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Outline

Background

— Long read sequencing technology

The limitations of short read mapping illustrated by the Genome
Mappability Score (GMS)

The Resurgence of reference quality genome (3Cs)

—  The next version of Lander-Waterman Statistics (Contiguity)

— Historical human genome quality by gene block analysis (Completeness)
—  The effectiveness of long reads in de novo assembly (Correctness)

Sugarcane de novo genome assembly challenges

—  The effectiveness of accurate long reads in de novo assembly especially for highly
heterozygous aneuploid genome

—  Pure long read de novo assembly, combine with accurate long reads and
erroneous long reads

Contributions



Background

 BAC-by-BAC + Sanger Era (1995 to 2007)

— Very high quality reference genomes for human, mouse, worm, fly, rice,
ew other high value species.

— Contig sizes in the megabases, bun the 10s to 100s of millions of dollars

— S —

* Next-Gen Era (2007 to current)

— _Caosts dropped, but genome quality suffered

— Genome finishing almost completely abandoned; “exon-sized” contigs

— These low quality draft sequences are (1) missing mm%& (2) lack
context to discover regulatory elements or evolutionary patterns, (3)
contain many errors

* Third-Gen Era (current)

— New biote i i , chromatin assays, etc) and new
algorithms PN.ACHESIS) etc) are leading to a Resurgence of Reference
Quality Genomes

— De novo assemblies of human and other large genomes with contig sizes over
1Mbp.
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Third-Gen Sequencing Technology

\\J Long Read Sequencing: De novo assembly, SV analysis, phasing

Illumina/Moleculo

(35 kbp

(Kuleshov et al. 2014)

) WL

Pacific Biosciences
'\
A
(J

/

10-15kbp
(Berlin et al, 2014)

Oxford Nanopore

5-10kbp
(Quick et al, 2014)

\/ Long Span Sequencing: Chromosome Scaffolding, SV analysis, phasing

Molecular Barcoding

-60kbp
0Xgenomics.com)
i

Optical Mapping

-150kbp
(Cao et al, 2014)

Chromatin Assays

25-100kbp
(Putnam et al, 2015)
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Outline

 The limitations of short read mapping illustrated by the
Genome Mappability Score (GMS)
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Short read mapping (Resequencing)

Alignment & Variations

Lbbhbhe

* Discovering genome variations

* Investigating the relationship between variations and phenotypes
* Profiling epigenetic activations and inactivations

* Measuring transcription rates

=BT TCGAE
1000 Genomes W - /r”
A Deep Catalog of Human Genetic Variation /% = & ”i f/ !
NCI | NHGRI
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Repeats
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Read Quality Score — MAQ

Sensitivity of Read Mapping Score
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Challenges

* There is inherent uncertainty to mapping

* Read quality score is verysensitive to a minute change

* Base quality score is useful only inside a single read

* Read quality score is assigned to each read not a position of
a genome, thus provides only local view

 However, there is no tool to measure the reliability of
mapped reads to the reference genome in a global
perspective.

It does not consider all possible reads
We need more stable “GPS” for a genome

8 Cold Spring Harbor Laborat . o
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Genome Mappability Score (GMS)
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u is a position
X IS a reference
Z IS a read

| is read length
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Genome Mappability Analyzer (GMA)

\o

Reads

Simulator

BWA

Mapper and aligner

SAMTools

Samfile interpretor

_ n

$ Cold Spring Harbor Laboratory

HDFS (Hadoop File System)

[
Processed files
(-ppd)

[
Processed files ‘
(-ppd)

[
[
Processed files ‘
(-ppd)

Hadoop Cloud

Map
Mapper Node 1

* Generate FASTA

= Generate FASTQ
= Align with BWA

= Extract information
from sam files

Mapper Node N

* Generate FASTA

* Generate FASTQ
= Align with BWA

» Extract information
from sam files

Intermediate files Intermediate files
(part) (part)

r —
Intermediate files ‘
(part-)

Sorted by Chromosomes

Reduce

Reducer Node 1

» Calculate GMS for
each base

» Generate GMS file

Reducer Node M
*» Calculate GMS for
each base
* Generate GMS file

[ =

Genome Mappability Score files
by Chromosomes
(.gms)
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GMS vs. MAQ

Sensitivity of Read Mapping Score

Comparison GMS vs MAQ (Read length: 100bp, error rate: 1%, Paired-end)
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Variation Accuracy Simulator (VAS)

Chr X
FASTA

Chr X Chr X Chr X Chr X
part 1 part ... part ... part ...

