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Outline

● Background on genome sequencing
● Challenges for accurately measuring genome 

variations
● Innovations for variations detection

● Genome Mappability Score (GMS)
● Genome Mappability Analyzer (GMA)
● Applications of GMS

● Contributions and Future Work
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Outline

● Background on genome sequencing
● Genome 
● Sequencing history
● Applications of short read mapping - Resequencing
● Alignment tools and algorithms

● Challenges for accurately measuring genome variations
● Innovations for variations detection
● Contributions and Future Work
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Genome

Gene + Chromosome

A container of an organism's 
hereditary information. 

Encoded in long molecules of 
DNA. 
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Deoxyribonucleic acid(DNA)

● A cookbook with a lot of recipes

● The structure was discovered by James D. 
Watson and Francis Crick(Watson J.D. and Crick 
F.H.C. (1953). "A Structure for Deoxyribose Nucleic Acid" Nature 171 
(4356): 737–738)

● Double Helix

● Nucleotides
● A Adenine
● C Cytosine
● G Guanine
● T  Thymine
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Back then...

● Sanger et al. sequenced the first complete genome in 
1977 

Radioactive Chain Termination 
5000bp / week / person

http://en.wikipedia.org/wiki/File:Sequencing.jpg
http://www.answers.com/topic/automated-sequencer
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Today

● Current DNA sequencing 
machines can sequence 
billions of short (25-500bp) 
reads from random positions

● Per-base error rate estimated 
at 1-2% (Simpson et al, 2009)

● De novo sequencing
● 5375 b/week (1977) vs. 210 

Gb /week (2008)

2008
ABI / Life Technologies
SOLiD Sequencing
Current Specs (5500xl): 
5B 75bp reads / run 
=   30Gbp / day
= 210Gbp / week
=  70 individuals /week
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Short read mapping (Resequencing)

● Discovering genome variations
● Investigating the relationship 

between variations and 
phenotypes

● Profiling epigenetic activations 
and inactivations

● Measuring transcription rates
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Projects using short read mapping

● Want to find all variations that may relate to disease 
and other phenotypes

● 1000 Genome Project
● Cancer Genome Atlas
● ENCODE

Mutations 
In Cancer
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Challenges for variation discovery

● Low quality of reads/bases 
● Coverage

● Repeat
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Repeats

● 46% of human genome 
is repetitive using 
standard repeat finding 
algorithms

(http://www.ncrna.org/statgenome/index.html?view=class&gid=hg18)
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Tons of Mapping Tools

● BWA(Burrows-Wheeler Aligner)
● Uses Burrows-Wheeler Transformation

● BWA works very well for reads shorter than 200bp

● Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and calling 
variants using mapping quality scores. Genome research, 18(11), 1851–1858

● SOAP(Short Oligonucleotide Analysis Package)
● "Li, R., Yu, C., Li, Y., Lam, T.-W. W., Yiu, S.-M. M., Kristiansen, K., and Wang, J.

(2009b). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics

(Oxford, England), 25(15), 1966–1967 

● Bowtie
● Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of 

short DNA sequences to the human genome. Genome Biology 2009, 10:R25

● Etc...
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Burrows-Wheeler Aligner (BWA)

● Align relatively short sequences to a long reference genome

● Short reads mean less than 200bp with low error rate (<3%)

● Long reference genome
● Saccharomyces cerevisiae – yeast (12M)

● Drosophila melanogaster – fly (133M)

● Mus musculus – mouse (2.7G) 

● Homo sapien – human (3 G)

● Pinus - pine tree (24 Gbp)

● Protopterus aethiopicus (130Gb) 

– Largest vertebrate genome known
● Pieris japonica (150Gb)

– Largest plant genome known
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Burrows-Wheeler Transformation
● How to build BWT and  suffix array 

● Suffix Array(Manber & Myers, 1991)

–
Lexicographically sorted list of suffixes

–
Fast binary search lookups: O(lg n) = 32 
probes / read

–
Relatively space efficient: O(n lg n) =15GB / 
genome

● BWT

–
BWT is a reversible permutation of the 
genome based on the suffix array

–
< 1GB memory at peak time for constructing 
the BWT of human genome

–
implemented in BWT-SW(Lam et al,, 2008)

