
2D DICTIONARY MATCHING IN SMALL SPACE

by

SHOSHANA NEUBURGER

A dissertation submitted to the Graduate Faculty in ComputerScience in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, The City

University of New York

2012

© 2012

Shoshana Neuburger

All Rights Reserved

ii

This manuscript has been read and accepted for the Graduate Faculty in
Computer Science in satisfaction of the dissertation requirement for the

degree of Doctor of Philosophy.

Dina Sokol

Date Chair of Examining Committee

Theodore Brown

Date Executive Officer

Amihood Amir

Amotz Bar-Noy

Stathis Zachos
Supervision Committee

THE CITY UNIVERSITY OF NEW YORK

iii

Abstract

2D Dictionary Matching in Small-Space

by

Shoshana Neuburger

Advisor: Professor Dina Sokol

The dictionary matching problem seeks all locations in a given text

that match any of the patterns in a given dictionary. Efficient algorithms for

dictionary matching scan the text once, searching for all patterns simultaneously.

There are many scenarios in which storage capacity is limited or the data sets

are exceedingly large. The added constraint of performing efficient dictionary

matching using little or no extra space is a challenging and practical problem.

This thesis focuses on the problem of performing dictionarymatching on two-

dimensional data in small space. We have developed the first efficient algorithms

for succinct 2D dictionary matching in both static and dynamically changing

data. Although time and space optimal dictionary matching algorithms for

one-dimensional data have recently been developed, they have not yet been

implemented. Since our two-dimensional algorithms employone-dimensional

dictionary matching, we created software to solve one-dimensional dictionary

matching in small space. This is a first step towards developing software for

succinct dictionary matching in two-dimensional data.

iv

Acknowledgements

I would like to express my gratitute to Prof. Dina Sokol for for being

an exceptional mentor. She has made herself available to me and guided me

patiently and skillfully through every aspect of the research process. She has

become a role model both academically and personally.

I have also been privileged to be a student of Prof. Amotz Bar-Noy.

Although I was not his doctoral student, he has shared with mehis advice

and experience in academia and has inspired me to immerse myself in the

world of ideas. I have also been fortunate to take courses with Prof. Stathis

Zachos. It has been an honor and inspiration to interact witha researcher of his

caliber. Prof. Amihood Amir has graciously given of his timeand has a taken

a personal interest that helped shape my research.

It has been an exceptional experience to be a member of the graduate

program under the direction of Prof. Theodore Brown. My personal academic

achievements would not have been possible without the supportive staff at the

Graduate Center who administered the grants that funded my graduate studies

and travels. I have benefited greatly from the teaching fellowship that funded

the majority of my dissertation work. As such, I am grateful to Prof. Aaron

Tenenbaum and to Prof. Yedidyah Langsam of the Brooklyn College CIS

department for providing me with interesting courses that complemented my

v

studies and for the favorable teaching schedules that made this all possible.

Over the years, I have been fortunate to learn from and work with

professors whose creativity has broadened my thinking and whose guidance

has been invaluable. These include Prof. Paula Whitlock, Prof. Noson Yanofsky,

and Prof. S. Muthukrishnan. This section would be incomplete if I do not

pay tribute to the late Prof. Chaya Gurwitz, who mentored me throughout

my undergraduate experience and pushed me to pursue graduate studies in

mathematics and in computer science. Ultimately, it was herinfluence that

led me to pursue a career in academia. Her exceptional personal example will

always guide me.

Most of all, I would like to thank my parents for their continuous

encouragement and motivation. They embody the values of dedication and

hard work. They have imparted these values powerfully through their own

example. I would also like to give a special thank you to my husband for being

supportive and encouraging throughout the dissertation process.

vi

Table of Contents

Abstract iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Preliminaries 5
2.1 Periodicity . 5
2.2 Conjugacy . 6
2.3 Empirical Entropy . 6

3 Related Work 8
3.1 1D Dictionary Matching . 9

3.1.1 Linear Time and Space . 9
3.1.2 Small-Space Algorithms . 10
3.1.3 Dynamic Dictionary Matching . 12

3.2 2D Dictionary Matching . 15
3.2.1 Linear Time and Space . 15
3.2.2 Small-Space Algorithms . 18
3.2.3 Dynamic Dictionary Matching . 18

3.3 Indexing . 20
3.3.1 Suffix Tree . 21
3.3.2 Suffix Array . 23

vi

3.3.3 Compressed Data Structures . 24

4 Succinct 2D Dictionary Matching 29
4.1 Overview . 29
4.2 Case I: Patterns With Rows of Period Size≤ m/4 31

4.2.1 Pattern Preprocessing . 32
4.2.2 Text Scanning . 47

4.3 Case II: Patterns With Row of Period Size> m/4 51
4.3.1 Case IIa:d < m . 52
4.3.2 Case IIb:d ≥ m . 60

4.4 Data Compression . 62

5 Succinct 2D Dictionary Matching With No Slowdown 64
5.1 Large Number of Patterns .65
5.2 Small Number of Patterns .67

5.2.1 Pattern Preprocessing . 69
5.2.2 Text Scanning . 71

6 Dynamic 2D Dictionary Matching in Small Space 77
6.1 2D-DDM in Linear Space . 79
6.2 2D-DDM in Small-Space For Large Number of Patterns 81
6.3 2D-DDM in Small-Space for Small Number of Patterns 84

6.3.1 Dynamic Witness Tree . 85
6.3.2 Group I Patterns . 87
6.3.3 Group II Patterns . 93

7 Implementation 99
7.1 Software Development . 100
7.2 Evaluation . 109

8 Conclusion 110

Bibliography 113

vii

List of Tables

3.1 Algorithms for 1D small-space dictionary matching 11

3.2 Comparison of the time complexities of dynamic 2D dictionary matching

algorithms. 19

3.3 Suffix Array of the stringMississippi . 23

viii

List of Figures

3.1 Suffix tree for the stringMississippi. 21

4.1 2D patterns with their 1D representations 33

4.2 Witness tree . 34

4.3 h-periodic matrix . 37

4.4 Horizontally consistent patterns 39

4.5 Offset tree . 45

4.6 Duel between candidates in the same column 57

4.7 Duel between candidates in the same row 59

5.1 Linearized 2D patterns .70

5.2 Witness tree . 70

7.1 Suffix tree for the stringMississippi with several suffix links. 102

ix

Chapter 1

Introduction

Pattern matching is a fundamental problem in computer science with applications in a wide

array of domains. In its basic form, a pattern matching solution locates all occurrences of

a pattern string within a larger text string. A simple computing task, such as a file search

utility employs pattern matching techniques, as does a wordprocessor when it searches a

document for a specific word. Computational molecular biology and the World-Wide Web

provide additional settings in which efficient pattern matching algorithms are essential.

Thedictionary matching problemis an extension of the single pattern matching paradigm

where the task is to identify asetof patterns, called a dictionary, within a given text. Ap-

plications for this problem include searching for specific phrases in a book, scanning a file

for virus signatures, and network intrusion detection. Theproblem also has applications

in the biological sciences, such as searching through a DNA sequence for a set of motifs.

Both pattern matching and dictionary matching generalize tothe two-dimensional setting.

Image identification software, which identifies smaller images in a large image based on

a set of known images, is a direct application of dictionary matching on two-dimensional

data.

1

2

In recent years, there has been a massive proliferation of digital data. Some of the main

contributors to this data explosion are the World-Wide Web,next generation sequencing,

and increased use of satellite imaging. Concurrently, industry has been producing equip-

ment with ever-decreasing hardware availability. Thus, researchers are faced with scenarios

in which this data growth must be accessible to applicationsrunning on devices that have

reduced storage capacity, such as mobile and satellite devices. Hardware resources are

more limited, yet the consumer’s expectations of software capability continue to escalate.

This unprecedented rate of digital data accumulation therefore presents a constant chal-

lenge to the algorithms and software developers who must work with a shrinking hardware

capacity.

A series of succinct dictionary matching algorithms for theone-dimensional setting

have in fact been developed. The related problem of small-space dictionary matching in

two-dimensional data has not been addressed until now. Existing algorithms for 2D dic-

tionary matching are not suitable for the space-constrained setting. This thesis contributes

new algorithms and data structures to fill this void. Our algorithms preprocess the dictio-

nary and then scan the text, searching for all patterns simultaneously. Thus, when a text

arrives as input, the running times of our algorithms dependonly on the size of the text and

are independent of the size of the dictionary.

The main accomplishment presented in this thesis is the development of new techniques

that have proven to be extremely useful for solving dictionary matching in small space.

These innovations include Lyndon word naming in one dimension, 2D Lyndon words, the

witness tree, the offset tree, and dynamic dueling. First, we demonstrate how these tools are

generally used. Then, we show how useful these tools are because they can be specifically

used to solve other variations of succinct dictionary matching. They allow us to achieve

3

succinct 2D dictionary matching with no slowdown and dynamic dictionary matching in

small space. For each variant of the general 2D dictionary matching problem, we combined

the original techniques presented in this thesis with new approaches to the classic problems.

The first achievement of this thesis is in the development of the first algorithms for

static succinct 2D dictionary matching, when the dictionary is known in advance. The

second contribution of this thesis is the presentation of anefficient algorithm for dynamic

2D dictionary matching, when the dictionary can change overtime. Developing an efficient

algorithm for dynamic data presents its own challenge. When apattern is added to or

removed from the dictionary, we do not reprocess the entire dictionary. Rather, the indexes

are updated in time proportional to the size of the pattern that is entering or leaving the set

of patterns in the dictionary. All of our new algorithms use sublinear working space.

Our algorithms for 2D data use succinct data structures to gather information about each

pattern and then form a linear representation of the dictionary. Then the text is linearized

in the same manner and the linearized text is searched for pattern occurrences. We would

like to create software for 2D dictionary matching in small space. However, our algorithms

for succinct 2D dictionary matching rely on succinct 1D dictionary matching algorithms.

These algorithms for the 1D setting have not yet been implemented. They rely on intricate

data structures, whose coding is not a trivial task.

The final contribution of this thesis is the development of software for succinct 1D dic-

tionary matching. Our main challenge lay in combining an algorithm for the generalized

suffix tree with the succinct data structures that are readily available to us, and were de-

signed with other purposes in mind. In this thesis we presentintuition behind our approach

and an overview of our code.

This thesis is organized as follows. Chapter 2 establishes terminology that will be used

4

liberally throughout this thesis. In Chapter 3, we review relevant background on one and

two dimensional dictionary matching as well as recent innovations in text indexing. Chap-

ters 4 - 7 present the accomplishments and contributions of this thesis work. In Chapter

4, we introduce our new techniques for succinct dictionary matching and present the first

efficient algorithm for succinct 2D dictionary matching. InChapter 5, we improve on this

algorithm to perform 2D dictionary matching in small space and linear time. In Chapter

6, we extend our focus to the scenario in which the dictionarycan change over time and

present the first efficient algorithm for dynamic 2D dictionary matching in small space.

Chapter 7 delineates the techniques we employed in developing software for succinct 1D

dictionary matching. We conclude with a summary and open problems in Chapter 8.

Chapter 2

Preliminaries

2.1 Periodicity

A periodic pattern contains several locations where the pattern can be superimposed on

itself without mismatch. We say a pattern isnon-periodicif the origin is the only position

before the midpoint at which the pattern can be superimposedon itself without mismatch.

In a periodic string, a smallest period can be found whose concatenation generates the

entire string. A string S is periodic if its longest prefix that is also a suffix is at least half

the length of S. A proper suffix that is also a prefix of a string is called aborder. There

is duality between periods and borders. The length of a string with its longest border

subtracted corresponds to its shortest period.

More formally, a string S isperiodic if S = uju′ whereu′ is a (possibly null) proper

prefix ofu, andj ≥ 2. A periodic string S can be expressed asuju′ for one unique primitive

u. A stringS is primitive if it cannot be expressed in the formS = uj, for j > 1 and a

prefixu of S. We refer to bothu and|u| as “the period” of S, although S can have several

non-primitive periods. The period of S can also be defined as|S| − b whereb is the longest

5

6

border of S.

For example, consider the periodic string S =abcabcabcab. The longest border of S is

b =abcabcab. Since|b| ≥ |S|
2

, S is periodic.u = abc is the period of S. Another way of

concluding that S is periodic is by the observation that|u| < |S|
2

.

2.2 Conjugacy

Two strings,x andy, are said to beconjugateif x = uv, y = vu for some stringsu, v. Two

strings are conjugate if they differ only by a cyclic permutation of their characters.

A Lyndon wordis a primitive string which is strictly smaller than any of its conju-

gates for the alphabetic ordering. In other terms, a stringx is a Lyndon word if for any

factorizationx = uv with u, v nonempty, one hasuv < vu.

Any string has a conjugate which is a Lyndon word, namely its least conjugate. Com-

puting the smallest conjugate of a string is a practical way to compute a standard represen-

tative of the conjugacy class of a string. This procedure is calledcanonization.

2.3 Empirical Entropy

Empirical entropy is defined in terms of the number of occurrences of each symbol or

group of symbols. Therefore, it is defined for any string without requiring any probabilistic

assumption and it can be used to establish worst-case results. Fork ≥ 0, thekth order

empirical entropy of a string S,Hk(S), provides a lower bound to the compression we can

achieve for each symbol using a code which depends on thek symbols preceding it.

Let S be a string of lengthn over alphabetΣ = {α1, . . . , ασ}, and letni denote the

number of occurrences of the symbolαi insideS. The 0th order empirical entropy of the

7

stringS is defined as

H0(S) = −
σ∑

i=1

ni

n
log

ni

n
.

We can achieve greater compression if the codeword we use foreach symbol depends

on thek symbols preceding it. For any stringw of lengthk, let wS denote the string of

single characters following the occurrences ofw in S, taken from left to right. Thekth

order empirical entropy ofS is defined as

Hk(S) =
1

n

∑

w∈Σk

|wS|H0(wS).

The valuenHk(S) represents a lower bound to the compression we can achieve using

codes which depend on thek most recently seen symbols.

For any stringS andk ≥ 0 we have the following hierarchy: [49]

Hk(S) ≤ Hk−1(S) ≤ · · ·H0(S) ≤ log |Σ|

Chapter 3

Related Work

This chapter provides context for the accomplishments presented in this thesis. It portrays

relevant background along with the framework upon which this thesis work is built. Since

the algorithms we develop in this thesis for succinct 2D dictionary matching employ 1D

dictionary matching techniques, we begin in Section 3.1 by presenting efficient 1D dictio-

nary matching algorithms. We begin with the classical linear time and space algorithm and

then describe recent developments in succinct 1D dictionary matching. We also review the

dynamic dictionary matching algorithms and the few succinct dynamic dictionary match-

ing algorithms that have been developed, albeit with a slowdown. Then, in Section 3.2, we

review dictionary matching algorithms for 2D data to highlight the dearth of succinct 2D

dictionary matching algorithms. In Section 3.3 we provide an overview of common data

structures that index a string. We then refer to them freely throughout this thesis. We focus

on the suffix tree, the suffix array, and the recent advances incompressed self-indexing that

serve the dual purpose of compressing the underlying data and simultaneously indexing it,

all within very limited amounts of space.