BCFtools

Calling SNPs

FN/FP FN/FP FNI/FP FN/FP
part ... part ... part ... part ...

Chr X
FASTA

:: Cold Spring Harbor Laboratory

Chr X
part n

FN/FP
part ...

e Simulation of resequencing
experiments to measure
the accuracy of variation
detection
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Genomic Dark Matter

Variation Discovery Accuracy in High/Low GMS Region
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* Unlike false negatives in high GMS region that can be
discovered in high coverage (>=20-fold), false negatives in low
GMS regions cannot be discovered, because variation calling
program will not use poorly mapped reads
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Genomic dark matter: the reliability of short read mapping
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ABSTRACT

Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of
the mapping. These attributes, however, are assigned to individual
reads and do not directly measure the problematic repeats across
the genome. Here, we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position and thus measures the
overall composition of the genome itself.

Results: We have developed the Genome Mappability Analyzer
to compute the GMS of every position in a genome. It leverages
the parallelism of cloud computing to analyze large genomes, and
enabled us to identify the 5-14% of the human, mouse, fly and yeast
genomes that are difficult to analyze with short reads. We examined
the accuracy of the widely used BWA/SAMtools polymorphism
discovery pipeline in the context of the GMS, and found discovery
errors are dominated by false negatives, especially in regions with
poor GMS. These errors are fundamental to the mapping process
and cannot be overcome by increasing coverage. As such, the GMS
should be considered in every resequencing project to pinpoint the
‘dark matter' of the genome, including of known clinically relevant

sariatione in thooo roainoe
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sequencing, including several large projects to sequence thousands
of human genomes and exomes, such as the (1000 Genomes Project
Consortium, 2010) or (International Cancer Genome Consortium,
2010). Other projects, such as (ENCODE Project Consortium,
2004) and (modENCODE Consortium, 2010}, are extensively using
resequencing and read mapping to discover novel genes and binding
sites.

The output of current DNA sequencing instruments consists of
billions of short, 25-200 bp sequences of DNA called reads, with
an overall per base error rate around 1-2% (Bentley et al., 2008).
In the case of whole genome resequencing, these short reads will
originate from random locations in the genome, but nevertheless,
entire genomes can be accurately studied by oversampling the
genome, and then aligning or ‘mapping’ each read to the reference
genome to computationally identify where it originated. Once the
entire collection of reads has been mapped, variations in the sample
can be identified by the pileup of reads that significantly disagree
from the reference genome (Fig. 1).

The leading short read mapping algorithms, including BWA (Li
and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP (L1
et al., 2000b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e. the edit distance of the nucleotide strings, possibly
weighted by base quality value. This i1s made practical through

sonhisticated ndayving scheames such _as the Rurcows Whealar
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METHOD Open Access

Virmid: accurate detection of somatic mutations
with sample impurity inference

apa """, Kyowon Jeang®, Kunal Bhutani', Jeong Ho Lee®®, Anand Patel’, Eric Scott’, Hojung Nam?®,

bh G Gleeson® and Vineet Bafna'

Genome Biology
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Abstract

Detection of somatic variation using sequence from disease-col
many cases including cancer, however, it is hard to isolate puré
mutation analysis by disrupting overall allele frequencies. Here,
determines the level of impurity in the sample, and uses it for
tests on simulated and real sequencing data from breast cancef
of our model. A software implementation of our method is ava

Background mut
Identifying mutations relevant to a specific phenotype is  rel
one of the primary goals in sequence analysis. With the pr
advent of massively parallel sequencing technologies, we  ex
can produce an immense amount of genomic informa-  po
tion to estimate the landscape of sequence variations.  schi
However, the error rates for base-call and read align- H
ment still remain much higher than the empirical fre- coW
quencies of single nucleotide variations (SNVs) and de  imp|
novo mutations [1]. Many statistical methods have been  exat
proposed to strengthen mutation discovery in the pre-  tain
sence of confounding errors [2-4]. ac
Finding somatic mutations is one particular type of M
variant calling, which constitutes an essential step of  ty
clinical genotyping. Unlike the procedures used for na
germ line mutation discovery, the availability of a  col
hod contsal Lo ic indi ST |

LETTER

doi:10.1038/nature 13907

Resolving the complexity of the human genome
using single-molecule sequencing

Mark J. P.

