develop methods to jointly analyze multiple high-
quality references at once
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Related Work
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Pan-Genome Alignment & Assembly

SplitMEM: A graphical algorithm for pan-genome analysis with suffix skips
Marcus, S, Lee, H, Schatz MC (2014) Bioinformatics. doi: 10.1093/bioinformatics/btu756

Pan-genome colored de Bruijn graph
• Encodes all the sequence 

relationships between the 
genomes

• How well conserved is a given 
sequence?  

• What are the pan-genome 
network properties?

Time to start considering problems 
for which N complete genomes is the 
input to study the “pan-genome”
•Available today for many microbial 
species, near future for higher 
eukaryotes

A

B

C

D



Stony Brook University                                                                                          Dept. of Computer Science

Outline

• Background
– Long read sequencing technology and algorithms

• The limitations of short read mapping illustrated by the 
Genome Mappability Score (GMS)

• The Resurgence of reference genome quality (3Cs)
– The next version of Lander-Waterman Statistics (Contiguity)

– Historical human genome quality by gene block analysis (Completeness)

– The effectiveness of long reads in de novo assembly (Correctness)

• Sugarcane de novo genome assembly challenge
– The effectiveness of accurate long reads in de novo assembly especially 

for highly heterozygous aneuploidy genome

– Pure long read de novo assembly, combine with Moleculo and PacBio
reads. 

• Contributions
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Sugarcane for food and biofuel

• Food
– By 2050, the world’s population will grow by 50%, thus another 

2.5 billion people will need to eat!
– Rapidly rising oil prices, adverse weather conditions, speculation 

in agricultural markets are causing more demand

• Biofuel
– By 2050, global energy needs will double as will carbon dioxide 

emission
– Low-carbon solution
– Sugarcane ethanol is a clean, renewable fuel that produces on 

average 90 percent less carbon dioxide emission than oil and 
can be an important tool in the fight against climate change.

59
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A hybrid sugarcane cultivar SP80-3280

• S.spontaneum x S.officinarum
• A century ago….
• Saccharum genus

– S. spontaneum (2n=40-128, x=8)
– S. officinarum (2n=8x=80)

• Big, highly polyploid and aneuploid genome
– Monoploid genome is about 1Gbp
– 8-12 copies per chromosome
– In total, 100-130 chromosomes
– Total size is about 10Gbp 

60

S. spontaneum
(Contribute to robustness)

S. officinarum
(Contribute to sweetness)

F1

Sugarcane



Stony Brook University                                                                                          Dept. of Computer Science

Simons Center for Quantitative Biology

Why is sugarcane assembly harder? (1)

• Polyploidy/Aneuploidy 
– 10% of the chromosomes are inherited in 

their entirety from S. spontaneum, 80% 
are inherited entirely from S. officinarum

• Large scale recombination
– 10% is the result of recombination 

between chromosomes from the two 
ancestral species, a few being double 
recombinants 

61

(source) http://ars.els-
cdn.com/content/image/1-s2.0-
S1369526602002340-gr1.jpg
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Four Important Questions in Sugarcane

• Scaffold polyploidy/aneuploidy genome

– How do we connect contigs/cluster contigs per chromosome/fill gaps among 
contigs?

• Phasing haplotypes

– Not solved in diploid genome yet

• Heterozygosity

– How do we measure heterozygosity in polyploidy/aneuploidy genome?

– How do we quantify alleles and get ratio?

• Inference of polyploidy/aneuploidy estimation

– How do we infer the number of copies per chromosome in aneuploidy 
genome, especially in the large scale of recombination?

Margarido GRA, Heckerman D (2015) ConPADE: Genome Assembly Ploidy Estimation from Next-
Generation Sequencing Data. PLoS Comput Biol 11(4): e1004229. doi: 10.1371/journal.pcbi.1004229

62
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Assembly Complexity by Repeats

A R

B

C

A R B R C R

Long Reads is the 
solution!!!
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Assembly Complexity by Heterozygosity

A R

B

C

A R B R C R

A R B’ R C R

B’
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Assembly Complexity by Polyploidy

A R

B

C

A R B R C R

Long Reads is the 
solution!!!

A R B’ R C R

B’

A R B R C R

A R B R C’ R

C’
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Moleculo Reads

(1) The DNA is sheared into fragments of about 
10Kbp 

(2) Sheared fragments are then diluted 

(3) and placed into 384 wells, at about 3,000 
fragments per well. 

(4) Within each well, fragments are amplified 
through long-range PCR, cut into short 
fragments and barcoded 

(5) before finally being pooled together and 
sequenced. 