8

9

3.1 1D Dictionary Matching

3.1.1 Linear Time and Space

The pattern matching problem consists of locating all occurrences of a pattern string in a

text string. Efficient algorithms preprocess the pattern once so that the search is completed

in time proportional to the length of the text.Dictionary matchingis a generalization of the

pattern matching problem. It seeks to find all occurrences ofall elements of asetof pattern

strings in a text string. The set of patternsD = {P1, P2, . . . , Pd} is called thedictionary.

We can define dictionary matching by:

INPUT: A set of patternsP1, P2, . . . , Pd of total lengthℓ and a textT = t1t2 . . . tn all

over an alphabetΣ, with |Σ| = σ.

OUTPUT: All ordered pairs(i, j) such that patternPj matches the segment of text

beginning at locationti.

Knuth, Morris, and Pratt (KMP) developed a well-known linear-time algorithm for pat-

tern matching [44]. They construct an automaton that maintains a failure link for each

prefix of the pattern. The failure link of a position points toits longest suffix that is also a

pattern prefix. Aho and Corasick (AC) extended the Knuth-Morris-Pratt algorithm to dic-

tionary matching by forming an automaton of the dictionary [1]. Preprocessing requires

time and space proportional to the size of the dictionary. Then, the text is scanned once to

identify all pattern occurrences. The search phase runs in time proportional to the length of

the text, independent of the size of the dictionary. The AC automaton branches to different

patterns with similar prefixes, yielding an overallO(n log σ) time to scan the text.

10

3.1.2 Small-Space Algorithms

Linear-timesingle pattern matching algorithms have achieved impressively small space

complexities. For 1D data, we have pattern matching algorithms that require only constant

extra space [29, 20, 57, 30]. The first time-space optimal pattern matching algorithm is

from Galil and Seiferas [29]. Crochemore and Perrin developed “Two-Way String Match-

ing” [20] which blends the classical Knuth-Morris-Pratt and Boyer-Moore [12] algorithms

but computes pattern shifts as needed. Rytter presented a constant-space, yet linear-time

version of the Knuth-Morris-Pratt algorithm [57]. The algorithm relies on small-space

computation of both approximate periods and lexicographically maximal suffixes, which

leads to the computation of periods inO(1) space. Space-efficient real-time searching is

discussed by Gasieniec and Kolpakov [30]. Their innovativealgorithm uses a partialnext

function to save space.

Concurrently searching for a set of patterns within limited working space presents a

greater challenge than searching for a single pattern in small space. Much effort has re-

cently been devoted to solving 1D dictionary matching in small space [14, 38, 9, 37]. We

summarize the state of the art for small-space 1D dictionarymatching in Table 3.1 and

describe the results in the following paragraphs.

The empirical entropy of a string (H0 or Hk) describes the minimum number of bits

that are needed to encode the string within context. Empirical entropy is often used as a

measure of space, as it is in Table 3.1. Precise formulas forH0 andHk are included in

Section 2.3.

Let D = {P1, P2, . . . , Pd} be a dictionary of 1D patterns of total lengthℓ, T =

t1t2 . . . tn a text, andocc the number of pattern occurrences in the text. Aho and Cora-

sick presented the first algorithm that solves the dictionary matching problem inO(ℓ log ℓ)

11

Space (bits) Search Time Reference
O(ℓ log ℓ) O(n+ occ) Aho-Corasick [1]
O(ℓ) O((n+ occ) log2 ℓ) Chan et al. [14]
ℓHk(D) + o(ℓ log σ) +O(d log ℓ) O(n(logǫ ℓ+ log d) + occ) Hon et al. [38]
ℓ(H0(D) +O(1)) +O(d log(ℓ/d)) O(n+ occ) Belazzougui [9]
ℓHk(D) +O(ℓ) O(n+ occ) Hon et al. [37]

Table 3.1: Algorithms for 1D small-space dictionary matching whereℓ is the size of the
dictionary,n is the size of the text,d is the number of patterns in the dictionary,σ is the
alphabet size, andocc is the number of occurrences of a dictionary pattern in the text.

preprocessing time andO(n log σ + occ) text scanning time [1]. Hashing techniques can

achieve linear time complexity in the Aho-Corasick algorithm. The underlying index of

their algorithm occupiesO(ℓ) words, orO(ℓ log ℓ) bits. The first algorithm that improves

the space complexity of dictionary matching was presented by Chan et al. [14]. They

reduced the size of the dictionary index fromO(ℓ) words, orO(ℓ log ℓ) bits, to O(ℓ)

bits. Their algorithm relies on a compressed representation of the suffix tree and as-

sumes that the alphabet is of constant size. It can find all pattern occurrences in the text in

O((n+ occ) log2 ℓ) time.

More recently, Hon et al. presented a 1D dictionary matchingalgorithm that uses a

sampling technique to compress a suffix tree [38]. The patterns are concatenated, with a

delimiter separating them, to form a single string which is stored in a compressed format

that allowsO(1) time retrieval of any character. This results in an algorithm that requires

ℓHk(D) + o(ℓ log σ) + O(d log ℓ) space and searches inO(n(logǫ ℓ + log d) + occ) time,

whereǫ > 0 is any constant. Since the patterns are concatenated beforethe compressed

index is constructed,Hk(D) = Hk(P1P2 . . . Pd).

The first succinct dictionary matching algorithm with no slowdown was introduced by

Belazzougui [9]. His algorithm mimics the Aho-Corasick automaton within smaller space.

The algorithm requiresℓ(H0(D)+O(1))+O(d log(ℓ/d)) bits. This new approach encodes

12

thegoto, fail, andreport functions separately. Hon et al. combine Belazzougui’s workwith

the XBW transform [21] to store an AC automaton in space that meetskth order empirical

entropy bounds of the dictionary with no slowdown [37]. Theyfollow the approach of

Belazzougui [9] to compress the AC automaton and store its three functions separately.

However, they encode the forward transitions of the trie with the XBW transform [21].

With this new representation, the space meets optimal compression of the dictionary and

runtime is linear.

The most recent result of Hon et al. [37] has essentially closed the problem of succinct

1D dictionary matching. Their algorithm runs in linear timewithin space that meets entropy

bounds of the dictionary.

We point out that the AC automaton (whether compressed or not) replacesthe actual

dictionary of patterns. That is, once it is constructed, theactual patterns are not needed

for performing the search. The goal of the small-space 1D algorithms in Table 3.1 was

to minimize the space needed for this structure, which is in asense the space needed for

the input. When analyzing the space needed by small-space algorithms, we distinguish

between the space used by the data structures thatreplacethe actual input, and theextra

spacethat is needed above the input.

3.1.3 Dynamic Dictionary Matching

It is often the case that the dictionary of patterns will change over time. Efficient dynamic

dictionary matching algorithms support insertion of a new pattern to the dictionary and

removal of a pattern from the dictionary. They thereby eliminate the need to reprocess the

entire dictionary and can adapt to changes as they occur.

Amir and Farach introduced the use of the suffix tree for dictionary matching [3]. They

13

delimit the dictionary patterns with$ and then concatenate the dictionary with the text and

index T$D, with artificial suffixes mixed among the genuine suffixes. Ifno pattern can

be a substring of another, the suffix tree contains all the information needed to perform

dictionary matching. When one pattern can be a substring of another, each internal node

is labeled by its nearest ancestor that is a pattern occurrence. This is done by a depth first

search after the suffix tree is fully constructed. Modifyingthe dictionary can trigger the

update of many labels on nodes and can thus require relabeling the entire suffix tree, which

is costly in terms of time. Amir and Farach use an L-tree on themarked nodes to support

efficient reparenting of nodes. Then, all operations (preprocessing the dictionary, adding a

pattern, removing a pattern, scanning text) run in linear time with anO(log ℓ) slowdown.

Amir et al. [5] improved the previous algorithm so that it does not require any indexing

as the text is processed and can process a text online, as it arrives. The suffix tree is simply

traversed as the text is read, using suffix links. Processingthe patterns and the text meets

the same time complexity as [3], linear with anO(log ℓ) slowdown. To know which pattern

is a substring of another, they partition the suffix tree intoa forest. TheO(log ℓ) slowdown

in the algorithm is the upper bound on the time complexity of operations in the dynamic

forest. Each marked node in the suffix tree, representing a pattern occurrence, becomes

the root of a forest component, by removing the edge that connects the marked node to

its parent. Nodes are mapped between the two data structuresand the root of each forest

component shows which nodes the pattern is a prefix of.

Idury and Schaffer developed a dynamic version of the Aho-Corasick automaton [40].

They update the fail function efficiently but with some slowdown. The initial construction

of the automaton requiresO(ℓ log σ) time; this linear time complexity meets that of Aho

and Corasick’s algorithm. This is an improvement over [3, 5],which incur anO(log ℓ)

14

slowdown in preprocessing. However, the other phases of thealgorithm incur a slight

slowdown, as in [3, 5]. Text scanning runs inO((n + occ) log ℓ) time and a pattern P, of

lengthp, is added to or removed from the dictionary inO(p log ℓ) time.

Idury and Schaffer explore alternative representations oftheir dynamic AC automaton.

They point out that other trade-offs between search and update times are possible. Using

a different data structure, this algorithm achieves the same search time as AC and update

timeO(p(kℓ1/k + log σ)), for any constantk ≥ 2.

The dynamic dictionary matching algorithm of Amir et al. [6]mimics the Aho-Corasick

automaton but stores thegotoandreport transitions separately. Overall, there is anO(log ℓ
log log ℓ

)

slowdown to update the dictionary or to scan text. Instead ofthe suffix tree, this algorithm

uses balanced parentheses as the underlying index. The failfunction is computed by a “find

nearest enclosing parentheses” operation. To support pattern removal from the dictionary, a

balanced tree is constructed, and preprocessed for lowest common ancestor queries among

nodes. If only insertion of a pattern, and not removal, is supported, all operations complete

in linear time. For such a scenario, this algorithm meets thelinear time complexity of the

Aho-Corasick automaton.

Sahinalp and Vishkin achieved dynamic dictionary matchingwith no slowdown [60].

Preprocessing time is linear in the size of the dictionary, text scanning is linear in the size

of the text and a pattern is added or removed in time proportional to the size of the pattern.

The time complexity of this algorithm meets the standard setby Aho and Corasick.

Sahinalp and Vishkin’s algorithm relies on compact tries and a new data structure, the

fat tree. This is the first dynamic infrastructure for dictionary matching that does not slow

down the search or indexing processes. Their algorithm employs a naming technique and

identifies cores of each pattern using a compact representation of the fat tree. If a pattern

15

matches a substring of the text, then the main core of the pattern and the text substring

should necessarily be aligned. Conversely, if the main coresdo not match, the text is easily

filtered to a limited number of positions at which a pattern can occur.

For dynamic dictionary matching in the space constrained application, Chan et al. [14]

use the compressed suffix tree for succinct dictionary matching. They build on the work

of Amir and Farach [3] to use the suffix tree for dictionary matching. They replace the

suffix tree with a compressed suffix tree developed by Sadakane [59], which is stored in

O(ℓ) bits, and show how to make the data structure dynamic. They describe how to answer

lowest marked ancestor queries by a balanced parenthesis representation of the nodes. The

time complexity of inserting or removing a pattern and of scanning text has a slowdown of

O(log2 ℓ).

An improved succinct dynamic dictionary matching algorithm was developed by Hon

et al. [39]. It uses space that meetskth order empirical entropy bounds of the dictionary.

The suffix tree is sampled to save space and an innovative method is proposed for a lowest

marked ancestor data structure. They introduce the combination of a dynamic interval tree

with a Dietz and Sleator order-maintenance data structure as a framework for answering

lowest marked ancestor queries efficiently. Inserting or removing a dictionary patternP ,

of length p, requiresO(p log σ + log ℓ) time and searching a text of lengthn requires

O(n log ℓ+ occ) time.

3.2 2D Dictionary Matching

3.2.1 Linear Time and Space

We can define two-dimensional dictionary matching as:

16

INPUT: A set of pattern matricesP1, P2, . . . , Pd and a text matrixT , all over an

alphabetΣ, with |Σ| = σ.

OUTPUT: All tuples(h, i, j) such that patternPh occurs at location(i, j) in T,

i.e.,T [i+ k, j + l] = Ph[k + 1, l + 1], 0 ≤ k, l < m.

We first consider single pattern matching in two dimensions and then shift our focus

to two-dimensional dictionary matching. The first linear-time 2D single pattern matching

algorithm was developed independently by Bird [11] and by Baker [8]. They translate the

2D pattern matching problem into a 1D pattern matching problem. Rows of the pattern

are perceived as metacharacters and named so that distinct rows receive different names.

The text is named in a similar fashion and 1D pattern matchingis performed over the text

columns and the pattern of names. Algorithm 1 is an outline ofthe Bird / Baker algorithm.

Algorithm 1 Bird / Baker Algorithm

{1} Preprocess Pattern:
a) Form Aho-Corasick automaton of pattern rows.
b) Name pattern rows using Aho-Corasick and store 1D pattern.
c) Construct Knuth-Morris-Pratt automaton of 1D pattern.

{2} Row Matching:
Run Aho-Corasick on each text row.
This labels position at which a pattern row ends.

{3} Column Matching:
Run Knuth-Morris-Pratt on named columns of text.
Output pattern occurrences.

Although this algorithm was initially developed for a single pattern, it is easily extended

to perform dictionary matching by replacing the KMP automaton with another AC automa-

ton. The Bird / Baker algorithm is appropriate for 2D patterns that are of uniform size in at

least one dimension, so that the text can be marked. The Bird / Baker method uses linear

time and space in both the pattern preprocessing and the textscanning stages. The linear

17

time complexity of the algorithm depends on the assumption that the label of each state fits

into a single word of RAM.

There are several efficient algorithms that perform dictionary matching over square

patterns. In the 2D dictionary,D = {P1, P2, . . . , Pd}, each patternPi is a square of size

pi × pi, 1 ≤ i ≤ d, and the text T is of sizen × n. The total size of the dictionary is

|D| =
d∑

i=1

p2i . LetD =
d∑

i=1

pi.

Amir and Farach [4] presented an algorithm for 2D dictionarymatching that is suitable

for square patterns of different sizes. Their algorithm also deals with metacharacters but

converts the patterns to a 1D representation by consideringsubrow/subcolumn pairs around

the diagonals. Then they run Aho-Corasick on text that is linearized along the diagonals.

