

Sugarcane Genome De Novo Assembly Challenges and Modeling

Hayan Lee

Ph.D. student in Computer Science Dept., Stony Brook University Research Assistant, Schatz Lab, Cold Spring Harbor Laboratory Research Intern in eScience Group, Microsoft Research

Sugarcane History

Sugarcane for food and biofuel

• Food

- By 2050, the world's population will grow by 50%, thus another 2.5 billion people will need to eat!
- Rapidly rising oil prices, adverse weather conditions, speculation in agricultural markets are causing more demand
- Biofuel
 - By 2050, global energy needs will double as will carbon dioxide emission
 - Low-carbon solution
 - Sugarcane ethanol is a clean, renewable fuel that produces on average 90 percent less carbon dioxide emission than oil and can be an important tool in the fight against climate change.

http://sugarcane.org/sustainability/producing-food-and-fuel

Sugarcane

- A hybrid sugarcane cultivar SP80-3280
 - S.spontaneum x S.officinarum
 - A century ago....
 - Saccharum genus
 - S. spontaneum (2n=40-128, x=8)
 - S. officinarum (2n=8x=80)
 - Big, highly polyploid and aneuploid genome
 - Monoploid genome is about 1Gbp
 - 8-12 copies per chromosome
 - In total, 100-130 chromosomes
 - Total size is about 10Gbp

S. officinarum

(Contribute to sweetness)

Sugarcane

S. spontaneum

(Contribute to robustness)

F1

Sugarcane Challenges

Why is sugarcane assembly harder? (1)

- Polyploidy/Aneuploidy
 - 10% of the chromosomes are inherited in their entirety from *S. spontaneum*, 80% are inherited entirely from *S. officinarum*
- Large scale recombination
 - 10% is the result of recombination between chromosomes from the two ancestral species, a few being double recombinants

(source) http://ars.elscdn.com/content/image/1-s2.0-S1369526602002340-gr1.jpg

Why is sugarcane assembly hard? (2)

- Heterozygosity
 - The most heterozygous region has 5% of differences
- Repeats
 - Polyploidy will boost repeats across copies of chromosomes
 - Haploid genome has many repeats
 - Polyploidy causes even more copies

Mode of gene copy count

Four Important Questions in Sugarcane

- Scaffold polyploidy/aneuploidy genome
 - How do we connect contigs/cluster contigs per chromosome/fill gaps among contigs?
- Phasing haplotypes
 - Not solved in diploid genome yet
- Heterozygosity
 - How do we measure heterozygosity in polyploidy/aneuploidy genome?
 - How do we quantify alleles and get ratio?
- Inference of polyploidy/aneuploidy estimation
 - How do we infer the number of copies per chromosome in aneuploidy genome, especially in the large scale of recombination?

Gabriel Margarido et al. "ConPADE: Genome assembly ploidy estimation from next-generation sequencing data", under review

Assembly Data and Tools

Assembly Complexity by Repeats

Long Reads is the solution!!!

Assembly Complexity by Heterozygosity

Assembly Complexity by Polyploidy

Moleculo Reads

- (1) The DNA is sheared into fragments of about 10Kbp
- (2) Sheared fragments are then diluted
- (3) and placed into 384 wells, at about 3,000 fragments per well.
- (4) Within each well, fragments are amplified through long-range PCR, cut into short fragments and barcoded
- (5) before finally being pooled together and sequenced.
- (6) Sequenced short reads are aligned and mapped back to their original well using the barcode adapters.
- (7) Within each well, reads are grouped into fragments, which are assembled to long reads.

Moleculo Reads

14

Choose the right data and the right tool

DATA	 Hiseq 2000 PE (2x100bp) 575Gbp 600x of monoploid genome Roche454 9x of monoploid genome [min=20 max=1,168] Mean=332bp 	Moleculo - 19Gbp - 19x of monoploid genome - [min=1,500 max=22,904] - Mean = 4,930bp
SOFTWARE	SOAPdenovo	Celera Assembler
RESULT	Max contig = 21,564 bp NG50= 823 bp Coverage= 0.86x	Max contig = 467,567 bp NG50= 41,394 bp Coverage= 3.59x

CEGMA

- CEGs
 - Korf Lab in UC. Davis selected 248 core eukaryotic genes
- Statistics of the completeness

	Prots	%Completeness	Total	Average	%Ortho
Complete	219	88.31	827	3.78	89.04
Partial	242	97.58	1083	4.48	95.45

- Gene prediction aided by sorghum gene model
 - In progess...
 - 39k sorghum genes were found in sugarcane contigs at least partially