–
Fast search and linear space requirements

● Given a string W, do binary search

● Q: Find “go” in a given string “googol”

● A: (1, 2)
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Outline

● Background on genome sequencing
● Challenges for accurately measuring genome variations

● Limitations of base quality score  
● Limitations of read quality score

● Innovations for variations detection
● Genome Mappability Score (GMS)
● Genome Mappability Analyzer (GMA)
● Applications of GMS

● Contributions and Future Work
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Base Quality Score (1)
Illumina Sequencing by Synthesis

Metzker (2010) Nature Reviews Genetics 11:31-46
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

1. Prepare

2. Attach

3. Amplify

4. Image

5. Basecall

http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf
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Base Quality Score (2)

● Base-calling usually refers to the conversion of 
intensity data into sequences and quality scores. 

Intensity
Analysis

Read
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Base Quality Score(3)
● FASTQ format

@SEQ_ID1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***+*''))**55CCF>>>>>>CCCCCCC65
...
...
...

● Phred-scaled base quality score
Base quality score Error rate (%)

10 10%

20 1%

30 0.1%
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Base Quality Score (4)

● Approximately the first 
50 bp have qv 20, 
meaning the probability 
of error is less than 1%, 
while the latter half of 
the reads have 
considerably worse 
quality.

Quality value as a function of read position. The quality values 
at each read position were averaged from a sample of 100,000 
100bp reads sequenced at the Broad Institute using an Illumina 
Genome Analyzer II (SRA study SRP001086). 
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Read Quality Score - MAQ(1)

Q s=−10 log 10[1−ps (u∣x , z )]

P s(u∣x , z)=
P (z∣x ,u)

∑
v=1

L−l+1

P( z∣x , v )

● The mapping quality score Q
S
 of a given alignment is 

typically written in Phred-scale

● Posterior probability P
S 
that the alignment is the correct 

alignment

● L = |x| the length of reference genome x, 

● l = |z| is a length of a read z 

● P(z|x, u),  the probability of observing the particular read 
alignment

● Defined as the product of the probability of errors recorded in 
the quality values. 

● The posterior error probability P
S
 is minimized when the 

alignment with the fewest mismatches is selected.  

● Q
S
 will be lower for reads that could be mapped to multiple 

locations with nearly the same number of mismatches and 
Q

S
 will be zero if there are multiple positions with the 

same minimum number of mismatches weighted by 
quality value.

Q s=−10 log 10[Pr (readis wronglymapped)]



Simons Center for Quantitative Biology
21

 Stony Brook University                                                                                                           Dept. of Computer Science

Read Quality Score – MAQ (2)

∑
v=1

L−l+1

P (z∣x , v )

● X is a reference

● Z is a read

● U is a position

● L = |x| the length of reference genome x, 

● l = |z| is a length of a read z 

P(z∣x ,u)
● Position u has 2 mismatches

● Base quality scores  are 20 for C, 10 for A

● Error probability of C is 1%, A is 10%

● Correctly mapped probability of position U is 0.1 %

Q s=−10 log 10[1−ps (u∣x , z )]

● Q: If a read z is (almost) uniquely mapped?

P s(u∣x , z)=
P (z∣x ,u)

∑
v=1

L−l+1

P( z∣x , v )
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Read Quality Score – MAQ (3)

P s(u∣x , z)=
P (z∣x ,u)

∑
v=1

L−l+1

P( z∣x , v )

● X is a reference

● Z is a read

● U is a position

● L = |x| the length of reference genome x, 

● l = |z| is a length of a read z 

Q s=−10 log 10[1−ps (u∣x , z )]

● Q: If a read z is mapped to many positions?∑
v=1

L−l+1

P (z∣x , v )

● Q: What is the reliability of a specific position?