Metacharacters are compared by longest common prefix queries. This is done efficiently

with suffix trees of the pattern rows and columns. Text scanning time isO(n2 log d), and

the extra space used is proportional to the size of the text plus the patterns of names. This

is considered a linear-time algorithm since theO(log d) slowdown stems from branching

in the AC automaton.

Giancarlo developed the first 2D suffix tree [31]. At the same time, he introduced a 2D

dictionary matching algorithm for square patterns that is based on this data structure, which

he calls an Lsuffix tree. The time and space complexities of this algorithm are comparable

to Amir and Farach’s approach that uses a 1D suffix tree for 2D data. Preprocessing of the

pattern builds an Lsuffix tree inO(|D|+D logD) time andO(|D|) space. Based on it, the

text scanning process simulates an automaton inO(n2 logD + occ) time.

Idury and Schaffer [41] developed an algorithm for dictionary matching in rectangular

patterns with different heights, widths, and aspect ratios. Such patterns cannot be aligned

at a corner so the notion of comparing prefixes and suffixes of patterns is not defined. They

18

split patterns into overlapping pieces and apply dictionary matching as well as techniques

for multidimensional range searching. Idury and Schaffer’s algorithm requires working

space proportional to the dictionary size, and has a slight slowdown in the time for text

processing.

3.2.2 Small-Space Algorithms

An approach for small-space, yet linear-timesinglepattern matching in 2D was developed

by Crochemore et al. [19]. Their algorithm preprocesses anm × m pattern, of total size

m2, within only O(logm) working space and scans the text inO(1) extra space. Such

an algorithm can be trivially extended to perform dictionary matching but would require

O(dn) time to process the text, a time complexity that is dependenton the number of

patterns in the dictionary.

None of the existing approaches to 2D dictionary matching are suitable for a space-

constrained environment. The main contribution of this thesis is to address this problem,

both in the static and dynamic settings.

3.2.3 Dynamic Dictionary Matching

We now turn our attention to the scenario in which the dictionary can change over time.

Several different dynamic 2D dictionary matching algorithms exist. Table 3.2 summarizes

the different time complexities achieved by the dynamic dictionary matching algorithms

for square patterns. These results all incorporate some slowdown in processing text and in

updating the dictionary; the question ishow muchslowdown.

We use notation consistent with Section 3.2.1. In the dictionary,D = {P1, P2, . . . , Pd},

each patternPi is a square of sizepi × pi, 1 ≤ i ≤ d, and the text T is of sizen × n.

19

Dictionary Update Time Text Searching Time Reference
O(p2 log |D|) O((n2 + occ) log |D|) Amir et al. [6]
O(p2 log2 |D|) O((n2 logD + occ) log |D|) Giancarlo [31]
O(p2 + p logD) O((n2 + occ) logD) Choi and Lam [15]

Table 3.2: Comparison of the time complexities of dynamic 2D dictionary matching algo-
rithms.

Let P , of sizep × p, denote a square pattern that will be inserted to or removed from the

dictionary. The total size of the dictionary is|D| =
d∑

i=1

p2i . LetD =
d∑

i=1

pi.

Amir et al. [6] extended Amir and Farach’s approach for 2D static dictionary matching

of square patterns to the setting in which the dictionary canchange. For a static dictionary,

they use the suffix tree with lowest common ancestor queries to form an automaton that

recognizes patterns in the text. However, they could not efficiently update the precomputed

lowest common ancestor information upon modification of thedictionary. Instead, they

devised a creative workaround for the fail function to work.Amir et al. use Idury and

Schaffer’s dynamic version of Aho-Corasick [40] to index thepattern substrings. The text

is marked along its diagonals for subrow and subcolumn occurrences separately. The text is

labeled as in the Bird / Baker algorithm, but each position is given two labels, each stored

in a separate matrix. Then, pattern occurrences are announced by running the dynamic

version of the Aho-Corasick algorithm over the marked text. Every operation, including

text scanning and dictionary preprocessing is close to linear; only anO(log |D|) slowdown

is incurred.

Giancarlo’s 2D suffix tree can be used for dictionary matching both in the case that

the dictionary is static and in the case that the dictionary is dynamic [31]. There is a

slowdown in the text scanning stage of Giancarlo’s algorithm that can handle a dynamic

2D dictionary of square patterns. For the dynamic case, Amiret al. [6] achieved slightly

better time complexity.

20

Choi and Lam [15] set out to demonstrate that Giancarlo’s suffix tree based approach

to dictionary matching is just as good as Amir et al.ś automaton based approach. Their

algorithm maintains two augmented suffix trees, an adapted version of Giancarlo’s Lsuffix

tree, and a forest of dynamic trees. They point out that even without their results, for a

dictionary of 2D patterns that are all the same size, Bird and Baker’s algorithm can be

extended to insert and delete a pattern inO(p2 log dp2) time, and search a text inO((n2 +

occ) log dp2) time.

Idury and Schaffer developed a dynamic dictionary matchingalgorithm for rectangular

patterns of different sizes [41]. This algorithm is based onseveral applications of the Bird

/ Baker algorithm, by dividing the dictionary into groups of uniform height. There is an

O(log4 |D|) slowdown in each part of the algorithm, preprocessing the dictionary, text

scanning, and updating the dictionary.

3.3 Indexing

Indexing is an important paradigm in searching. The text is preprocessed so that queries of

the form “does pattern P occur in text T?” are answered in time proportional to the pattern,

rather than the text. Two popular indexing structures are the suffix tree and the suffix array.

These data structures enable efficient solutions to many common string problems. Recent

work has compressed these data structures, formed dynamic data structures and developed

full-text indexes. A full-text index gathers all the relevant information about text so that the

actual text can be discarded. It often attains better space complexity than the original text.

21

M i s s i s s i p p i $

� � � � � � � � 	 �
 �� ��

����

�����
�	�	

����

������

����

����

�����

�	���

������
����

�����

�����
�	�	

������

��
���

����

�	���

�����

�	���

�����

�	���

Figure 3.1: Suffix tree for the stringMississippi.

3.3.1 Suffix Tree

The suffix tree is a compact trie that represents all suffixes of the underlying text. The

suffix tree forT = t1t2 · · · tn is a rooted, directed tree withn leaves, one for each suffix.

Each internal node, except the root, has at least two children. Each edge is labeled with

a nonempty substring ofT and no two edges emanating from a node begin with the same

character. The path from the root to leafi spells out suffixT [i . . . n]. A special character

is appended to the string before construction of the suffix tree to guarantee that each suffix

ends at a leaf in the tree. The suffix tree for a string of sizen is represented inO(n) words,

or O(n log n) bits, by using indexes of constant size, rather than substrings of arbitrary

length, to label the edges of the tree. As an example, the suffix tree forMississippi is

shown in Figure 3.1.

22

A suffix tree can be used to index several patterns. Either thepatterns can be concate-

nated with unique characters separating them or a generalized suffix tree can be constructed.

The generalized suffix tree, as described by Gusfield [35], does not mark artificial suffixes

that span several patterns. It combines the suffixes of the individual patterns in a single data

structure.

The straightforward approach to suffix tree construction inserts each suffix by a se-

quence of comparisons beginning at the root, in quadratic time with respect to the size of

the input. Linear-time construction of the suffix tree, thencalled theposition tree, was

introduced by Weiner in 1973 [63]. McCreight simplified the construction process in 1976

[50]. Weiner’s algorithm scans the text from right to left and begins with the shortest suffix,

while McCreight’s scans the text from left to right and initializes the data structure with the

longest suffix. In the 1990’s, Ukkonen provided an online algorithm that constructs the

suffix tree in linear time [61]. Ukkonen overcame the problemof extending each suffix

on each iteration by introducing a special edge pointer, *, to represent the current end of

the string. The development of the linear-time suffix tree construction algorithms and the

distinctions between them are described by Giegerich and Kurtz [32].

Suffix links are an implementation trick necessary to achieve linear time and space

complexity in suffix tree construction algorithms. Suffix links allow an algorithm to move

quickly to a distant part of the tree. A suffix link is a pointerfrom an internal node labeled

xS to another internal node labeledS, wherex is an arbitrary character andS is a possibly

empty substring. The suffix links of Weiner’s algorithm are alphabet dependent as they

work in reverse to represent the insertion of any character before a suffix.

Instances arise in which the text indexed by the suffix tree changes over time. The dy-

namic suffix tree accommodates the insertion or removal of substrings from the underlying

23

text. The dynamic suffix tree generalizes to represent a set of strings in such a way that

strings can be added and removed efficiently. In Choi and Lam’sdynamic suffix tree [16],

the update operations take time proportional to the string being inserted or removed from

the tree. Yet, the tree never stores a reference to a string that has been removed, and the

space complexity is bounded by the total length of the strings stored in the tree. They use a

two-way pointer for each edge, which is stored in linear space.

3.3.2 Suffix Array

The suffix array indexes text by storing the lexicographic order of its suffixes. The suffix

array occupies less space than the suffix tree does. As an example, the suffix array for

Mississippi is shown in Table 3.3. Augmented with an LCP array to store the longest

common prefix between adjacent suffixes, efficient pattern search is performed in the text.

Suffix 11 8 5 2 1 10 9 7 4 6 3
Index 1 2 3 4 5 6 7 8 9 10 11

Table 3.3: Suffix Array of the stringMississippi

The naive approach to suffix array construction sorts the suffixes using a string sorting

algorithm. This ignores the underlying relationship amongthe suffixes. The worst-case

time complexity of such an algorithm is quadratic in the sizeof the input. A suffix ar-

ray can be built by preorder traversal of a suffix tree for the same text, and the LCP ar-

ray by constant-time lowest common ancestor queries on the tree. However, this indirect

construction does not achieve better space complexity thanthe suffix tree, which occupies

O(n log n) bits. Manber and Myers employ a sort and search paradigm to directly construct

the suffix array inO(n log n) time andO(n) bits of space [48]. Three algorithms were in-

troduced in 2003 to directly construct the suffix array in linear time and space [43, 42, 45].

24

Once the suffix array is available, the longest common prefix (LCP) array can be created in

linear time and space using range minimum queries.

3.3.3 Compressed Data Structures

A recent trend in pattern matching algorithms has been to succinctly encode data structures

so that they occupy no more space than the data they are built on. These compressed

data structures replace the original data, and allow the same queries as their uncompressed

counterparts with a very minor time penalty. This research has extended to dynamic ordered

trees, suffix trees, and suffix arrays, among other data structures.

Many compressed data structures state their space requirement as a function of the

empirical entropy of the indexed text. This is useful because it gives a measure of the index

size with respect to the size achieved by the bestkth-order compressor, thus relating the

index size to the compressibility of the text. Empirical entropy is defined in Section 2.3.

Compressed Suffix Array

Since the suffix array is an array ofn indexes, it can be stored inn log n bits. The com-

pressed suffix array was introduced by Grossi and Vitter [34]to reduce the size of the suffix

array fromn log n bits toO(n log σ) bits. This is at the expense of increasing access time

fromO(1) toO(logǫ n), whereǫ is any constant with0 < ǫ < 1.

Sadakane modified the compressed suffix array so that it is a self-index [58]. That is,

the text can be discarded and the index suffices to answer queries as well as to access sub-

strings of the text. He also reduced the size of the structuretoO(n logH0(T)) bits. Pattern

matching using his compressed suffix array has the same time complexity as in the uncom-

pressed suffix array. Grossi et al. further reduced its size to (1+ 1
ǫ
)nHk(T)+o(n) bits, with

25

character lookup time ofO(logǫ n), assuming an alphabet sizeσ = O(polylog(n)) [33].

Ferragina and Manzini developed the first compressed suffix array to encode the index

size with respect to the high-order empirical entropy [22].Their self-indexing data structure

is known as the FM-index. The FM-index is based on the Burrows-Wheeler transform and

uses backward searching. The compressed self-index exploits the compressibility of the

text so its size is a function of the compressed text length. Yet, an index supports more

functionality than standard text compression. Navarro andMakinen improved the FM-

index [51]. They compiled a survey of the various compressedsuffix arrays; each offers

a different trade-off between the space it requires and the lookup-times it provides [51].

There are also several options for compressing the LCP array.

Compressed Suffix Tree

Recent innovations in succinct full-text indexing provide us with the ability to compress a

suffix tree, using no more space than the entropy of the original data it is built upon. These

self-indexes can replace the original text, as they supportretrieval of the original text, in

addition to answering queries about the data, very quickly.

The suffix tree for a stringT of length n occupiesO(n) words orO(n log n) bits

of space. Several compressed suffix tree representations have been designed and imple-

mented, each with its particular time-space trade-off.

1. Sadakane introduced the first linear representation of suffix trees that supports all

navigation operations efficiently [59]. His data structures form a compressed suffix

tree inO(n log σ) bits of space, eliminating thelog n factor in the space representa-

tion. Any algorithm that runs on a suffix tree will run on this compressed suffix tree

with anO(polylog(n)) slowdown. It is based on a compressed suffix array (CSA)

26

that occupiesO(n) bits. An implementation has been made publicly available by

Välimäki et al. [62].

This compressed suffix tree was adapted for a dynamically changing set of patterns

by Chan et al. [14]. They represent the compressed suffix tree as the combination

of balanced parentheses, LCP array, CSA and FM index. An edge label is retrieved

in O(log2 n) time and a substring of sizep is inserted or removed from the index in

O(p log2 n) time.

2. Russo et al. [56] achieved a fully-compressed suffix tree requiringnHk(T)+o(n log σ)

bits of space, which is essentially the space required by thesmallest compressed suf-

fix array, and asymptotically optimal underkth order empirical entropy. Although

some operations can be executed more quickly, all operations meetO(log n) time

complexity. The data structure reaches an optimal lower-bound of space occupancy.

However, traversal is slower than in other compressed suffixtrees. The static version

of this data structure has been implemented and evaluated byCánovas and Navarro

[13].

Russo et al. also [56] developed a dynamic fully-compressed suffix tree but it has

not yet been implemented. All operations are performed within O(log2 n) time. This

dynamic compressed suffix tree supports a larger set of suffixtree navigation opera-

tions than the compressed suffix tree proposed by Chan et al. [14]. It also reaches a

better space complexity and can perform basic operations more quickly.

3. Fischer et al. achieve faster traversal in their compressed suffix tree [25]. Instead

27

of sampling the nodes, they store the suffix tree as a compressed suffix array (rep-

resenting the order of the leaves), a longest-common-prefix(LCP) array (represent-

ing the string-depth of consecutive leaves) and data structures for range minimum

and previous/next smaller value queries. In its original exposition, Fischer et al.’s

fully-compressed suffix tree occupies2Hk(T)(2 log
1

Hk(T)
+ 1

ǫ
+O(1))+ o(n) bits of

space [25]. This data structure has been implemented and evaluated by Ćanovas and

Navarro [13].