on', John Huddleston"?, Megan Y. Dennis', Peter H. Sudmant’, Maika Malig', Fereydoun Hormozdiari',

Francesca Antonacei’, Urvashi Surti*, Richard Sandstrom!, Matthew Boitano®, Jane M. Landolin®, John A. Stamatoyannopoulos!,

Michael W. Hunkapiller®, Jonas Korlach® & Evan E. Eichler"’
\

The human genome is arguably the most complete mammalian
reference assembly', yet more than 160 euchromatic gaps remain®~®
and aspects of its structural variation remain poorly understood ten
years after its completion””. To identify missing sequence and gen-
etic variation, here we sequence and analyse a haploid human genome
(CHM1) using single-molecule, real-time DNA sequencing™. We dose
or extend 55% of the remaining interstitial gaps in the human GRCh37
reference genome—78% of which carried long runs of degenerate
short tandem repeats, often several kilobases in length, embedded
within (G+C)-rich genomic regions. We resolve the complete sequence
0f 26,079 euchromatic structural variants at the base-pair level, includ-
inginversions, complex insertions and long tracts of tandem repeats.
Most have not been previously reported, with the greatest increases
insensitivity occarrine for events less than 5 kilobases in size. Com-

for recruiting additional sequence reads for assembly (Supplementary
Information ). Using thisapproach, we closed 50 gaps and extended into
40 others (60 boundaries), adding 398 kb and 721 kb of novel sequence
to the genome, respectively (Supplementary Table 4). The closed gaps
in the human genome were enriched for simple repeats, long tandem
repeats, and high (G+C) content (Fig. 1) butalso included novel exons
(Supplementary Table 20) and putative regulatory sequences based on
DNase L hypersensitivity and chromatinimmunoprecipitation followed
by high-throughput DNA sequencing (ChIP-seq) analysis (Supplemen-
tary Information). Weidentified asignificant 15-fold enrichment of short
tandem repeats (STRs) when compared toa random sample (P < 0.00001)
(Fig. 1a). A total of 78% (39 out of 50) of the closed gap sequences were
composed of 10% or more of STRs. The STRs were frequently embedded

o lanaer mare comnley tandern arrave af decenerate romeate roacho




Outline

e The Resurgence of reference quality genome (3CS)
—  The next version of Lander-Waterman Statistics (Contiguity)
— Historical human genome quality by gene block analysis (Completeness)
—  The effectiveness of long reads in de novo assembly (Correctness)

18
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De novo genome assembly
w‘/ L

1. Shear & Sequence DNA // —_— =
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2. Construct assembly graph from overlapping reads

..AGCCTAGGGATGCGCGACACGT
GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC

CAACCTCGGACGGACCTCAGCGAA..
3. Simplify_le graph)
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4. Detangle graph with long reads, mates, and othér link
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Many Genomes Are Sequenced...
Many Questions Are Raised...
But...

* How long should the read length be?
 What coverage should be used?

Given the read length and coverage,

* How long are contigs? <- Contiguity prediction
* How many contigs?

* How many reads are in each contigs?

* How big are the gaps?

{CSH3 Cold Spring Harbor Laborat 20 . o
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Lander-Waterman Statistics

GENOMICS 2, 231-239 (1988)

Genomic Mapping by Fingerprinting Random
Clones: A Mathematical Analysis

Eric S. 'I' AND MICHAEL S.

*Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, tHarvard University,
Cambridge, Massachusetts 02138; and $Departments of Mathematics and Molecular Biology,
University of Southern California, Los Angeles, California 90089

Received January 13, 1988; revised March 31, 1988

Results from physical mapping projects have re-
cently been reported for the genomes of Escherichia
coli, Saccharomyces cerevisiae, and Caenorhabditis
elegans, and similar projects are currently being
planned for other organisms. In such projects, the
physical map is assembled by first “fingerprinting’’ a
large number of clones chosen at random from a re-
combinant library and then inferring overlaps be-
tween clones with sufficiently similar fingerprints.

21

o

available region of up to several megabases and of
studying its properties. In addition, the overlapping
clones comprising the physical map would constitute
the logical substrate for efforts to sequence an organ-
ism’s genome.