● Q: Do we have a metric to measure such reliability 
in a consistent view? 
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Read Quality Score - MAQ(4)
Sensitivity of Read Mapping Score
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Read Quality Score - MAQ(5)
Sensitivity of Read Mapping Score



Simons Center for Quantitative Biology
25

 Stony Brook University                                                                                                           Dept. of Computer Science

Challenges

● Base quality score is useful only inside a single read
● Read quality score provides only local view
● Read quality score is very sensitive to a minute 

change
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Uniqueome

● Partially addressed by Uniqueome
● Ryan Koehler et al., The uniqueome: a mappability resource for short-

tag sequencing, BIOINFORMATICS, 27:2 (12 November 2010), pp. 
272-274

● Measure if individual reads are mapped uniquely 
allowing a fixed number of mismatches

● Still sensitive because it does not consider all 
possible reads

● We need more stable “GPS” for a genome
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Outline

● Background on genome sequencing
● Challenges for accurately measuring genome 

variations
● Innovations for variations detection

● Genome Mappability Score (GMS)
● Genome Mappability Analyzer (GMA)
● Applications of GMS

● Contributions and Discussion
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The Global View (GPS for a genome)

● There is inherent uncertainty to mapping
● However, there is no tool to measure the reliability of 

mapped reads to the reference genome in a global 
perspective.
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Genome Mappability Score (GMS)

● u is a position

● x is a reference

● z is a read

● l is read length
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GMS vs. MAQ(1)
Sensitivity of Read Mapping Score



Simons Center for Quantitative Biology
31

 Stony Brook University                                                                                                           Dept. of Computer Science

GMS vs. MAQ(2)
Sensitivity of Read Mapping Score
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Any Questions?

● (1) Why are simulated reads used? 
● Some may want to argue that simulated reads are biased, thus 

cannot reflect what real reads in wet-lab experiments can. 

● (2) Why is BWA used instead of other mapping tools?

● At this moment, 2 questions can be raised naturally
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Why simulated reads are used
● To simulate ideal case

● We need all possible reads related to specific position
● Technically impossible to achieve

● To have a full control over all parameters
● -l : Read length
● -e : Error rate
● -q : Quality value
● -o : Expected distance for paired-end read

● Upper bound on what we can achieve
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Why BWA is used instead of other 
mapping tools

● Holtgrewe et al. (2011) benchmarked most reputable mapping tools 
and reported their performance. 

+ BWA and Shrimp2 outperforms and shows best and stable results

-  Bowtie and Soap2 is fluctuated by error rates and read length. 

+ BWA can tackle reads with indels in long reads

-  Bowtie and Soap2 cannot.

-  Shrimp2 is very sensitive to indels

● Remember: Our purpose is not finding all possible positions. We need 
one best probable result because we are looking for tool-independent 
and inherent tendencies of a genome.
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Genome Mappability Analyzer (GMA)

● GMA computes GMS for every position of a 
genome

● To compute GMS, all you need is FASTA 
file with parameter settings

● -l : Read length
● -e : Error rate
● -q : Quality value
● -o : Expected distance for paired-end read

● Local version for small-sized genome
● Good enough for yeast(12M) or fly(133M)
● Not efficient for large genome such as 

human(3G), which takes ~1 month
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 Cloud Computing using Hadoop
Mapper 5

Mapper 4

Mapper 3

Mapper 2

Mapper 1

MasterDesktop

● We are in the age of data tsunami

● For large data, use parallel computing on cloud

●                            is the leading open source implementation, 
developed by 

● Free version of MapReduce patented by
● Scalable, efficient, reliable, easy to write a program

Reducer

Reducer
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Genome Mappability 
Analyzer (GMA)

● Hadoop version for large scale 
genomes

● ~ 1 month for entire human genome 
using 1 core

● 1 day on 48 cores with Hadoop

● 8 days for pine tree with Hadoop 
instead of 8 months
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Outline

● Background on genome sequencing

● Challenges for accurately measuring genome variations

● Genome Mappability Score (GMS)

● Innovations for variations detection
● Genome Mappability Score (GMS)

● Genome Mappability Analyzer (GMA)

● Applications of GMS

– Effect of parameters on GMS

– GMS profiles 
● Model organisms
● Human pathogen T. vaginalis

– Variation Discovery and Dark Matter
● Variation Accuracy Simulator (VAS)
● Dark Matter