With Fischer’s new compressed representation of the LCP array [24], the compressed

suffix tree of Fischer et al. [25] can be stored in even smallerspace. That is, the suffix

tree can be stored in(1 + 1
ǫ
)nHk(T) + o(n log σ) bits of space with all operations

computed in sub-logarithmic time. Navigation operations are dominated by the time

required to access an element of the compressed suffix array and by the time re-

quired to access an entry in the compressed LCP array, both of which are bounded

byO(logǫ n), 0 < ǫ ≤ 1.

4. Ohlebusch et al. developed an improved compressed suffix tree representation that

can answer queries more quickly [55]. They point out that thecompressed suffix tree

generally consists of three separate parts: the lexicographical information in a com-

pressed suffix array (CSA), the information about common substrings in the longest

common prefix array (LCP), and the tree topology combined witha navigational

structure (NAV). Each of these three components functions independently from the

others and is stored separately. The fully-functional compressed suffix tree of Russo

et al. [56] stores the sampled nodes in addition to these components.

Ohlebusch et al. developed a mechanism that stores NAV in3n + o(n) bits so that

some traversal operations can be performed in constant time, i.e., PARENT, SUFFIX

28

LINK , and LCA. In addition, they were able to further compress theLCP array. These

results have been implemented by Simon Gog and the code is available as part of the

Succinct Data Structures Library.

Representations of compressed suffix arrays and compressed LCP arrays are inter-

changeable in compressed suffix trees. Combining the different variants yields a rich

variety of compressed suffix trees, although some compressed suffix trees favor certain

compressed suffix array or compressed LCP array implementations [55].

Chapter 4

Succinct 2D Dictionary Matching

In this chapter we present the first algorithm that solves theSmall-Space 2D Dictionary

Matching Problem. Given a dictionary of patterns,P1, P2, . . . , Pd, each of sizem×m, and

a text of sizen× n, we find all occurrences of patterns in the text. We discuss patterns that

are all of sizem × m for ease of exposition, but as with Bird / Baker, our algorithm can

be extended to patterns that are the same size in only one dimension with the complexity

dependent on the size of the largest dimension. The initial part of this algorithm appeared

in CPM 2010 [53] and the overall techniques were published in Algorithmica [52].

4.1 Overview

In the preprocessing phase, the dictionary is linearized byconcatenating the rows of each

pattern, with a delimiter separating them, and then concatenating the patterns to form a

single string. The linearized dictionary is then stored in an entropy-compressed self-index,

allowing the original dictionary to be discarded. The preprocessing phase runs inO(dm2)

time and usesO(dm log dm) bits of extra space. Letτ be an upper bound on the time

29

30

complexity of operations in the self-index and letσ be the size of the alphabet. The text

scanning phase takesO(n2τ log σ) time and usesO(dm log dm) bits of extra space.

Our algorithm preprocesses the dictionary of patterns before searching the text once for

all patterns in the dictionary. The text scanning stage initially filters the text to a limited

number ofcandidatepositions and then verifies which of these positions are actual pattern

occurrences. We allowO(dm log dm) bits of working space to process the text and locate

patterns in the dictionary. The text scanning stage does notdepend on the size of the dictio-

nary. The data structures we use for indexing are dynamic during the pattern preprocessing

stage and static during the text scanning stage.

A known technique for minimizing space is to work with small overlapping text blocks

of size3m/2× 3m/2. The potential starts all lie in the upper-leftm/2×m/2 square. This

way, the size of our working space relies on the size of the dictionary, not on the size of the

text.

We divide patterns into two groups based on 1D periodicity. Our algorithm considers

each of these cases separately. A pattern can consist of rowsthat are periodic with period

≤ m/4. Alternatively, a pattern can have one or more possibly aperiodic rows whose

periods are larger thanm/4. In each of these cases, the bottlenecks are quite different.

In the case of highly periodic pattern rows, a single patterncan overlap itself with several

occurrences in close proximity to each other and we can easily have more candidates than

the space we allow. In the case of an aperiodic row, there is a more limited number of

pattern occurrences, but several patterns can overlap eachother in both directions.

A pattern can have only periodic rows with all periods≤ m/4 (Case I) or have at least

one aperiodic row or a row with a period> m/4 (Case II). Case I is addressed in Section

4.2 and Case II is addressed in Section 4.3.

31

In the case thatd ≥ m, i.e., whendm = Ω(m2), we have more space to work with

as the text is processed. We can storeO(m2) information for a text block and present a

different algorithm for that case in Section 4.3.2.

4.2 Case I: Patterns With Rows of Period Size≤ m/4

We store the linearized dictionary in an entropy-compressed form that allows constant time

random access to any character in the original data, such as the compression scheme of Fer-

ragina and Venturini [23] or of Fredriksson and Nikitin [27]. For Case I patterns we do not

need additional functionality in the self-index, thus we donot construct a compressed suffix

tree or suffix array. The space needed for storing the dictionaryD in entropy-compressed

form is ℓHk(D) + γ whereγ is the low-order term,1 and depends on the particular com-

pression scheme that is employed.

We overcome the extra space requirement of traditional 2D dictionary matching algo-

rithms with an innovative preprocessing scheme that names 2D patterns to represent them

in 1D. The pattern rows are initially classified into groups,with each group having a single

representative. We store awitness, or position of mismatch, between the group represen-

tatives. A 2D pattern is named by the group representative for each of its rows. This is

a generalization of the naming technique used by Bird and by Baker to name 2D data in

1D. The preprocessing is performed in a single pass over the patterns. O(1) of information

is stored per pattern row, occupying a total of O(dm log dm) bits of space. Details of the

preprocessing stage can be found in Section 4.2.1.

In the text scanning phase, we name the rows of the text to forma 1D representation of

the 2D text. Then, we use an Aho-Corasick (AC) automaton to markcandidates of possible

1For example, using Ferragina and Venturini [23],γ = O(ℓ

log
σ
ℓ
(k log σ + log log ℓ)).

32

pattern occurrences in the 1D text inO(n2 log σ) time. In this part of the algorithm,σ can

be viewed as the size of the alphabet of names if it is smaller than the original alphabet;

σ ≤ dm. Since similar pattern rows are grouped together, we need a verification stage to

determine if the candidates are actual pattern occurrences. With additional preprocessing of

the 1D pattern representations, a single pass suffices to verify potential pattern occurrences

in the text. The details of the text scanning stage are described in Section 4.2.2.

4.2.1 Pattern Preprocessing

A dictionary of patterns with highly periodic rows can occurΩ(dm) times in a text block.

It is difficult to search for these patterns in small space since the output can be larger than

the amount of extra space we allow. We take advantage of the periodicity of pattern rows

to succinctly represent pattern occurrences. The distancebetween any two overlapping

occurrences ofPi in the same row is the Least Common Multiple (LCM) of the periodsof

all rows ofPi. We precompute the LCM of each pattern so thatO(1) space suffices to store

all occurrences of a pattern in a row, andO(dm log dm) bits of space suffice to store all

occurrences of patterns whose rows are periodic with periods≤ m/4.

We introduce two new data structures, the witness tree and the offset tree. The witness

tree facilitates the linear-time preprocessing of patternrows. The offset tree allows the text

scanning stage to achieve linear time complexity, independent of the number of patterns in

the dictionary. They are described later in this section.

Lyndon Word Naming

Since conjugacy is an equivalence relation, we can partition the pattern rows into disjoint

groups based on the conjugacy of their periods. We use the same name to represent all

33

���������

� � � � � � � �

� � � � � � � �

�

�� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

� � � � � � � �

� � � � � � � �

�

�

���������

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

� � � � � � � �

� � � � � � � �

�

�

���������

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

�

�

Figure 4.1: Three 2D patterns with their 1D representations. We use these patterns to
illustrate the concepts, although their periods are largerthanm/4. Patterns 1 and 2 are
different, yet their 1D representations are the same.

rows whose periods are conjugate. The smallest conjugate ofa word, i.e., its Lyndon

word, is the standard representation of its conjugacy class. Canonizationis the process

of computing a Lyndon word, and can be done in linear time and space [46]. We name

one pattern row at a time by finding its period and canonizing it. If a new Lyndon word

or a new periodsize is encountered, the row is given a new name. Otherwise, the row

adopts the name already given to another member of its conjugacy class. Each 2D pattern

obtains a 1D representation of names in a similar manner to the Bird / Baker algorithm, but

using Lyndon word naming. The extra space needed to store the1D patterns of names is

O(dm log dm) bits.

Three 2D patterns and their 1D representations are shown in Figure 4.1. To understand

the naming process, we will look at Pattern 1. The period of the first row isaabb, which is

four characters long. It is given the name1. When the second row is examined, its period

is found to beaabc, which is also four characters long.aabbandaabcare both Lyndon

words of size four, but they are different, so the second row is named2. The period of the

third row is abca, which is represented by the Lyndon wordaabc. Thus, the second and

third rows are given the same name even though they are not identical.

When naming a pattern row, its period is identified using knowntechniques in linear

34

time and space, e.g., using a KMP automaton [44] of the string. Then, we compute and

store several discrete pieces of information per row: period size (inlogm/4 bits), name (in

log dm bits), and position of the first Lyndon word occurrence in theperiod, which we call

LYpos(in logm/4 bits).

We use thewitness tree, described in the following subsection, to name the patternrows.

A separate witness tree is constructed for each period size.The witness tree allows linear

time naming of each Lyndon word by keeping track of failures in Lyndon word character

comparisons.

�

��

�

� � �

�

�

���������	��

�

��

�
�
� �

�
�
�

	

�
�
� �

�
�

���� �����	
���� ��	��
���	

� � ����

� � ����

� � ���

� � ��

� � ����� � ����

� � ����

� � ����

Figure 4.2: A witness tree for the Lyndon words of length 4 that are in the table of names.

Witness Tree

Components of witness tree:

• Internal node:position of a character mismatch. The position is an integer∈ [1, m].

• Edge: labeled with a character in the alphabet. Two edges emanating from a node

must have different labels.

35

• Leaf: an equivalence class representing one or more pattern rows.

When a new row is examined, we need to determine if the Lyndon word of its period

has already been named. The witness tree allows us to identify the only named string of the

same size that has no recorded position of mismatch with the new string. Then, the found

string is compared sequentially to the new row. A witness tree for Lyndon words of length

four is depicted in Figure 4.2.

The witness tree is used as it is constructed in the pattern preprocessing stage. As

strings of the same size are compared, points of distinctionbetween the representatives of

1D names are identified and stored in a tree structure. When a mismatch is found between

strings that have no recorded distinction, comparison halts, and the point of failure is added

to the tree. Characters of a new string are examined in the order dictated by traversal of

the witness tree, possibly out of sequence. If traversal halts at an internal node, the string

receives a new name. Otherwise, traversal halts at a leaf, and the new string is sequentially

compared to the string represented by the leaf.

As an example, we explain how the name7 became a leaf in the witness tree of Figure

4.2. We seek to classify the Lyndon wordacbc, using the witness tree for Lyndon words of

size four. Since the root represents position 4, the first comparison finds thatc, the fourth

character inacbc, matches the edge connecting the root to its right child. This brings us to

the right child of the root, which tells us to look at position3. Since there is ab at the third

position ofacbc, we reach the leaf labeled2. Thus, we compare the Lyndon wordsacbcand

aabc. They differ at the second position, so we create an internalnode for position 2, with

children leading to leaves labeled2 and7, and their edges labeleda andc, respectively.

Lemma 4.2.1. Of the named strings that are the same size as a new string,i, there is at

most one equivalence class,j, that has no recorded mismatch againsti.

36

Proof. The proof is by contradiction. Suppose we have two such classes,h andj. Bothh

andj have the same size asi and neither has a recorded mismatch withi. By transitivity of

the equivalence relation, we have not recorded a mismatch betweenh andj. This means

thath andj should have received the same name. This contradicts the assumption thath

andj are different classes.

Lemma 4.2.2.The witness trees for the rows ofd patterns, each of sizem ×m, occupies

O(dm log dm) bits of space.

Proof. The proof is by induction. The first time a string of sizeu is encountered, the tree

for strings of sizeu is initialized to a single leaf. The subsequent examinationof a string

of sizeu will contribute either zero or one new node (with an accompanying edge) to the

tree. Either the string is given a name that has already been used or it is given a new name.

If the string is given a name already used, the tree remains unchanged. If the string is given

a new name, it mismatched another string of the same size. There are two possibilities to

consider.

(i) A leaf is replaced with an internal node to represent the position of mismatch. The

new internal node has two leaves as its children. One leaf represents the new name, and the

other represents the string to which it was compared. The newedges are labeled with the

characters that mismatched.

(ii) A new leaf is created by adding an edge to an existing internal node. The new edge

represents the character that mismatched and the new leaf represents the new name.

Corollary 4.2.3. The witness tree for Lyndon words of lengthu has depth≤ u.

Lemma 4.2.4.A pattern row of sizeO(m) is named inO(m) time using the appropriate

witness tree.

37

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �
� � � � � � � � �

� � � �

Figure 4.3: An h-periodic matrix with h-period of size 4. Thefigure on the right shows that
the matrix can overlap itself at this distance, with no mismatch in the region of overlap.

Proof. By Lemma 4.2.1, a new string is compared to at most one other string, j. A witness

tree is traversed from the root to identifyj. Traversal of a witness tree ceases either at

an internal node or at a leaf. The time spent traversing a treeis bounded by its depth.

By Corollary 4.2.3, the tree-depth isO(m), so the tree is traversed inO(m) comparisons.

Thus, a new string is classified withO(m) comparisons.

Preprocessing the 1D Patterns

We initially focus on h-periodic patterns in this section. We discuss h-aperiodic at the end

of the section.

Definition 4.2.1. [18] An m × m matrix is h-periodic, or horizontally periodic, if two

copies of the matrix can be aligned in the top row so that thereis no mismatch in the region

of overlap and the number of overlapping columns is≥ m/2.

An h-periodic pattern is depicted in Figure 4.3.

Definition 4.2.2. Theh-periodof an h-periodic matrix is the minimum column number at

38

which the matrix can be aligned over itself.

Observation 1. If a 2D pattern is h-periodic then each of its rows is periodic.However,

the converse is not necessarily true.

Once the pattern rows are named, an Aho-Corasick (AC) automaton is constructed for

the 1D patterns of names. (See Figure 4.1 for the 1D names of three patterns.) Several

different patterns have the same 1D name if their rows belongto the same equivalence

class. This is easily detected in the AC automaton since the patterns occur at the same

terminal state.

The next preprocessing step computes a Least Common Multiple(LCM) table for each

distinct 1D pattern. The LCM table stores the LCM of the periodsof the firsti rows of the

pattern in entryLCM [i], for 1 ≤ i ≤ m. Each LCM entry can be computed incrementally,

one row at a time.LCM [i] is computed fromLCM [i−1] and the period of rowi. The LCM

of two numbersx andy can be found by multiplyingx by y and dividing the product by

the greatest common divisor ofx andy, which can be found inO(min(x, y)) time. Thus,

each value takesO(m) time andO(1) space to compute and the entire table is constructed

in linear time with respect to the size of a pattern.