Recently, three pioneering efforts have investigated
the feasibility of assembling physical maps by means
of “fingerprinting” randomly chosen clones. The fin-
gerprints consisted of information about restriction

B rwrnn mmm e loanmorblhon  Meramlams hatmrnans alAanas mrawa dne
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In practice, it’s useful only in low coverage (3-5x) but becomes nonsensical in high coverage.
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HG19 Genome Assembly Performance
by Lander-Waterman Statistics

Lander-Waterman Statistics forrdG19

&)

ength 30,000bp
ength 15,000bp
ength 7,400bp
ength 3,600bp
ength  100bp

Dept. of Computer Science

Two key observations
1. Canti r genome size

2. Read Lengt <Coverage

Technology({/. Monrey

Mean Contig Size
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=

q
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Empirical Data-driven Approach

* We selecteecies across tree of life and
exhaustively analyzed their assembliies using
simulated reads for 4 different Iength (6 for HG19)
and 4 different coverage per species

* For the extra long reads, we fixed the Celera
Assembler(CA) to support reads up to 0.5Mbp

Data / Mac:;;;il:ciar;nmg Learned
(X,Y)/ (SVR) Model
Data / Learned Predicted
(X, ?) / Model Resulk
J-
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26 Species Across Tree of Life

hMadal I | Ganame SiEa
O gansm

M . janmascha 1 1,664 870
noformans 2 2401520
E.cai 3 4,639,675
Y. peslis 4 4,653,728
B.anthracis 5 5,227,293
G 8248144
Qeast 7 12,157,105
Y hipokdlica B 20502881
shima mald 4 34, 338 145
Fed bread mald 10 41037538
Tk 11 78,2096 155
Croundwarm ) 12| 100272276
- oF 13 112 305447
(BT 14| 110,667 750
€ 15| 120,450,100
16 227252106
(rice 17| 270,792,118
poplar 18 A17 640243
tomaito 14 TE1E66 411
soybean 20 973,344 380
u 21| 10619983909
( zelbra fish 22| 1412 464 843
hzar 23| L,799,125364
= 24| 2066432718
Mouse 25| 2654895218
1 26| 3,0854693083
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HG19 Genome Assembly Performance
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Why?

Lander-Waterman Statistics Our Approach
* Assumptions!!! e Stop assuming that we cannot
. : uaranteell!

If gendme 1.5 a, random 8 |

sequenze, it will work  We tried to assume as least as
* It works on'y in low possible.

coverage 3-5x * Instead of building on top of
* |t works for Si'nall genomes assumptions, we let the model

(<yeast) - learn from the data

T — * Empirical data-driven
approach B
R
‘:: Cold Spring Harbor Laboratory 27
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Repeats u»\"’\m‘

Repeats in Random Sequence v & -
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Repeat Size
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Repeats in Rice

10 Repeats in Rice Genome
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Our Goal

genome assembly contiguity

N50 from assembly
0) = X 100
N50 of chromosome segments

Read Length <
Coverage
Repeats

Genome Size

Performance

~

{CSH3 Cold Spring Harbor Laborat 30 . o
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Assembly Challenge (1)

Read Length

* Read length is very important

* A matter of technology
* The longer is the better

_ e
* Quality was important but can be corrected

— PacBio produces long reads, but low quality (~15%
error rate)

— Error correction pipeline are developed
— Errors are corrected very accurately up to 99%

¢ CSH 3 Cold Spring Harbor Laborat 31 . o
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- Assembly Challenge (1) -

Read Length
@ssembly by Read Length

60.0M

55.0M
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25.0M

N50 of Contigs

20.0M

15.0M

10.0M

Target N50
(‘ cov 20
l

| | [} T
0K 5K 10K |M1§L 20K 25K \ pK
oy b — Read/Length
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Assembly Challenge (2)
Coverage

* A matter of money

* Using perfect reads, assembly performance
increased for most genomes : Lower bound

* Using real reads, overall performance line
will shift to the higher coverage

* The higher is the better (?)

e But still it suggests that there would be a
threshold that can maximize your return on
investment (ROI)

{ CSH} Cold Spring Harbor Laborat 33 . N
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Assembly Challenge (2)

Coverage

Arabidopsis Alssembly by Coverage (/
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Assembly Challenge (3)

Repeats

* Genome is not a random sequence

* Repeat hurts genome assembly performance
* |solating the impact of repeats is not trivial

* Quantifying repeat characteristics is not
trivial as well

— The longest repeat size

M> read length X/

:. :: Cold Spring Harbor Laboratory 35
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Assembly Challenge (4)

Genome Size

* Increase the assembly complexity
 Make a hard problem harder.