● Contributions and Future Work
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Effect of parameters on GMS

● Different parameters are used to trace the effect of 
different sequencing conditions

● -l : Read length
● -e : error rate
● -o : 

● expected distance for paired-end, 
● default is 0, which means single-end
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Read Length
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Error Rate

● Mutation rate(SNP) is 0.1%

● GMS shape will be consistent, independent from individual differences
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GMS Profiles for Model Organisms

● Using common parameters
● 100bp read length

● 2% error rate

● 300 expected distance for paired-end reads

● GMS >= 50% is highly reliable region

● Percentage of highly mappable bases in the genomes of several model species. 
Approximately 90% of these genome can be mapped reliably.
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GMS Profiles for T. vaginalis

● Distribution of GMS values in the T.vaginalis genome. Since T. 
vaginalis has high proportion of repeats, over half of the 
genome cannot be reliably mapped.
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Variation Accuracy Simulator (VAS)
● Simulation of 

resequencing experiments 
to measure the accuracy 
of variation detection

● SAMTools/BCFTools are 
leading programs to 
discover variations

● Local/Hadoop version 
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Accuracy Test

● The overall variation detection accuracy is very high, and is twice as high (99.83%) in 
high GMS regions compared to low GMS regions (42.25%)

● Detection failure errors are dominated by false negatives
● The SNP-calling algorithm will use the mapping quality score to filter out low confidence mapping. 

● What is surprising is the extent of false negatives and the concentration of false 
negatives almost entirely within low GMS regions.

● Among all 3504 false negatives, 3255 (93%) are located in low GMS region, only 249 
(7%) are in high GMS region.

● Only 14% of human genome is low GMS region
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Dark Matter

● Unlike false negatives in high GMS region that can be discovered in high coverage 
(>=20-fold), false negatives in low GMS regions cannot be discovered, because 
variation calling program will not use poorly mapped reads
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GMS ratio of Human (hg19)

whole transcription coding exon SNP
(dbSNP)

Clinical SNP

[0,10] 0.0918 0.0128 0.0109 0.0129 0.0060 0.0033

(10,20] 0.0056 0.0056 0.0054 0.0054 0.0052 0.0042

(20,30] 0.0051 0.0050 0.0048 0.0048 0.0046 0.0035

(30,40] 0.0052 0.0051 0.0049 0.0049 0.0048 0.0047

(40,50] 0.0053 0.0052 0.0050 0.0050 0.0049 0.0037

(50,60] 0.0055 0.0054 0.0051 0.0051 0.0052 0.0036

(60,70] 0.0058 0.0056 0.0054 0.0054 0.0056 0.0046

(70,80] 0.0063 0.0060 0.0058 0.0057 0.0062 0.0057

(80.90] 0.0073 0.0068 0.0065 0.0064 0.0073 0.0049

(90,100] 0.8620 0.9425 0.9462 0.9444 0.9503 0.9617

TOTAL 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Clinical SNPs in Low GMS Region

● There are very important clinial SNPs in low GMS Region
● rs445114

– PROSTATE CANCER, HEREDITARY, 10; HPC10
– GMS : 3.597204

● rs944289
– thyroid carcinoma
– GMS :   3.732166

● rs1016732
– AUTISM
– GMS :   9.99999



Simons Center for Quantitative Biology
49

 Stony Brook University                                                                                                           Dept. of Computer Science

Apply GMS to ongoing projects

● 1000 genome 
● Identify common variation in the human genome

● Cancer Genome Atlas
● Identify variations related to various forms of cancer

●  ENCODE
● Use sequencing to identify all biologically active regions of the genome 
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Outline

● Background on genome sequencing
● Challenges for accurately measuring genome 

variations
● Innovations for variations detection

● Genome Mappability Score (GMS)
● Genome Mappability Analyzer (GMA)
● Applications of GMS

● Contributions and Discussion/Future Work
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Contributions (1)

● Short read mapping
● Mapping Algorithms are getting mature
● Open question how to interpret the mapping reliability
● Previous Works