The LCM of an h-periodic pattern reveals the horizontal distance between its potential

occurrences in a text block. This conserves space as there are fewer candidates to maintain.

In addition, we use this to conserve verification time. The LCMtable of each 1D pattern

can be stored inO(m logm) bits of space since the LCM of an h-periodic pattern must be

≤ m/2. Thus, the LCM tables occupyO(dm logm) bits overall.

We say that two distinct patterns arehorizontally consistentif one pattern can be placed

on the other in the first row so that they overlap in at leastm/2 columns and their overlap is

identical. Note that simply having the same 1D representation does not render candidates

39

horizontally consistent, although it is a necessary condition. Horizontally consistent pat-

terns can be obtained from one another by removing several columns from one end and then

extending each row at the other end by continuing its period by the same number of char-

acters. Figure 4.4 depicts a pair of horizontally consistent patterns. Horizontal consistency

is determined by the periods of the pattern rows, i.e., their1D names, and the Lyndon word

alignment between the pattern rows. Two distinct patterns can be horizontally consistent

even if they are not h-periodic. We discuss this case at the end of the section.

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� �

� �

� �

� �

� �

���

� � � � � � � �

� � � � � � � �

� � � � � � � �

� �

� �

� �

� �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�����

	

�

	

�

	

�� � � � � � � � �

���

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�����

	

�

	

	

	� � � � � � � � 	

���

Figure 4.4: (a) Horizontally consistent patterns have overlapping columns: one is a hori-
zontal shift of the other. Each matrix is shown with itsLYposarray and the first occurrence
of the Lyndon word in each row is highlighted. (b) The matrix on the left is Pattern 2 of
Figure 4.1. (c) In the matrix on the right, Pattern 2 is shifted left by two columns.

Each row of a pattern is represented by its name and itsLYpos. To convert a pattern to

one that is horizontally consistent with it, its rows are shifted by the same constant, but the

LYposof its rows may not be. However, the shift is the same across the rows, relative to the

period size of each row. Figure 4.4 shows an example of horizontally consistent patterns

and the relative shifts of their rows. Notice that (c) can be obtained from (b) by shifting two

columns towards the left. The first occurrence of the Lyndon word of the first row is at the

third position in (b) and at the first position in (c). This shift seems to reverse in the third

40

row, since the Lyndon word first occurs at the first position in(b) and at the third position in

(c). However, the relative shift remains the same across allrows, with respect to the period

size of each row. We summarize this relationship in the following lemma.

Lemma 4.2.5. Two patterns with the same 1D representation arehorizontally consistent

iff the LYPosof all their rows are shifted byC mod period size of the row, whereC is an

integer.

Proof. Let patternsPi andPj be horizontally consistent. Then, their corresponding rows

are shifted by the same constant. MatrixPi is obtained fromPj by removingC columns

from the beginning ofPj and then extending each row ofPj by C characters in its period.

TheLYposof a row is between 1 and the period size of a row. On a row with period sizeu,

a shift of C columns translates to a shift of C modu. Similarly, if we know that the shift of

each row is C modu, the 2D patterns must be horizontally consistent.

We say that a matrixP has ahorizontal prefix(resp. suffix)U if U is an initial (resp.

ending) sequence of contiguous columns inP .

Definition 4.2.3. Two matrices,P1 and P2, are horizontal 2D conjugateif P1 = UV ,

P2 = V U for some horizontal prefixU and horizontal suffixV of P1 and the period of

every row ofP2 is a 1D conjugate of the period of its corresponding row inP1.

Two matrices are horizontal 2D conjugate if they differ onlyby a cyclic permutation of their

columns and the Lyndon word representing each pair of corresponding rows is identical.

When it is clear from the context, we simply use the word conjugate to refer to horizontal

2D conjugate.

41

Observation 2. If the h-periods of two patterns are horizontal 2D conjugate,then the 2D

patterns are horizontally consistent.

We have shown that two periodic strings that can overlap by more than half their length

have periods that are conjugate. There we used the Lyndon word of the period as the rep-

resentative of each class of consistent periodic strings. In the same way, two h-periodic

patterns that are horizontally consistent must have h-periods that are horizontal 2D conju-

gate. We use horizontal 2D conjugacy as an equivalence relation among h-periodic pat-

terns. Furthermore, we define the2D Lyndon wordand we use it as the representative of

each horizontal consistency class, in a similar manner to the 1D equivalence relation.

We represent a horizontal 2D conjugate as a sequencec1, c2, . . . , cm whereci represents

the position in rowi of the first occurrence of the Lyndon word of the period of rowi. The

LYposarray of a patternP is the horizontal 2D conjugate sequence of the h-period ofP .

Each conjugate of the h-period ofP will have a distinct sequence which we refer to as the

conjugate’sLYposarray.

Definition 4.2.4. A 2D Lyndon wordof a matrix is theLYpos array that is the smallest

over all the horizontal 2D conjugates of the matrix, for the numerical ordering.

We use the 2D Lyndon word of the h-period ofP to classify patternP as belonging

to exactly one horizontal consistency class. We can computethe 2D Lyndon word of the

pattern by computing theLYposarray for each conjugate of the h-period and then finding

the minimum. This computation can be done inO(m2) time by generating eachLYpos

array from the pattern’sLYposarray and the periods of the rows. We maintain only the

running minimum and the current sequence as the sequences are generated, and thusO(m)

space suffices.

42

For the preprocessing, these time and space complexities are acceptable. However,

when it comes to classifying text blocks, the process of calculating a 2D Lyndon word will

have to be more efficient. Therefore, we present anO(m) time algorithm to calculate the

2D Lyndon word for a pattern of sizeO(m2). This procedure is delineated in Algorithm 2

and described in the following paragraphs.

We examine one row at a time, and focus on a shrinking subset ofshifts at which the

2D Lyndon word can occur. For rowi, we begin by shifting the firstLYposentry to the

first column we are considering. Suppose the first such columnis z. Letu = LCM [i− 1].

Columnsz, z+u, z+2u, . . . are columns at which the 2D Lyndon word can possibly occur.

We systematically find the numerically smallest sequence, row by row.

For each row, we use the row’sLYposentry to calculate the shifts at the columns that

can be the 2D Lyndon word. For each rowi there are two possibilities. If its period is a

factor ofLCM [i − 1], the shiftedLYposentry will be identical in all columns that we are

considering. Otherwise, whenLCM [i] is larger thanLCM [i− 1], we calculate the shifted

LYposentry in each column that may be the class representative. Then, we identify the

minimum among these values and discard all columns in which the shift in rowi is not

the minimum. We store the shift at which this minimum value first occurs. The remaining

columns that we consider for the 2D Lyndon word are at a distance ofLCM [i] from each

other. As long as there are several columns we are considering, this continues until either

the last row is reached orLCM [i] = LCM [m]. Once this occurs, only one shiftedLYpos

value will be computed for each subsequent row.

Observation 3. Letx andy be distinct integers. If neitherx nor y is a factor of the other,

LCM(x, y) ≥ 2x.

Lemma 4.2.6.The 2D LYndon word for the h-period of a pattern of sizem×m, is computed

43

Algorithm 2 Computing a 2D Lyndon Word

Input: LY pos[1...m], period[1...m], LCM [1...m] for matrixM .
Output: 2D Lyndon word,LW [1...m], and its shiftz (i.e. column number inM).

LW [1]← 0
z ← LYpos[1]
{LYpos[1] is first column of shift 0}
{columnsz, z + period[1], z + 2 ∗ period[1], . . . can be 2D Lyndon word}
for i← 2 to m do

if LCM [i− 1] MOD period[i] = 0 then
{if period of rowi is a factor of cumulative LCM}
LW [i]← (LYpos[i]-z) MOD period[i]

else
{LCM [i] > LCM [i− 1]}
firstLYshift← (LYpos[i]-z) MOD period[i]
{shift LYpos[i] to z}
LW [i]←min ((firstLYshift−j ∗ LCM [i− 1]) MOD period[i])
{minimize overj ≥ 0 such thatz + j ∗ LCM [i− 1] ≤ LCM [m]}
z+ = j ∗ LCM [i− 1]
{adjustz by j that minimizes shift in previous equation}

end if
i++

end for

44

in O(m) time andO(m logm) bits of extra space.

Proof. The h-period of a pattern has widthLCM [m] < m. Thus, we begin with a set of

at mostLCM [m] columns as possibilities for the 2D Lyndon word. As rowi is examined,

the if statement in Algorithm 2 has two possibilities:

(i) Its period is a factor ofLCM [i− 1]: computation is done inO(1) time and space.

(ii) LCM [i] > LCM [i − 1]: LYposis shifted for several columns. The values are com-

pared and all but the shifts of minimum value are discarded. When the LCM value is

adjusted, the number of columns that we consider is shortened. By Observation 3, at

least half the possibilities are discarded. We can charge the computations for shifting

LYposvalues in rowi to the set of shifts that are eliminated. Over all rows, at most m

columns can be eliminated and thus the time remainsO(m).

The 2D Lyndon word of a pattern is stored inO(m logm) bits of space. Along the

way, the only extra information we store are the shiftedLYposvalues for a small number of

columns (≤ m/4) in one rowi at a time, at some initial shift and then at regular intervals

of LCM [i].

Offset Tree

If several patterns share a 1D name, and their h-periods are not horizontal 2D conjugate,

they will each have a unique 2D Lyndon word. We need an efficient way to compare the

text to all of these patterns. Thus, we construct a compressed trie labeled by the 2D Lyndon

words, which we call anoffset tree. An example of an offset tree is shown in Figure 4.5.

45

�����������

�

�

��

��

�

�

�

�

�

�
�

��

��

��

��

��

�

�

�

�

�

�

�
�

����	
�������	
���

���� �����	

����

������

�����

������

���	��
���	

������

�����

������

���	�� ���	

� � � � � �

� � � � � �

� � � � � �

� � � � � �� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Figure 4.5: Offset tree for Pattern 1 and Pattern 2 (the first two patterns of Figure 4.1) which
have the same 1D name. TheLYposentries of Pattern 1 are not shifted since its actual shift
is its 2D Lyndon word, while theLyposentries of Pattern 2 are shifted by2 mod period size
of row, to match the 2D Lyndon word shown in Figure 4.4(c).

Components of offset tree:

• Root: represents the first row of a pattern.

• Internal node:represents a row index from 1 tom, strictly larger than its parent’s.

• Edge: labeled by a subsequence of the 2D Lyndon word.

• Leaf: represents a consistency class of dictionary patterns.

We construct an offset tree for each set of patterns with the same 1D name. We clas-

sify one pattern at a time. Once we have computed the 2D Lyndonword of each pattern,

we traverse the tree and compare the 2D Lyndon words in sequential order until either a

mismatch is found or we reach a leaf. If a mismatch occurs at anedge leading to a leaf,

a new internal node with a leaf are created, to represent the position of mismatch and the

new consistency class, respectively. If a mismatch occurs at an edge leading to an internal

node, a new branch is created with a new leaf to represent the new consistency class.

46

Observation 4. The offset trees ford 1D patterns, each of sizem, haveO(d) nodes and

thus can be stored inO(d log d) bits of space.

Lemma 4.2.7.Given a set of 2D Lyndon words that are representative of different consis-

tency classes, we can classify a 2D Lyndon word inO(m) time.

Proof. The offset tree for a 1D pattern of lengthm has string-depth≤ m. This is because

each node represents a position from 1 tom and each node represents a position strictly

greater than that of its parent. A pattern is classified by traversing the offset tree and

comparing the Lyndon word offsets labeling the edges until either a point of failure or a

leaf is reached. Since a tree of string-depth≤ m is traversed from the root inO(m) time, a

2D Lyndon word of lengthm is classified inO(m) time.

h-Aperiodic patterns

Thus far we have classified only h-periodic patterns into horizontal consistency classes. If

a pattern is not h-periodic it can still overlap another non h-periodic pattern with more than

m/2 columns. The LCM of the periods of all rows,LCM [m], tells us whether a pattern

is h-periodic or not so we can easily split Case I patterns intothose that are h-periodic

and those that are not h-periodic. If two h-aperiodic patterns are horizontally consistent,

their periods have the same relative shifts over all their rows. Since the 2D Lyndon word

captures the relative shifts of all pattern rows, we can use asimilar technique to classify

h-aperiodic patterns whose rows are highly periodic.

We assume that each dictionary pattern whose rows are highlyperiodic has an LCM

that isO(m). This ensures that in the standard RAM model, standard arithmetic on the

LCM table can be performed in constant time. Note that the 2D Lyndon word may not

47

be theLYposarray for any conjugate of an h-aperiodic pattern. However,if we artificially

enlarge the pattern by extending the periods, we will eventually reach a column that is

minimal over all possible columns with these relative shifts. We will never need to enlarge

a pattern beyondLCM [m] = O(m) and therefore the time complexity remains as stated.

In summary, pattern preprocessing inO(dm2) time andO(dm log dm) bits of space:

1. For each pattern row,

(a) Compute period and canonize.

(b) Store period size, name, first Lyndon word occurrence (LYpos).

2. Construct AC automaton of 1D patterns.

3. Compress dictionary. Can discard original dictionary.

4. For each 1D pattern of names,

(a) Compute LCM table.

(b) Compute 2D Lyndon word. Store shift at which it occurs.

5. Build offset tree for multiple patterns of same 1D name.

4.2.2 Text Scanning

The text scanning stage has three steps.

1. Name rows of text.

2. Identify candidates with a 1D dictionary matching algorithm, e.g. AC.

48

3. Verify candidates separately for each text row using the offset trees of the 1D patterns.

Step 1. Name Text Rows

We search a 2D text for a 1D dictionary of patterns using a 1D Aho-Corasick (AC) au-

tomaton. A 1D pattern can begin at any of the firstm/2 positions of a text block row. The

AC automaton can branch to one of several characters; we can’t afford the time or space

to search for each of them in the text block row. Thus, we name the rows of a text block

before searching for patterns. The divide-and-conquer algorithm of Main and Lorentz finds

all maximal repetitions in linear time, searching for repetitions to the right and to the left of

the midpoint of a string [47]. Repetitions of length≥ m that cross the midpoint and have a

period size≤ m/4 are the only ones that are of interest to our algorithm.

Lemma 4.2.8.At most one maximal periodic substring of length≥ m with period≤ m/4

can occur in a text block row of size3m/2.

Proof. The proof is by contradiction. Suppose that two maximal periodic substrings of

lengthm, with period≤ m/4 occur in a row. Call the periods of these stringsu andv.