{CSH3 Cold Spring Harbor Laborat 37 . o
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N50 of Contigs
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Assembly Challenge (4)

Genome Size

S.cerevisiae Assembly by Coverage
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Assembly Challenge (4)
Genome Size

Mouse Assembly by Coverage
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Challenges for Prediction

>\
* Sample size is small

e Quality is not guara&teed

 Predictive Power

/

Support Vector Regression (SVR)
Cross Validation

{CSH3 Cold Spring Harbor Laborat 40 . o
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Performance Comparison of SVR and baseline Machine Learning Algorithm

500

--—= 400

mean(Residual)
MSE(Mean Square Error)

300

200

lasso ridge SVR poly d1 SVR poly d2 SVR poly d3 SVR poly d4 SVR RBF

The resurgence of reference genome gaultiy
Lee, H, Gurtowski, J, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2015) In preparation



Stony Brook University Dept. of Computer Science

Predictive Power

* Average of residual is 15%

* We can predict the new genome assembly
performance in 15% of error residual
boundary

 Genome size, read length and coverage used
explicitly

* Repeats are included implicitly

{CSH3 Cold Spring Harbor Laborat 42 . o
G F O oPring Harbor taboratory Simons Center for Quantitative Biology
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Web Service for Contiguity Prediction

Genome Assembly Performance Prediction - Mozilla Firefox

Genome Assembly Perf... x

cshl.edu v C Ev‘ﬁ::::j: Qa ' a & #

Wresearch~ [@dic~

Genome Assembly Performance Prediction

Http://gb.cshl.edu/asm_model/predict.html

Given genome size, we internally set read lengths and coverages for you. With 3 features, our model predicts the expected performance of assembly.
Performance is defined as follows:

Performance(%) = N50 of assembly / N50 of chromosome segments

Genome siZe : 1000123456
Submit

Assenbly Frediction of Genone S5ize 1088123456

By Coverage
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Contiguity

L de novo human genome assembly
0
/(\ — comosome segment | \WWhat happens as we sequence the
140 15 —— meant human genome with longer reads?
L meand * Red: Sizes of the chromosome arms
mean2 of HG19 from largest to shortest
120 |- umina-aipath-scaffoly s Green: Results of our assemblies
e using progressively longer and
1o ¢ longer reads
0
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Assembling Large Genomes with Single-Molecule Sequencing and Locality Posted August 14, 2014.
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Human Reference Genome Quality by gene block analysis

Gene identification ratio of huamn genome reference
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Completeness

Human Reference Genome Quality by gene block analysis

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

chr1 ‘.55,936,551—5?,435,51 1 499,961 bp. | enter position, gene symbol or search terms | | go | More on-site workshog available!

|chr‘1 wez.2y [T T T T TE PWEREEE I BB BN

Zcale 188 kol | haia

chrt: | S7.888, 800 =7, 858, ags| 57,168, 868| 57,158, 8aa| 57,208, aaal 57,258, aea| 57,508, 888| 57,358, aaal 57,4088, Bea|
Consensus COS

T

CCOEEa4 .1 | } } ! | CCOSE6S. 1 }

CCOEEEE. 1 |

et
=4

COO368152, 1 H-rHHHHH

CCOEEA15L, L HH-—o

CCoE3a7E8, 1 e HHH

T4
CCOESA729, 1

o genel {Geney

gene2 —

gene2 gene>
genell

— Regulatory elements

gene20 -
v gene50 )
genelOO0

— Synteny blocks
gene200

gene500 —

i .Y, (‘rr‘( MOSOMe S P rTure
_~\~) oene J‘), ) 2 J LONNY 1€ ] M S z




Completeness

Human Reference Genome Quality by gene block analysis

(2002)
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hg8 (2001)
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Larger contigs and scaffolds
empowers analysis at every
possible level.