● Mapping quality score
● Uniqueome

● Challenge
● Narrowly focus on an individual read
● Largely miss genomic context 
● Too sensitive to reflect genomic characteristics
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Contributions (2)

● GMS(Genome Mappability Score)
● A novel probabilistic metric
● Measure how reliably reads are mapped

● GMA(Genome Mappability Analyzer)
● Stand-alone version
● Cloud version (Hadoop)

● GMS profiles for Model organisms
● 14% of the human genome is in low mappability regions
● 6% of exons are in low mappability regions
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Contributions (3)

● Variations Accuracy Simulation
● The overall variation detection accuracy is very high, and is twice as high (99.83%) 

in high GMS regions compared to low GMS regions (42.25%)

● Detection failure errors are dominated by false negatives

● Among all 3504 false negatives, 3255 (93%) are located in low GMS region, only 
249 (7%) are in high GMS region.

● Cannot be overcome by merely increasing coverage

● Hidden mutations are genomic dark matter.
● Important in disease analysis

● GMS should be considered for all analysis of resequencing projects
● False negative

● False positive
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Future Works

● Evaluate the GMS profile under the models with 
longer read length and higher error rates

● e.g. Ion Torrent
● e.g. Pacific Biosciences

– Several thousand bases, 15% error rates.

● Find a way to call variations in low GMS region (if 
possible)
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Appendix A

Burrows-Wheeler Transform
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Burrows-Wheeler Transform

● Reversible permutation of the characters in a text

● BWT(T) is the index for T

Burrows-Wheeler
Matrix BWM(T)

BWT(T)T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Rank: 2

Rank: 2

LF Property 
implicitly encodes
Suffix Array
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Burrows-Wheeler Transform

● Recreating T from BWT(T)
● Start in the first row and apply LF repeatedly, 

accumulating predecessors along the way

Original T

BWT/Bowtie slides from Ben Langmead
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Exact Matching

• LFc(r, c) does the same thing as LF(r) but it ignores 
r’s actual final character and “pretends” it’s c:

Rank: 2Rank: 2

L

F

LFc(5, g) = 8 

g
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Exact Matching
● Start with a range, (top, bot) encompassing all rows and 

repeatedly apply LFc:
top = LFc(top, qc); bot = LFc(bot, qc)

qc = the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.
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Checkpointing in FM Index

• LF(i, qc) must determine the rank of qc in row i

• Naïve way: count occurrences of qc in all previous rows
– Linear in length of text – too slow

Scanned by 
naïve rank 
calculation

BWM(T)
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Checkpointing in FM Index

● Solution (due to F&M): pre-calculate 
cumulative counts for A/C/G/T up to 
periodic checkpoints in BWT

• LF(i, qc) is now constant time
(if space between checkpoints is considered constant)

Rank: 309

Rank: 242

BWM(T)
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Rows to Reference Positions

● Once we know a row contains a legal alignment, 
how do we determine its position in the reference?

Where am I?
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Rows to Reference Positions

● Naïve solution 1: Use UNPERMUTE to walk back to the 
beginning of the text; number of steps = offset of hit

● Linear in length of text – too slow

2 steps, so hit offset = 2
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● Naïve solution 2: Keep pre-calculated offsets (the suffix array) in 
memory and do lookups

● Suffix array is ~12 GB for human – too big

Rows to Reference Positions

hit offset = 2
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● Hybrid solution (due to F&M): Pre-calculate offsets for some 
“marked” rows; use UNPERMUTE to walk from the row of interest 
to next marked row to the left

● Bowtie marks every 32nd row by default (configurable)

Rows to Reference Positions

1 step

offset = 1

Hit offset = 1 + 1 = 2
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FM Index is Small

● Entire FM Index on DNA reference consists of:
● BWT (same size as T)
● Checkpoints (~15% size of T)
● SA sample (~50% size of T)

● Total: ~1.65x the size of T

>45x >15x >15x~1.65x

Assuming 2-bit-per-base encoding 
and 
no compression, as in Bowtie
Assuming a 16-byte checkpoint every 
448 characters, as in Bowtie

Assuming Bowtie defaults for suffix-
array sampling rate, etc
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