Since we are looking at periodic substrings that begin within anm/2 × m/2 square, the

two substrings overlap by at leastm/2 characters. Sinceu andv are no larger thanm/4,

at least two adjacent copies of bothu andv occur in the overlap. This contradicts the fact

that bothu andv are primitive.

After finding the only maximal periodic substring of length≥ m with period≤ m/4,

the text block rows are named in much the same way as the pattern rows are named. The

49

period of the maximal run is found and canonized. Then, the appropriate witness tree

is used to name the text block row. We use the witness tree constructed during pattern

preprocessing since we are only interested in identifying text block rows that correspond

to Lyndon words found in the pattern rows. At most one patternrow will be examined to

classify the conjugacy class of a text block row. In additionto the name, period size, and

LYpos, we maintain aleft and aright pointer for each row of a text block.left andright

mark the endpoints of the periodic substring in the text. This process is repeated for each

row, andO(m) information is obtained for the text block.

Complexity of Step 1: The largest periodic substring of a row of width3m/2, if it

exists, can be found inO(m) time and space [47]. Its period can be found and canonized

in linear time and space [46]. The row is named inO(m) time and space using the appro-

priate witness tree (Lemma 4.2.4). Overall,O(m2) time andO(m log dm) bits of space are

needed to name the rows of a text block.

Step 2. Identify Candidates

After Step 1 completes, a 1D text remains, each row labeled with a name, period size,

LYpos, andleft, right boundaries. A 1D dictionary matching algorithm, such as AC, is used

to mark occurrences of 1D patterns. We call a text row at whicha 1D pattern occurs a

candidate row. The occurrence of a 1D pattern indicates the potential occurrence of one or

more 2D patterns since several 2D dictionary patterns can have the same 1D name. We do

not store individual candidate positions within a candidate row since the set of positions is

O(m2) in size and can. occupy too much space.

Complexity of Step 2: 1D dictionary matching in a string of sizem is accomplished in

O(m log σ) time withO(dm log dm) bits of space for the AC automaton.

50

Step 3. Verify Candidates

The occurrence of a 1D pattern is not sufficient evidence thata 2D pattern actually occurs

since several patterns can share a 1D representation. We need to verify the alignment of

the periods among rows as well as the overall width of the 1D names. We verify each

candidate row inO(m) time using the concept of horizontal consistency and the offset tree

of 2D Lyndon words.

A segment of the text block that ism rows long is classified by its 2D Lyndon word in

the same way that the patterns are. This classification determines horizontal consistency

of candidates in a row. The 2D Lyndon word ofm rows in a text block is computed and

classified with the offset tree inO(m) time. This allows the text scanning stage to complete

in time proportional to the text size, independent of the dictionary size.

We must confirm that the labeled periodic string extends overat leastm columns in

each of them rows that follow a candidate row. We are interested in the minimum of all

right pointers,minRight, as well as the maximum of allleft pointers,maxLeft, as this is

the range of positions in which the pattern(s) can occur. If the pattern will not fit between

minRightandmaxLeft, i.e.,minRight−maxLeft< m, the candidate row is eliminated.

At this point, we know which patterns are horizontally consistent with the text block

row. The last step is to locate the positions at which each pattern begins, within the row.

Since we store the shift at which the 2D Lyndon word occurs in apattern, we can reverse

the shift to find the location at which each pattern begins in the text. The reverse shift is

computed for each pattern that is horizontally consistent with the text. Letz be the position

at which we expect a pattern to begin in the text block row. As long asz < maxLeft,

we incrementz by the LCM of the pattern. Then, we announce positionz as a pattern

occurrence whenminRight − z ≥ m. Subsequent occurrences of the pattern in the same

51

row are separated by a distance ofLCM [m] columns.

Complexity of Step 3: O(m) rows in a text block can contain candidates. At each

candidate row, the 2D Lyndon word is computed and classified in O(m) time, by Lemmas

4.2.6 and 4.2.7. The computation ofmaxLeftandminRightfor them rows that a pattern

can span takesO(m) time. The actual locations of a pattern occurrence are also determined

in O(m) time. Overall, a text block is verified inO(m2) time, proportional to the size of a

text block. The verification process requiresO(m log dm) extra bits of space.

Complexity of Text Scanning Stage: Each block of text is processed separately in

O(m) space and inO(m2 log σ) time. Since the text blocks areO(m2) in size, there are

O(n2/m2) blocks of text. Overall,O(n2 log σ) time andO(m log dm) extra bits of space

are required to process a text of sizen× n.

4.3 Case II: Patterns With Row of Period Size> m/4

We consider the case of a dictionary of patterns in which eachpattern has at least one

aperiodic row. The case of a pattern having a row that is periodic with period size between

m/4 andm/2 can be treated similarly, since each pattern can occur onlyO(1) times on one

row of a text block.

In the case of one or more aperiodic pattern rows in the patterns, many different patterns

can overlap in a text block row. As a result, it is difficult to employ a naming scheme to

find all occurrences of patterns. However, it is straightforward to initially identify a limited

number of candidates of pattern occurrences. Verification of these candidates in one pass

over the text presented a difficulty.

We allow O(dm log dm) bits of space to process a block of text. In the event that

d < m, Case IIa, this limit on space is a significant constraint. We address this case in

52

Section 4.3.1. Whend ≥ m, Case IIb, the number of candidates for pattern occurrences

can exceed the size of a text block. It is difficult to verify such a large number of candidates

in time proportional to the size of a text block. Because we allow working space larger

than the size of a text block, there is no need to begin by filtering the text and identifying

a limited set of candidate positions. We present a differentalgorithm to handle this case in

Section 4.3.2.

For Case II patterns, we againlinearizethe dictionary by concatenating the rows of all

patterns, inserting a delimiter at the end of each row. We then replace the original dictio-

nary by storing an entropy-compressed self-index of the linearized dictionary. For Case IIa,

a compressed suffix array (CSA) and compressed LCP array encapsulate sufficient infor-

mation for our dictionary matching algorithm. However, in Case IIb, we need the ability to

traverse the compressed suffix tree. For consistency, we discuss the usage of a compressed

suffix tree in both cases. The time-space trade-offs of various compressed suffix tree rep-

resentations are described in Section 3.3.3. Any compressed suffix tree representation can

be used in this algorithm. We useτ to refer to the time complexity of operations in the

compressed suffix tree.

4.3.1 Case IIa:d < m

The aperiodic row (or row with period> m/4) of each pattern can only occurO(1) times

in a text block row. Thus, we use an aperiodic row of each pattern to filter the text block.

The text scanning stage first identifies a small set of positions that are candidates for pattern

occurrences. Then, the verification stage determines whichof these candidates are actual

pattern occurrences. After preprocessing the dictionary,text scanning proceeds in time

proportional to the text block size.

53

Pattern Preprocessing

We form an AC automaton of one aperiodic row of each pattern, say, the first aperiodic row

of each pattern. There can beO(1) candidates for any non-periodic row in a text block row.

In total, there can beO(dm) candidates in a text block, with candidates for several distinct

1D patterns on a single row of text. If the same aperiodic row occurs in several patterns,

we can even find several candidates at the same text position.

The pattern rows are named to form a 1D dictionary of patterns. Distinct rows are

given different names, much the same way that Bird and Baker convert a 2D pattern to a

1D representation. However, Bird and Baker form an AC automaton of all pattern rows. We

do not allow that much space. Instead, we use a witness tree, described in Section 4.2.1, to

store distinctions between the pattern rows, which are all strings of lengthm. The witness

tree of the row names is preprocessed for Lowest Common Ancestor (LCA) to provide a

witness between any pair of distinct pattern rows in constant time.

Preprocessing proceeds by indexing the 1D patterns. We forma generalized suffix tree

of the 1D patterns of names, complete with suffix links. The suffix tree is preprocessed for

LCA to allow O(1) time Longest Common Prefix (LCP) queries between suffixes of the

1D patterns.

In summary, pattern preprocessing is as follows:

1. Construct AC automaton of first aperiodic row of each pattern. Store row number of

each of these aperiodic rows.

2. Name pattern rows using a single witness tree. Store 1D patterns of names.

3. Preprocess witness tree for LCA.

54

4. Construct generalized suffix tree of 1D patterns. Preprocess for LCA.

Lemma 4.3.1.The pattern preprocessing stage for Case IIa completes inO(dm2) time and

O(dm log dm) extra bits of space.

Proof. 1. The AC automaton of the first non-periodic row of each pattern is constructed in

O(dm) time and is stored inO(dm log dm) bits.

2. By Lemma 4.2.2, the witness tree occupiesO(dm log dm) bits of space. By Lemma 4.2.4,

pattern rows are named with the witness tree inO(dm2) time.

3. The witness tree and generalized suffix tree are preprocessed in linear time to answer

LCA queries inO(1) time [36, 10].

4. The 1D dictionary of names is stored inO(dm log dm) bits of space and its generalized

suffix tree is constructed and stored in time and space proportional to this 1D representation.

Text Scanning

The text scanning stage has three steps.

1. Identify candidates in text block with 1D dictionary matching of a non-periodic row

of each pattern.

2. Duel to eliminate vertically inconsistent candidates.

3. Verify pattern occurrences at surviving candidate positions.

55

Step 1. Identify Candidates

We do not name all text positions as Bird and Baker do, since thiswould requireO(m2)

space per text block. Neither do we use the witness tree to name the text block rows as we

do for the patterns whose rows are highly periodic, since many names can overlap in a text

block row. Instead, text scanning begins by identifying a limited set of positions that are

candidates for pattern occurrences. Unlike patterns in thefirst group (Case I), each pattern

can only occurO(1) times in the text block.

We locate the first aperiodic row of each pattern and considerthis set of strings as

a 1D dictionary of patterns.O(dm) candidates are found by performing 1-D dictionary

matching, e.g. AC, on this limited set of pattern rows over thetext block, row by row. Then

we update each candidate to point to the position at which we expect a 1D pattern name to

begin. This is done by subtracting the row number of the selected aperiodic row within the

pattern from the row number of the candidate in the text block.

Complexity of Step 1:1D dictionary matching on a text block takesO(m2 log σ) time

with the AC method. Marking the positions at which patterns can begin is done in constant

time per candidate found; overall, this requiresO(dm) time. The AC 1D dictionary match-

ing algorithm uses extra space proportional to the dictionary, O(dm log dm) bits of space.

The candidates can also be stored inO(dm log dm) bits of space.

Step 2. Eliminate Vertically Inconsistent Candidates

We call a pair of patternsconsistentif they can overlap in a single text block. Overlapping

segments of consistent candidates can be verified simultaneously. In this stage we eliminate

inconsistent candidates with a dueling technique inspiredby the 2Dsinglepattern matching

algorithm of Amir et al. [2]. In the single pattern matching algorithm, a witness table is

56

computed in advance, and duels are performed between candidates of the same pattern. In

dictionary matching, we want to perform duels between candidates fordifferentpatterns. It

would be inefficient both in terms of time and space to store witnesses between all locations

in all patterns.

We call two patternsvertically consistentif they can overlap in the same column. Note

that vertically consistent patterns have a suffix/prefix match in their 1D representations.

Thus, we duel between candidates within each column usingdynamic dueling. In dynamic

dueling, no witness locations are computed in advance. We are given two candidate patterns

and their locations, candidateA at location(i, j) in the text and candidateB at location

(k, j) in the text,i ≤ k. Since all of our candidates are in anm/2×m/2 square, we know

that there is overlap between the two candidates.

A dynamic duel consists of two steps. In the first step, the 1D representation of names

is used forA andB, denoted byA′ andB′. An LCP query between the suffixk−i+1 of A′

againstB′ returns the number of overlapping rows that match. If this number is≥ i+m−k

then the two candidates are consistent. Otherwise, we are given a “row-witness,” i.e. the

LCP points to the first row at which the patterns differ. In the second step of the duel, an

LCA query in the witness tree provides a position of mismatch between the two different

pattern rows, and we use that position to eliminate one or both candidates.

Text block columns are scanned top-down, one at a time, to determine vertical consis-

tency of candidates. We confirm consistency pairwise over the candidates within a column,

since consistency is a transitive relation. A duel eliminates at least one element of a pair

of inconsistent candidates. If only the lower candidate is killed, this does not affect the

consistent candidates above it in the same column, as they are still consistent with the text

57

�����������

�	�
�
	���

��

�������������

�	�
�
	���

���

�����������

�	�
�
	���

���

�����������

�	�
�
	���

���

Figure 4.6: (a) Duel between vertically inconsistent candidates in a column. (b) Surviving
candidates if the lower candidate wins the duel. (c) Surviving candidates if the upper
candidate wins the duel.

character. However, if the lower candidate survives, it triggers the elimination of all candi-

dates withinm rows above it. Pointers link consecutive candidates in eachcolumn. This

way, a duel eliminates the set of consistent candidates thatare within range of the mis-

match. This is shown in Figure 4.6. Distinct patterns have different 1D representations.

Thus, the same method can be used when two (or more) candidates occur at a single text

position.

The pass over the text to check for consistency ensures that candidates within each

column are vertically consistent. Consistency in other directions (including horizontal con-

sistency) is established in Step 3 while comparing characters sequentially against the text.

Complexity of Step 2:The consistency of a pair of candidates is determined by an LCP

query followed by a duel between characters. We use data structures that can answer LCP

queries inO(1) time over the 1D patterns of names. Duels are performed with witnesses

generated by an LCA query in the witness tree over the pattern rows inO(1) time. Due to

transitivity, the number of duels will be no more than the number of candidates. There are

O(dm) candidate positions, withd < m, so this step completes inO(m2τ) time. The only

58

slowdown is in retrieving pattern characters for the duel. (This is true even in the event that

several candidates occur at the same text position.)

Step 3. Verify Surviving Candidates

After eliminating vertically inconsistent candidates, weverify pattern occurrences in a sin-

gle scan of the text block. Beginning at the first candidate position, characters in the text

block are compared sequentially to the expected charactersin the appropriate pattern. If

two candidates overlap in a text block, we compare the overlapping text characters to a

substring of only one pattern row, to verify them simultaneously.

Before we scan a text block row, we mark the positions at which we expect to find a

pattern row, by carrying candidates from one row to the next and merging this with the list

of candidates that begin on the new row. Then, the text block row is scanned sequentially,

comparing one text character to one pattern character at a time, until a pattern row of

another candidate is encountered. Then we perform an LCP query over the pattern row that

is currently being used for verification and the pattern row that is expected to begin. If the

distance between the candidates is smaller than the LCP, a duel resolves the inconsistency

among candidates.

Since consistency is transitive, duels are performed on pairs of candidates. Yet, there

are times at which the detection of an inconsistency must eliminate several candidates. If

several LCP queries have already succeeded in a row (that is, we have a set of consistent

patterns), and then we encounter a failure, we eliminate allcandidates that are consistent

with the candidate that lost and are within range of the mismatch. As in the search for

vertical consistency, we chain candidates to facilitate this process.