*  SNPs (~10k clinically relevant)

* Genes
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* Synteny blocks
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* Chromosome structure
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Correctness Summary in HG19

~— —50 misleading

7~

(major) misassembly |
(HG19 (major) V|

False Positive

Increase N50
(falsely lengthen contiguity)

Mislead us in biological meaning

Meanl 209
/ Mean2 70
Mean4 49
Mean8 33
Mean1l6 9

\/Mean32 7

Cold Spring Harbor Laboratory 51

N —

(major) breaks

False Negative

Decrease N50
(shorten contiguity)

Negatively impact on downstream research
4069

462

296

197

42

5

Simons Center for Quantitative Biology
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Misassembly

A critical errorin

HG19.m8.c20.misa




Misassembly Analysis in HG19

HG19.m1.c20.misassemble HG19.m4.c20.misassemble
HG19.m2.c20.misassemble - e ,..-—-_.\.‘
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Misassembly Analysis in HG19

isassemble HG{9.m32.c2@.rhisassemble A
g,
e S T
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Long read sequencing technology helps to reduce both misassembly and breaks
thus increase correctness of de novo genome assembly
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Summary & Recommendations

Reference quality genome assembly is here "
— Use the longest possible reads and spans for the best assembly ‘
— Coverage and algorithmics overcome most random errors Y

Megabase N50 improves the analysis in every dimension
— Better resolution of genes and flanking regulatory regions
— Better resolution of transposons and other complex sequences
— Better resolution of chromosome organization I

Need to develop methods to jointly analyze multiple high-
quality references at once

:: Cold Spring Harbor Laboratory
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SplitMEM: a graphical algorithm for pan-genome analysis with

suffix skips

Shoshana Marcus', Hayan Lee'* and Michael C. Schatz'#*

'Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA and
2Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA

Associate Editor Gunnar Ratsch

ABSTRACT

Motivation: Genomics is expanding from a single reference per spe-
cies paradigm into a more comprehensive pan-genome approach that
analyzes multiple individuals together. A compressed de Bruijn graph
is a sophisticated data structure for representing the genomes of
entire populations. It robustly encodes shared segments, simple
single-nucleotide polymorphisms and complex structural variations
far beyond what can be represented in a collection of linear sequences
alone.

Results: We explore deep topological relationships between suffix
trees and compressed de Bruijn graphs and introduce an algorithm,
splitMEM, that directly constructs the compressed de Bruin graph in
time and space linear to the total number of genomes for a given
maximum genome size. We introduce suffix skips to traverse several
suffix links simultaneously and use them to efficiently decompose
maximal exact matches into graph nodes. We demonstrate the utility
of spltMEM by analyzing the nine-strain pan-genome of Bacillus
anthracis and up to 62 strains of Escherichia coli, revealing their
core-genome properties.

Availability and implementation: Source code and documentation
available open-source http://splitmem.sourceforgenet.

Contact mschatz@cshl.edu

Supplementary information: Supplementary data are available 35 6

Bioinformatics online.

resequencing projects, gene discovery and numerous other im-
portant applications. However, reference genomes also suffer in
that they represent a single individual or a mosaic of individuals
as a single linear sequence, making them an incomplete catalog
of all the known genes, varants and other variable elements in a
population. Especially in the case of structural and other large-
scale variations, this creates an analysis gap when modeling the
role of complex variations or gene flow in the population. For
the human genome, for example, multiple auxiliary databases
including dbSNP, dbVAR, DGV and several others must be
separately queried through several different interfaces to access
the population-wide status of a variant (MacDonald er al., 2014).

The ‘reference-centric” approach in genomics has been estab-
Iished largely because of technological and budgetary concems.
Especially in the case of mammalian-sized genomes, it remains
prohibitively expensive and technically challenging to assemble
each sample into a complete genome de novo, making it substan-
tially cheaper and more accessible to analyze a new sample rela-
tive to an established reference. However, for some species,
especially medically or otherwise biologically important micro-
bial genomes, multiple genomes of the same species are available.
In the current version of National Center for Biotechnology
Information (NCBI) GenBank, 296 of the 1471 bacterial species
listed have at least two strains present, including 9 strains of

N s TS | ATE S ) PRI S L T SR oL [T TRt "R T S o
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Pan-Genome Alignment & Assembly

O O m >

Time tg start considering proble'ms Pan-genome colored de Bruijn graph
for which N complete genomes is the « Encodes all the sequence

'nqu to study the pan-gengme _ relationships between the
*Available today for many microbial

) ¢ tor high genomes
spcle(ues, near future for higher * How well conserved is a given
eukaryotes sequence?

 What are the pan-genome
network properties?