NP-Hard Hairball of Sugarcane

- Vertices are contigs
- Edges are linking information
- Edges are reliable linking information from 120 Gbp 10K jumping library
- # of vertices : 81,552
- # of edges : 82,269
- Average degree of a node : 1

NP-Hard Hairball of Sugarcane

- # of connected components = 17,919
- Average number of vertices per CC= 2.54
- The biggest CC has 25 vertices

The Future of Long Read Sequencing

Modeling genome assembly performance

Long Read Sequencing Technology

- Mean is around 5Kbp
- Very accurate (< 0.1% of error rate)

- Mean is over 14Kbp
- High error rate 10-15%, but can be corrected down to 1% by short reads or contigs

Benefits of Long Reads

- Read Length is increasing
- Very informative whether it has high error rate or not
- More repeats resolved
- Assembly graph will be simpler
- We can get longer contigs without scaffolding
- Better scaffolding solution than long jumping library
- Overall assembly quality will improve

Human Reference Genome Quality

HG19 Genome Assembly Performance by Our Simulation Read Length has

Read Length has stronger impact than

Modeling Genome Assembly Performance

• To predict genome assembly performance

Performance(%) $\equiv \frac{\text{N50 from assembly}}{\text{N50 of chromosome segments}} \times 100$

Using four features

Performance(%) $\approx \int \begin{pmatrix} Read \ Length \\ Coverage \\ Repeats \\ Genome \ Size \end{pmatrix}$

Support Vector Regression (SVR)

• Epsilon insensitive loss function

$$L(y, f(x, w)) = \begin{cases} 0, & \text{if } |y - f(x, w)| \le \varepsilon \\ |y - f(x, w)| - \varepsilon, & \text{otherwise} \end{cases}$$

- Benefits
 - Simplest fit
 - Robust to outliers

26 Species Across Tree of Life

Model	ID	Genome Size	
Organism			
M.jannaschii	1	1,664,970	
C.hydrogenoformans	2	2,401,520	
E.coli	3	4,639,675	
Y.pestis	- 4	4,653,728	
B.anthracis	5	5,227,293	
A.mirum	6	8,248,144	
yeast	7	12,157,105	
Y.lipolytica	8	20,502,981	
slime mold	9	34,338,145	
Red bread mold	10	41,037,538	
sea squirt	11	78,296,155	
roundworm	12	100,272,276	
green alga	13	112,305,447	
arabidopsis	- 14	119,667,750	
fruitfly	15	130,450,100	
peach	16	227,252,106	
rice	17	370,792,118	
poplar	18	417,640,243	
tomato	19	781,666,411	
soybean	20	973,344,380	
turkey	21	1,061,998,909	
zebra fish	22	1,412,464,843	
lizard	23	1,799,126,364	
corn	24	2,066,432,718	
mouse	25	2,654,895,218	
human	26	3,095,693,983	

C Adapted from NASA Astrobiology Institute

Reference Genome Quality

SVR Fit: Genome Assembly Using Genome Size and Read Length

Hayan Lee et al. "How long is long enough?", (in preparation)

Web Service

😣 🖻 💿 🛛 Genome Assembly Performance Prediction - Mozilla Firefox

Http://qb.cshl.edu/asm_model/predict.html

Genome Assembly Performance Prediction

This is the Genome Assembly Performance Prediction Service. If you have any queries please email Hayan Lee(hlee@cshl.edu).

Although assembly performance is a function of genome size, read length, coverage and repeats, in this prediction model, we only used 3 features; genome size, read length and coverage for the simplicity.

Given genome size, we internally set read lengths and coverages for you. With 3 features, our model predicts the expected performance of assembly. Performance is defined as follows:

Performance(%) = N50 of assembly / N50 of chromosome segments

Genome size : 1000123456

Submit

Assembly Prediction of Genome Size 1000123456

Hayan Lee et al. "How long is long enough?", (in preparation)

Contributions

- Sugarcane de novo genome assembly
 - N50 contig improved 50 times
 - The longest contig extended to half million bp
- Modeling
 - We made a new model that predicts genome assembly performance in 15% of residue boundary.
- Recommendations for de novo genome assembly
 - Use the coverage >20x at least for perfect reads but note that more and more coverage does not guarantee that your N50/contigs get longer and longer
 - Use the longest reads possible
- Machine Learning & Big Data
 - Contact <hlee@cshl.edu>

Acknowledgement

Microsoft Research

Ravi Pandya Bob Davidson David Heckerman

Cold Spring Harbor Laboratory Michael Schatz

Universidade de São Paulo

Gabriel Margarido Marie-Anne Van Sluys Glaucia Souza

MIL Doppic ANY ST

Brookhaven National Laboratory Shinjae Yoo