Consider Figure 4.7. Suppose we are at positionπ in row α of patternP1 and we

59

approach the expected beginning of rowβ in patternP2. An LCP query on suffixπ of α and

the entireβ determines if they can overlap at this distance. Let the LCP ofthese substrings

be l1 and the distance betweenα andβ in the text bel2. Supposel1 < m− l2. That is, the

mismatch is within the expected overlap. Then we can duel between the candidates using

the text character atπ + l1 to eliminate one or both candidates. However, ifl1 = m − l2,

the text can be compared to a substring of either pattern row since these substrings are

identical.

α

π

β

l2

P2

P1

Figure 4.7: Consistency is determined by LCP queries and duels.

Complexity of Step 3: Time Complexity: Each text block character that is within

an anticipated pattern occurrence is scanned once and compared to a pattern character,

yielding O(m2τ) time. When a new label is encountered on a row, a duel is performed.

Each duel consists of an LCP query on the compressed suffix tree, which is done inO(τ)

time. Since each candidate can only be eliminated once, transitivity of dueling ensures that

the number of duels isO(dm), which is strictly smaller than the size of the text block when

d < m.

60

Space Complexity: When a text block row is verified, we mark positions at which a pattern

row (1D name) is expected to begin. These labels can be discarded after the row has

been verified and the information is carried to the next row. Thus, the space needed is

proportional to the number of candidates, plus the labels for one text row,O(dm log dm)

bits.

Lemma 4.3.2.The text scanning stage for Case IIa, whend < m, completes inO(n2τ log σ)

time andO(dm log dm) bits of space, in addition to the entropy compressed self-index of

the linearized dictionary.

Proof. This follows from the complexity of Steps 1, 2, and 3.

4.3.2 Case IIb:d ≥ m

Sinced ≥ m and our algorithm allowsO(dm log dm) extra bits of space, we haveΩ(m2)

space available. This allows us to store information proportional to the size of the text

block. In its original form, the Bird / Baker algorithm uses an Aho-Corasick automaton

to name the pattern rows and the text positions. We can implement a similar algorithm

to name the pattern rows and the text positions if we use a smaller-space mechanism to

determine the names.

We can name the text positions using the compressed suffix tree of pattern rows in

much the same way as an AC automaton. With suffix links, we namethe positions of the

text block, row by row, according to the names of pattern rows. Beginning at the root of

the tree, we traverse the edge whose label matches the first character of the text block row.

Whenm consecutive characters trace a path from the root, and traversal reaches a leaf, the

position is named with the appropriate pattern row. At a mismatch, we traverse suffix links

61

to find the longest suffix of the already matched string that matches a prefix of a pattern

row and compare the next text character to that labeled edge of the tree. With suffix links,

this is done in time proportional to the number of charactersthat have already matched a

path from the root of the tree. This is done in the spirit of Ukkonen’s online suffix tree

construction algorithm which runs in linear time [61].

After naming text positions at which a pattern row occurs, 1Ddictionary matching is

used to find actual occurrences of the 2D patterns in the text block. We mention the usage of

an Aho-Corasick (AC) automaton of the linearized patterns butany 1D dictionary matching

algorithm can be used as a black box.

Lemma 4.3.3.The algorithm for 2D dictionary matching in Case IIb, whend ≥ m, com-

pletes inO(n2τ log σ) time andO(dm log dm) bits of space, after constructing and storing

the entropy compressed self-index of the linearized dictionary inO(m2τ) time.

Proof. It suffices to show that the procedure completes inO(m2τ log σ) time for a text

block of size3m/2 × 3m/2. The algorithm names the text positions by traversing the

compressed suffix tree of the dictionary inO(m2τ log σ) time and then locates occurrences

of the 1D patterns of names with 1D dictionary matching inO(m2) time. Our algorithm

uses an AC automaton of the dictionary of 1D pattern names anda compressed suffix tree

of the linearized dictionary.O(dm log dm) bits of space suffice to store an AC automa-

ton of the 1D patterns of names. A compressed self-index and compressed suffix tree

can be stored in entropy compressed space [24]. After forming the two data structures,

O(m2 log dm)=O(dm log dm) bits of space are used to name a text block.

Theorem 4.3.4.Our algorithm for 2D dictionary matching completes inO(dm2+n2τ log σ)

time andO(dm log dm) bits of extra space.

62

Proof. Our algorithm is divided into several cases.

Case I: pattern rows are all periodic with period≤ m/4.

The complexity of the pattern preprocessing stage is summarized in Section 4.2.1 and

the complexity of the text scanning stage is summarized in Section 4.2.2. Both of them

meet the bounds specified by this theorem.

Case II: at least one pattern row is aperiodic or has period> m/4.

Case IIa:d < m. The complexity is summarized in Lemmas 4.3.1 and 4.3.2.

Case IIb:d ≥ m. The complexity is summarized in Lemma 4.3.3.

4.4 Data Compression

The compressed pattern matching problemseeks all occurrences of a pattern in text, and

works with a pattern and text that are stored in compressed form. Amir et. al. presented an

algorithm for strongly-inplace single pattern matching in2D LZ78-compressed data [7].

They define an algorithm asstrongly inplaceif the extra space it uses is proportional to the

optimal compression of the data. Their algorithm preprocesses the pattern of uncompressed

sizem×m in O(m3) time and searches a text of uncompressed sizen× n in O(n2) time.

Our preprocessing scheme can be applied to their algorithm to achieve an optimalO(m2)

preprocessing time, resulting in an overall time complexity of O(m2 + n2).

In thecompressed dictionary matchingproblem, the input is in compressed form and

one would like to search the text for all occurrences of any element of asetof patterns.

Case I of our algorithm, for patterns with rows of periods≤ m/4, is both linear time and

strongly inplace. It can be used for 2D compressed dictionary matching when the patterns

and text are compressed by a scheme that can be sequentially decompressed in small space.

63

For example, LZ78 [64] has this property.

Our algorithm is strongly inplace since it usesO(dm log dm) bits of space and this is

the best that can be achieved by a scheme that linearizes each2D pattern row-by-row. Case

I of our algorithm requires onlyO(1) rows of the pattern or text to be decompressed at a

time so it is suitable for a compressed context. A strongly-inplace 2D dictionary matching

algorithm for the case in which a pattern row is aperiodic remains an open problem.

Chapter 5

Succinct 2D Dictionary Matching With

No Slowdown

In this chapter we achieve succinct 2D dictionary matching in strictly linear time, with

no slowdown. We extend new developments in succinct 1D dictionary matching to the

two-dimensional setting, in a way similar to the Bird and Baker(BB) extension of the Aho-

Corasick 1D dictionary matching algorithm (AC). This problemis not trivial, due to the

small space that we allow to index the dictionary and the necessity to label each position

of the text. However, we modify the technique of dynamic dueling to make use of recent

achievements in 1D dictionary matching, thus eliminating the slowdown in searching the

text for patterns whose rows are not highly periodic. We indeed achieve a linear time

algorithm that solves theSmall-Space 2D Dictionary Matching Problem. This algorithm

was published in WADS 2011 [54].

Given a dictionaryD of d patterns,D = {P1, . . . , Pd}, each of sizem × m, and

a text T of size n × n, our algorithm finds all occurrences ofPi, 1 ≤ i ≤ d, in T .

During the preprocessing stage, the patterns are stored in entropy compressed form, in

64

65

|D|Hk(D) + O(|D|) bits. Hk(D) denotes thekth order empirical entropy of the string

formed by concatenating all the patterns inD, row by row. Preprocessing completes in

O(|D|) time usingO(dm log dm) bits of extra space. Then, the text is searched inO(|T |)

time usingO(dm log dm) bits of extra space. For ease of exposition, we discuss patterns

that are all of sizem×m, however, our algorithm generalizes to patterns that are the same

size in only one dimension, and the complexity would depend on the size of the largest

dimension. As in [9] and [37], the alphabet can be non-constant in size.

This chapter is organized as follows. We begin by reviewing the dictionary match-

ing version of the Bird / Baker algorithm [11, 8] and Hon et al.’ssuccinct 1D dictionary

matching algorithm with no slowdown [37]. We outline how it is possible to combine

these algorithms to yield a linear time yet small space 2D dictionary matching algorithm

for certain types of patterns. Then, in Section 5.2, we distinguish between highly periodic

patterns and non-periodic patterns. We follow the approachwe developed in Chapter 4 for

the periodic case since it is a suitable linear time algorithm. In Sections 5.2.1 and 5.2.2

we deal with the non-periodic case, and introduce an algorithm that achieves linear time

complexity.

5.1 Large Number of Patterns

The first linear-time 2D pattern matching algorithm was developed independently by Bird

[11] and by Baker [8], which we henceforth refer to as BB. Although the BB algorithm was

initially presented for a single pattern, it is easily extended to perform dictionary matching.

Algorithm 3 is an outline of the dictionary matching versionof BB.

Space Complexity of BB:We uses to denote the number of states in the Aho-Corasick

automaton ofD, AC1. Note thats ≤ |D| = dm2. O(s log s) bits of space are needed to

66

Algorithm 3 Dictionary Matching Version of Bird / Baker Algorithm

{1} Preprocess Pattern:
a) Form Aho-Corasick automaton of pattern rows, called AC1.
Let s denote the number of states in AC1.
b) Name pattern rows using AC1, and store a 1D pattern of names
for each pattern inD, calledD′.
c) Construct AC automaton ofD′, called AC2.
Let s′ denote the number of states in AC2.

{2} Row Matching:
Run Aho-Corasick on each text row using AC1.
This labels positions at which a pattern row ends.

{3} Column Matching:
Run Aho-Corasick on named text columns using AC2.
Output pattern occurrences.

store AC1, and labeling all text locations usesO(n2 log dm) bits of space. Overall, the BB

algorithm usesO(s log s+ n2 log dm) bits of space.

Our objective is to improve upon this space requirement. As afirst attempt to conserve

space, we replace the traditional AC algorithm in Step 1 of BB with the compressed AC

automaton of Hon et al. [37]. The algorithm of [37] indexes the 1D dictionary in space

that meets the information-theoretic lower bounds of the dictionary. At the same time, it

achieves optimal time complexity. We can use their algorithm as a black box replacement

for the AC automata in both Steps 1a and 1c of the BB algorithm.

To reduce the algorithm’s working space, we work with small overlapping text blocks

of size3m/2 × 3m/2. This way, we can replace theO(n2 log dm) bits of space used to

label the text in Step 3 withO(m2 log dm) bits of space, relating the working space to the

size of the dictionary, rather than the size of the entire text.

Theorem 5.1.1.We can solve the 2D dictionary matching problem in linearO(dm2 + n2)

time andsHk(D) + s′Hk(D
′) +O(s+m2 log dm) bits of space.

67

Proof. Since the algorithm of Hon et al. [37] has no slowdown, replacing the AC automata

in BB with compressed AC automata preserves the linear time complexity. Preprocessing

usessHk(D) + O(s) + s′Hk(D
′) + O(s′) bits of space. The compressed AC1 automaton

usessHk(D) + O(s) bits of space and it replaces the original dictionary, whilethe com-

pressed AC2 automaton usess′Hk(D
′) + O(s′) extra bits of space. Text scanning uses

O(m2 log dm) extra bits of space to label each location of a text block.

Although this is an improvement over the space required by the uncompressed version

of BB, we would like to improve on this further. Our aim is to reduce the working space

to O(dm log dm) bits, thus completely eliminating the dependence of the working space

on the size of the given text. Yet, note that this constraint still allows us to storeO(1)

information per pattern row to linearize the dictionary in the preprocessing. In addition,

we will have the ability to storeO(1) information about each pattern per text row to allow

linearity in text scanning.

The following corollary restates Theorem 5.1.1 in terms ofO(dm log dm) for the case

of a dictionary with many patterns. It also omits the terms′Hk(D
′)+O(s′), sinces′Hk(D

′)+

O(s′) = O(dm log dm).

Corollary 5.1.2. If d ≥ m, we can solve the 2D dictionary matching problem in linear

O(dm2 + n2) time andsHk(D) +O(s) +O(dm log dm) bits of space.

5.2 Small Number of Patterns

The rest of this chapter deals with the case in which the number of patterns is smaller than

the dimension of the patterns, i.e.,d = o(m). For this case, we cannot label each text

68

location and therefore the Bird and Baker algorithm cannot be applied trivially. We present

several clever space-saving tricks to preserve the spirit of Bird and Baker’s algorithm with-

out incurring the necessary storage overhead.

There are two types of patterns, and each one presents its owndifficulty. In the first

type, which we call Case 1 patterns, all rows are periodic, with periods≤ m/4. The

difficulty in this case is that many overlapping occurrencescan appear in the text in close

proximity to each other, and we can easily have more candidates than the working space

we allow. The second type, Case 2 patterns, have at least one aperiodic row or one row

whose period is larger thanm/4. Here, each pattern can occur onlyO(1) times in a text

block. Since several patterns can overlap each other in bothdirections, a difficulty arises in

the text scanning stage. We do not allow the time to verify different candidates separately,

nor do we allow space to keep track of the possible overlaps for different patterns.

In the initial preprocessing step, we divide the patterns into two groups based on 1D

periodicity. For Case 1 patterns, we use the algorithm we developed in Chapter 4. The

following lemma summarizes its complexity.

Lemma 5.2.1.2D dictionary matching for Case 1 patterns can be done inO(dm2 + n2)

time andO(dm logm) bits of space, aside from thesHk(D)+O(s) bits of space that store

compressed self-index of the dictionary.

For Case 2 patterns, candidates are identified by following the same framework we

introduced in Chapter 4. However, we use a different method for verification. We make use

of new developments in succinct 1D dictionary matching. We use the latest compressed AC

automaton for two purposes, to represent the dictionary andto index the data at the same

time. Thus, we eliminate the slowdown incurred by a compressed suffix tree representation

of the pattern rows. This allows our algorithm to perform adynamic duelbetween a pair of

69

candidates in constant time, resulting in an algorithm thatruns in linear time.

In the remainder of this section, we assume that each patternhas at least one aperiodic

row. The case of a pattern having a row that is periodic with period size betweenm/4 and

m/2 will add only a small constant to the stated complexities.

5.2.1 Pattern Preprocessing

This is an outline of the steps in pattern preprocessing. Notice that we use the compressed

AC automaton as the representation and index of the pattern rows, after which the original

dictionary can be discarded.

1. Construct (compressed) AC automaton of first aperiodic rowof each pattern. Store

row number of each of these rows within the patterns.

2. Form a compressed AC automaton of the pattern rows.

3. Construct witness tree of pattern rows and preprocess for LCA.

4. Name pattern rows. Index the 1D patterns of names in a suffixtree.

In the first step, we form an AC automaton of one aperiodic row of each pattern, say,

the first aperiodic row of each pattern. This will allow us to filter the text and limit the

number of potential pattern occurrences to consider. Sincewe use only one row from each

pattern, using a compressed version of the AC automaton is optional.