SplitMEM: A graphical algorithm for pan-genome analysis with suffix skips
Marcus, S, Lee, H, Schatz MC (2014) Bioinformatics. doi: 10.1093/bioinformatics/btu756



Outline

* Sugarcane de novo genome assembly challenge

— The effectiveness of accurate long reads in de novo assembly especially
for highly heterozygous aneuploidy genome

—  Pure long read de novo assembly, combine with Moleculo and PacBio
reads.

58



Sugarcane for food and biofuel

* Food

— By 2050, the world’s population will grow by 50%, thus another
2.5 billion people will need to eat!

— Rapidly rising oil prices, adverse weather conditions, speculation
in agricultural markets are causing more demand
* Biofuel
— By 2050, global energy needs will double as will carbon dioxide
emission
— Low-carbon solution

— Sugarcane ethanol is a clean, renewable fuel that produces on
average 90 percent less carbon dioxide emission than oil and
can be an important tool in the fight against climate change.

¢ CSH 3 Cold Spring Harbor Laborat 59 . o
Y F 0’ pring Harbor Laboratory Simons Center for Quantitative Biology
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A hybrid sugarcane cultivar SP80-3280

S.spontaneum x S.officinarum

* A century ago.... S. spontaneum S. officinarum
(Contribute to robustness) (Contribute to sweetness)
* Saccharum genus =
— S. spontaneum (2n=40-128, x=8) X

— S. officinarum (2n=8x=80) Céh

Big, highly polyploid and aneuploid genome |

— Monoploid genome is about 1Gbp Sugarcane
— 8-12 copies per chromosome

— In total, 100-130 chromosomes

— — —

— Total size is about 10Gbp
———

8 Cold Spring Harbor Laborat 60 . o
\g -0ld spring Harbor Laboratory Simons Center for Quantitative Biology



Why is sugarcane assembly harder? (1)
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* Polyploidy/Aneuploidy

— 10% of the chromosomes are inherited in
their entirety from S. spontaneum, 80%
are inherited entirely from S. officinarum
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e Large scale recombination

— 10% is the result of recombination
between chromosomes from the two
ancestral species, a few being double Annnnnan
recombinants
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Four Important Questions in Sugarcane

» Scaffold polyploidy/aneuploidy genome

— How do we connect contigs/cluster contigs per chromosome/fill gaps among
contigs?

*~ Phasing haplotypes
\ — Not solved in diploid genome yet
Heterozygosity
— How do we measure heterozygosity in polyploidy/aneuploidy genome?
— How do we quantify alleles and get ratio?
* Inference of polyploidy/aneuploidy estimation

— How do we infer the number of copies per chromosome in aneuploidy
genome, especially in the large scale of recombination?

Margarido GRA, Heckerman D (2015) ConPADE: Genome Assembly Ploidy Estimation from Next-
Generation Sequencing Data. PLoS-€emput Bigl 11(4): €1004229. doi: 10.1371/journal.pcbi.1004229

Cold Spring Harbor Laborat 62 : L :
g 0 Spring Harbor taboratory Simons Center for Quantitative Biology
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Assembly Complexity by Repeats

Long Reads is the
solution!!!

8 Cold Spring Harbor Laborat . o
|9 (-0ld >pring Harbor Laboratory Simons Center for Quantitative Biology
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Assembly Complexity by Heterozygosity

A R B R ¢ EREE

VA
AR I BT 1) SRR R ——

{CSHY Cold Spring Harbor Laborat . o
p-oHg Cold Spring Harbor Laboratory Simons Center for Quantitative Biology



Dept. of Computer Science

Stony Brook University

Assembly Complexity by Polyploidy

A R B

AR T HuTh
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otk

Long Reads is the
solution!!!
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(1)

(2)
(3)

(4)

(5)
(6)

(7)

Dept. of Computer Science

(1)
(2)
The DNA is sheared into fragments of about
10Kbp p) A A A
Sheared fragments are then diluted J O O U
and placed into 384 wells, at about 3,000 @ ) 4
fragments per well. ZZ ZZ = 2=
Within each well, fragments are amplified \— — - .
through long-range PCR, cut into short &
fragments and barcoded
before finally being pooled together and (5) —
sequenced.
Sequenced short reads are aligned and
mapped back to their original well using the @
barcode adapters. = - - -
Within each well, reads are grouped into (6) 7 = < -
fragments, which are assembled to long St St s
reads.
R ¥
A\ | 7)) e, e e,
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Read length distribution in Moleculo

sugarcahe moleculo reads distribution
1600
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count
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length{Kbp)