(6) Sequenced short reads are aligned and 
mapped back to their original well using the 
barcode adapters. 

(7) Within each well, reads are grouped into 
fragments, which are assembled to long 
reads. 
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Read length distribution in Moleculo

• # of reads = 3,857,853 = 3.9M

• # of based = 19,018,083,427 bp = 19Gbp

• Coverage = 19x

• Min = 1,500 

• Max = 22,904

• Mean = 4,930

• Median = 4,193
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Choose the right data and the right method

Hiseq 2000 PE (2x100bp) 
- 575Gbp
- 600x of haploid genome
Roche454 
- 9x of haploid genome
- [min=20 max=1,168]
- Mean=332bp

SOAPdenovo
(De Bruijn Graph)

Max contig = 21,564 bp
NG50=823 bp
Coverage=0.86x

Moleculo
- 19Gbp
- 19x of haploid genome
- [min=1,500 max=22,904]
- Mean = 4,930bp

Celera Assembler 
(Overlap Graph)

Max contig = 467,567 bp
NG50=41,394 bp
Coverage=3.59x
# of contigs = 450K

DATA

Algorithm

RESULT
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CEGMA

• CEGs
– Korf Lab in UC. Davis selected 248 core eukaryotic genes

• Statistics of the completeness

• Gene prediction aided by sorghum gene model
– In progess…

– 39k sorghum genes were found in sugarcane contigs at least partially

Prots %Completeness Total Average %Ortho 

Complete 219 88.31 827 3.78 89.04

Partial 242 97.58 1083 4.48 95.45
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NP-Hard Hairball of Sugarcane

Vertices are contigs

Edges are linking information

Edges are reliable linking information 
from 120 Gbp 10K jumping library 

# of vertices : 81,552

# of edges : 82,269

Average degree of a node : 1

# of connected components = 17,919

Average number of vertices per CC= 2.54

The biggest CC has 25 vertices



Stony Brook University                                                                                          Dept. of Computer Science

Benefits of Long Read Scaffolding

• Read Length is increasing, the cost is decreasing

• Very informative whether it has high error rate or not

• More repeats resolved

• Better scaffolding solution than long jumping library

• We don’t have to approximate insert size by MLE or so. 

• It’s much better to fill gaps with some base information rather than just 
NNNNNN.

PacBio’s Roadmap

The average read length of the raw 
data set is >14 kb, with half of the 
bases in reads > 21 kb and the 
maximum read length of 64,500 
bases.
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Prototype for scaffolding
1. Simulate heterozygous 

polyploidy genome
- 10 copies with 5% of difference         

from original chromosome

2. Simulate Moleculo reads 
from polyploidy genome
- Read length distribution     

follows exactly real molecule 

read distribution

3. Simulate PacBio reads from 
polyploidy genome
- Simulate P6-C4, the lastest

PacBio chemistry

4. Run Celera Assembler(CA) 
to assemble contigs with 
Moleculo reads

5. Run LRScf to scaffold the 
contigs with PacBio reads

DnaSim
--poly 10 --het 0.05

ReadSim

LRScf
(Prototype)

at9.chr1 (30Mbp)

10 copies of 
at9.chr1

Moleculo reads
200x of monoploid

PacBio reads
100x of monoploid

?

?

CA
(Celera Assembler)
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Preliminary Results

• Moleculo-based contigs from CA
– Around 700 contigs

• Long Read Scaffolding
– Align PacBio reads to all contigs

– Find PacBio reads that link between two contigs

– Around 1600 alignments out of 40K PacBio Reads
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Sugarcane Scaffolding Challenges

• How to represent aneuploidy genome?

• How to screen out false positive link information?

– # Weakly connected components 5

– # Strongly connected components 61

– True value   5 < 10 < 61

• How to assemble PacBio reads across gaps?

• How to extend contigs with PacBio reads?
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Contributions

• The limitations of short read mapping illustrated by the 
Genome Mappability Score (GMS)
– A new metric that measure reliability per position of a genome
– Cloud computing pipeline for efficient computation for big genomes
– Analysis of biological importance in variation discover low/high GMS region

• The Resurgence of reference genome quality (3Cs)
– Provide the data-driven model, a.k.a. the next version of Lander-Waterman 

Statistics to predict contiguity of de novo genome assembly project 
– Analysis of completeness and correctness in historical human genome 

assembly

• Sugarcane de novo genome assembly challenge
– Showed the effectiveness of accurate long reads in de novo assembly 

especially for highly heterozygous aneuploidy genome
• NG50 contig length improved 50 times
• The longest contig extended 25 times to half million bp

– Pure long read de novo assembly for both contigs and scaffolding
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