Simons Center for Quantitative Biology
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Choose the right data and the right method

Hiseq 2000 PE (2x100bp) Moleculo

- 575Gbp 19Gbp

- 600x ot haploid genome i5x of haploid genome
Roche454 [min=1,500 max=22,904]

- 9x of haploid genome Mean = 4,930bp
- [min=20 max=1,168]
- Mean=332bp

Algorithm SOAPdenovo Celera Assembler
(De Bruijn Grap (Overlap Graph)
25 J

RESULT Max contig =21,564 bp N —Max contig = 467,567 bp
NG504823 bp < r—r NG50=41,394 bp <

Coverage=0.86x Coverage=3.59x
# of contigs = 450K

8 Cold Spring Harbor Laborat . o
\g -0ld spring Harbor Laboratory Simons Center for Quantitative Biology
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CEGMA

="Korf Lab in UC. Davis selectgd 248 core eukaryotic genes
o, —_—
» Statistics of the completeness

Prots %Completeness Average
Complete 219 88.31 827 3.78 89.04
Partial 242 (97.58> 1083 4.48 95.45

* Gene prediction aided by sorghum gene model
— |In progess...
— 39k sorghum genes were found in sugarcane contigs at least partially

8 Cold Spring Harbor Laborat . L .
\g -0ld spring Harbor Laboratory Simons Center for Quantitative Biology



“NP-Hard Hairball of Sugarcane

Vertices are contigs

2l
P
.

Edges are linking information

Edges are reliable linking informatioh”
from 120 Gbp 10K jumping library

# of vertices : 81,552

# of edges : 82,269 Average number of vertices per CC= 2.54

" lbf_ connected components = 17,919

Average degree of a node : 1 o The biggest CC has 25 vertices
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Benefits of Long Read Scaffolding

P6-C4

The average read length of the raw
data set is >14 kb, with half of the
bases in reads > 21 kb and the
maximum read length of 64,500
bases.

Read Length (bp)

* Read Length is increasing, the cost is decreasing

* Very informative whether it has high error rate or not
 More repeats resolved

« Better scaffolding solution than long jumping library

« We don’t have to approximate insert size by MLE or so.

* It’s much better to fill gaps with some base information rather than just
NNNNNN.
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Prototype for scaffolding

at9.chrl (30Mbp)

==

--poly 10 --het 0.05

10 copies of """
at9.chrl

Moleculo reads
200x of monoploid

PacBio reads

CA 100x of monoploid
(Celera Assembler) /
- ] 4
( N

LRScf
(Prototype)

?

1.

Simulate heterozygous
polyploidy genome

- 10 copies with 5% of difference
from original chromosome

Simulate Moleculo reads
from polyploidy genome
- Read length distribution
follows exactly real molecule
read distribution

Simulate PacBio reads from
polyploidy genome

- Simulate P6-C4, the lastest

PacBio chemistry

Run Celera Assembler(CA)
to assemble contigs with
Moleculo reads

Run LRScf to scaffold the
contigs with PacBio reads
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Preliminary Results

* Moleculo-based contigs from CA

— Aroun

* Long Read Scaffolding

— Align PacBio reads to all contigs

— Find PacBio reads that link between two contigs
— Around 16Q0 alignments out of 40K PacBio Reads

e ————
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Sugarcane Scaffolding Challenges
N

 How to represent aneuploidy genome?
 How to screen out false positive link information?

— # Weakly connected component
— # Strongly consae

HEEI! !EI ponent@

— True valué

* How to assembie PacBio reads across gaps?

 How to extend contigs with PacBio reads?
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Contributions

* The limitations of short read mapping illustrated by the
Genome Mappability Score (GMS)
— A new metric that measure reliability per position of a genome
— Clmmeline for efficient computation for big genomes
—  Analysis of biological importance in variation discover low/high GMS region

* The Resurgence of reference genome qualit

—  Provide the-data-driven model, a.k.a. the next version of L -Waterman
Statistics to predict contiguity of de novo genome assembly project——

—  Analysis of complet and correctness.in historical human genome
assembl

 Sugarcane de novo genome assembly challenge

— Showed the effectiveness of accurate long reads in demevoassembly
especially for highly heteroEsyéous aneuploidy genome

D ontig length improve
* Thedlongest contig extended 25 times to half million bp

— Pure long read de novo assembly for both contigs and scaffolding

—
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