In the second step, the pattern rows are named as in BB to form a 1D dictionary of

patterns. Here we use a compressed AC automaton of the pattern rows. An example of two

patterns and their 1D representation is shown in Figure 5.1.

70

���������

� � � �

� � � �

� � � �

� � � �

�

�

�

�

��������	

� � � �

� � � �

� � � �

� � � �

�

�

�

�

Figure 5.1: Two linearized 2D patterns with their 1D names.

Another necessary data structure is the witness tree, whichwe introduced in [53] and

described in Chapter 4. A witness tree is used to store pairwise distinctions between differ-

ent patterns, or pattern rows, of the same length. A witness tree provides a witness between

pattern rows in constant time if it is preprocessed for Lowest Common Ancestor (LCA).

Figure 5.2 depicts a witness tree of the row names used in Figure 5.1.

�

�

�

�

�

��

�
��

���������	��

�

�
���

�
�

�
�
�

���� ����	

� ����

 ����

� ����

� ����

Figure 5.2: A witness tree for several strings of length 4.

Preprocessing proceeds by indexing the 1D patterns of names. We form a suffix tree

of the 1D patterns to allow efficient computation of longest common prefix (LCP) queries

between substrings of the 1D patterns.

Lemma 5.2.2.The pattern preprocessing stage for Case 2 patterns completes inO(dm2)

time andO(dm logm) extra bits of space.

71

Proof. The AC automaton of the first non-periodic row of each patternis constructed in

O(dm) time and is stored inO(dm logm) bits, in its uncompressed form. A compressed

AC automaton of all pattern rows occupiessHk(D) + O(s) bits of space and can then be-

come the sole representation of the dictionary [37]. The witness tree occupiesO(dm logm)

bits of space. A rooted tree can be preprocessed in linear time and space to answer LCA

queries inO(1) time [36, 10]. The patterns are converted to a 1D representation inO(dm2)

time. A suffix tree of the 1D dictionary of names can be constructed and stored in linear

time and space, e.g., [61].

5.2.2 Text Scanning

The text scanning stage has three steps.

1. Identify candidates in text block with 1D dictionary matching of a non-periodic row

of each pattern.

2. Duel to eliminate inconsistent candidates within each column.

3. Verify pattern occurrences at surviving candidate positions.

Step 1. Identify Candidates

We identify a limited set of candidates in the text block using 1D dictionary matching on the

first aperiodic row of each pattern. There can be only one occurrence of any non-periodic

pattern row in a text block row. Each occurrence of an aperiodic pattern row demarcates a

candidate, at mostd per row. In total, there can be up todm candidates in a text block, with

candidates for several distinct 1D patterns on a single row of text. If the same aperiodic

72

row occurs in several patterns, several candidates can occur at the same text position, but

candidates are still limited tod per row.

We run the Aho-Corasick algorithm over the text block, row by row, to find up todm

candidates. Then we update each candidate to reflect the position at which we expect a

pattern to begin. This is done by subtracting the row number of the selected aperiodic row

within the pattern from the row number at which it is found in the text block.

Complexity of Step 1: 1D dictionary matching on a text block takesO(m2) time with

the AC method. Marking the positions at which patterns can begin is done in constant

time per candidate found; overall, this requiresO(dm) = o(m2) time. The AC algorithm

uses extra space proportional to the dictionary, which isO(dm logm) bits of space for this

limited set of pattern rows. Thedm candidates can also be stored inO(dm logm) bits of

space.

Step 2. Eliminate Vertically Inconsistent Candidates

Recall that we call a pair of candidates for pattern occurrencesconsistentif all positions of

overlap match. Vertically consistent candidates are two candidates that appear in the same

column, and have a suffix/prefix match in their 1D representations. For our purposes, we

need only eliminate vertically inconsistent candidates before comparing text and pattern

characters at which patterns are expected to occur. Thus, weperform duels between the

candidates in a given column, pairwise. In order to verify candidates in a single pass over

the text, we take advantage of the fact that overlapping segments of consistent candidates

can be verified simultaneously.

We perform duels between one pair of candidates at a time and eliminate inconsistent

candidates. Then we remain with a set of consistent candidates to verify in the text. Until

73

this thesis work, the dueling paradigm had not been applied to dictionary matching since it

is prohibitive to precompute and store witnesses for all possible overlaps of all candidate

patterns in a set of patterns. However, we developed an innovative way of performing duels

for a set of 2D patterns. Indynamic dueling, no witness locations are computed in advance.

We store a minimal amount of information that allows us to efficiently generate witnesses

on the fly, as they are needed in a duel.

A duel consists of two steps. In the first step, an LCP query on the 1D representation of

the patterns is used to generate a “row-witness,” the first row at which the candidates differ.

In the second step of the duel, we use the witness tree to locate the position of mismatch

between the two different pattern rows, and we use that position to eliminate one or both

candidates.

To demonstrate how a witness is found and the duel is performed, we return to the

patterns in Figure 5.1. Assume two candidates exist; directly below a candidate for Pattern

1, we have a candidate for Pattern 2. The LCP of121, (second suffix of linearized Pattern

1) and1234(linearized Pattern 2) is 2. Since2 < 3, the LCP query reveals that the patterns

are inconsistent, and that a witness exists between the fourth row of Pattern 1 (name 1) and

the third row of Pattern 2 (name 3). We then procure a witness from the witness tree shown

in Figure 5.2 by taking the LCA of the leaves that represent names 1 and 3. The result of

this query shows that the first position is a point of distinction between names 1 and 3. If

the text has an ‘a’ at that position, Pattern 1 survives the duel. Otherwise, if the character

is a ‘c’, Pattern 2 survives the duel. If neither ‘a’ nor ‘c’ occur at the text location, both

candidates are eliminated.

Lemma 5.2.3.A duel between two candidate patternsA andB in a given columnj of the

text can be performed in constant time.

74

Proof. The suffix tree constructed in Step 4 of the pattern preprocessing answers LCP

queries in the 1D patterns of names inO(1) time. The witness tree gives a position of

a row-witness inO(1) time, and retrieving the text and pattern characters to perform the

actual duel takes constant time.

Complexity of Step 2:Step 2 begins with at mostdm candidate positions. Each candi-

date is involved in exactly one duel, and is either killed or survives. If a candidate survives,

it may be visited exactly one more time to be eliminated by a duel beneath it. Since a duel

is performed in constant time, by Lemma 5.2.3, this step completes inO(dm) time. Recall

thatd < m. Hence, the time for Step 2 isO(m2).

Step 3. Verify Surviving Candidates

After eliminating vertically inconsistent candidates, weverify pattern occurrences in a sin-

gle scan of the text block. We process one text block row at a time to conserve space.

Before scanning the current text block row, we label the positions at which we expect to

find a pattern row. This is done by merging the labels from the previous row with the list

of candidates that begin on the new row. If a new candidate is introduced in a column that

already has a label, we keep only the label of the lower candidate. This is permissible since

the label must be from a consistent candidate in the same column. Thus, each position in

the text has at most one label.

The text block row is then scanned sequentially, to mark actual occurrences of pattern

rows. This is done by running AC on the text row with the compressed AC automaton of

all pattern rows. The lists of expected row names and actual row names are then compared

sequentially. If every expected row name appears in the textblock row, the candidate list

75

remains unchanged. If an expected row name does not appear, acandidate is eliminated.

The pointers that connect candidates are used to eliminate candidates in the same column

that also include the label that was not found.

After all rows are verified in this manner, all surviving candidates in the text are pattern

occurrences of their respective patterns.

Complexity of Step 3: When a text block row is verified, we mark each position at

which a pattern row (1D name) is expected to begin. This list is limited bym/2 due to the

vertical consistency of the candidates. We also mark actualpattern row occurrences in the

text block row which are again no more thanm/2 due to distinctness of the row names.

Thus, the space complexity for Step 3 isO(m). The time complexity is also linear, since

AC is run on the row in linear time, and then two sorted lists ofpattern row names are

merged. Over all3m/2 rows in the text block, the complexity of Step 3 isO(m2).

Lemma 5.2.4.The algorithm for 2D dictionary matching, when pattern rows are not highly

periodic andd < m, completes inO(n2) time andO(dm logm) bits of space, in addition

to sHk(D) +O(s) bits of space to store the compressed AC automaton of the dictionary.

Proof. This follows from Lemma 5.2.2 and the complexities of Steps 1, 2, and 3.

Theorem 5.2.5.Our algorithm for 2D dictionary matching completes inO(dm2+n2) time

andO(dm log dm) bits of extra space.

Proof. Ford > m, this is stated in Corollary 1 of Theorem 5.1.1.

Ford ≤ m, the patterns are split into groups according to the periodicity of their rows.

A pattern is classified in linear time by finding the period of each of its rows, e.g., using a

KMP automaton [44].

76

For Case 1 patterns, this is proven in Lemma 5.2.1.

For Case 2 patterns, this is proven in Lemma 5.2.4.

Chapter 6

Dynamic 2D Dictionary Matching in

Small Space

This chapter develops the first efficient dynamic dictionarymatching algorithm for two-

dimensional data in the space-constrained environment. The algorithm is a succinct and

dynamic version of the classic Bird / Baker algorithm. Since wefollow their labeling

paradigm, our algorithm is well-suited for a dictionary of rectangular patterns that are the

same size in at least one dimension. Our algorithm uses a dynamic compressed suffix tree

as a compressed self-index to represent the dictionary in entropy-compressed space. All

tasks are completed by our algorithm in linear time, overlooking the slowdown in querying

the compressed suffix tree.

The static succinct 2D dictionary matching algorithm with no slowdown presented in

Chapter 5 is not suitable for the dynamic setting. It relies onthe succinct 1D dictionary

matching algorithm of Hon et al. [37], which does not readilyadmit changes to the dictio-

nary. Instead, we adapt the succinct 2D dictionary matchingalgorithm of Chapter 4 to the

77

78

dynamic setting. We develop a dynamic algorithm that meets the time and space complex-

ities that were achieved in the static version of the algorithm. The dictionary is initially

processed in time proportional to the size of the dictionary. Subsequently, a pattern is in-

serted or removed in time proportional to the single pattern’s size. We modify the witness

tree (Section 4.2.1) to form a dynamic data structure that meets the space and time com-

plexities achieved by the static version. The dynamic witness tree accommodates insertion

or removal of any string in time proportional to the string’slength.

We defineTwo-Dimensional Dynamic Dictionary Matching(2D-DDM) as follows. Our

algorithm is given a dictionary ofd patterns,D = {P1, . . . , Pd}, of total sizeℓ. Each

patternPi is of sizemi × m, 1 ≤ i ≤ d. We useτ to denote the time it takes to access

a character or perform other queries in the compressed self-index of the dictionary. The

dictionary is initially preprocessed inO(ℓτ) time. A patternP , of sizep×m, is inserted to

or removed from the dictionary inO(pmτ) time. Our algorithm searches a textT of size

n1 × n2 in O(n1n2τ) time for all occurrences ofPi, 1 ≤ i ≤ d. Using recent results,τ is

at mostlog2 ℓ. Our algorithm usesO(dm log dm+ dm′ log dm′) bits of extra space, where

m′ = max{m1, . . . ,md}.

The succinct 2D dictionary matching algorithm of Chapter 4 was presented in terms of

a static dictionary in which all patterns are the same size inboth dimensions, resulting in

a dictionary of sizedm2. In this chapter, we work with a dictionary of patterns that are of

uniform width, but of varying heights. We perform a more detailed analysis and distinguish

between the sources of time complexities. Specifically, we analyze which time complexi-

ties are proportional to the uniform width of the patterns1, m, which are proportional to the

height of the largest pattern,m′, and which are proportional to the actual dictionary size,ℓ.

1We chose this notation since it is visual. The bar representsa uniform width, while the prime is vertical,
representing a uniform height.

79

While doing this, we discovered the need for more efficient techniques in the verification

process in order for the text scanning to remain linear in thesize of the text, in the case

thatm′ is an order of magnitude larger thanm. Herein lies one of the contributions of this

chapter.

We begin by presenting a linear-time dynamic 2D dictionary matching algorithm that

uses extra space proportional to the size of the input. In Section 6.2, we describe a succinct

variation of this linear space algorithm for a dictionary with a large number of patterns.

For all other dictionaries, patterns are divided into two groups; patterns in each group

are searched for separately and in different ways. We describe our approach to dynamic

dictionary matching for each group of patterns in Section 6.3.

6.1 2D-DDM in Linear Space

In this section we present a linear-time dynamic 2D dictionary matching algorithm that

uses extra space proportional to the size of the input. It is adynamic succinct variant of

the Bird / Baker algorithm. In the multiple pattern matching version of the Bird / Baker

algorithm, 1D dictionary matching is used in two different ways. First, the pattern rows are

seen as a 1D dictionary and this set of “patterns” is used to linearize the dictionary and then

to label text positions. A separate 1D dictionary is formed of the linearized 2D patterns.

The Bird / Baker algorithm is suitable for 2D patterns that are of uniform size in at least

one dimension, so that the text can be marked with at most one name at each text location.

The Bird / Baker method uses linear time and space in both the pattern preprocessing and

the text scanning stages.

Sahinalp and Vishkin’s dynamic 1D dictionary matching algorithm (SV) uses a naming

80

technique rather than a dictionary-matching automaton [60]. Yet, it is a suitable replace-

ment for the Aho-Corasick automata in the Bird / Baker algorithm. Thus, the combination

of these techniques, one for dynamic dictionary matching in1D and another for static 2D

dictionary matching, yields a dynamic 2D dictionary matching algorithm that runs in linear

time. This modification extends the Bird / Baker algorithm to a accommodate a changing

dictionary, yet it does not introduce any slowdown. This algorithm is outlined in Algorithm

4.

Algorithm 4 Dynamic Version of Bird / Baker Algorithm

{1} Preprocess Pattern:
a) Name pattern rows using SV [60].
b) Store 1D pattern of names for each pattern inD, calledD′.
c) PreprocessD′ using SV to later perform 1D dynamic dictionary matching.

{2} Row Matching:
Use SV on each row of text to find occurrences ofD’s pattern rows.
This labels positions at which a pattern row ends.

{3} Column Matching:
Run SV on named columns of text to find occurrences of patterns fromD′ in the text.
Output pattern occurrences.

Initially, the dictionary of pattern rows is empty. One 2D pattern is linearized at a time,

row by row. As a pattern row is examined, it can be viewed as a text on which to perform

dictionary matching. If a pattern row is identified in the newpattern row, then it is given

the same name as the matching row. Otherwise, this new row is seen as a new 1D pattern

and added to the dictionary of pattern rows. Once the patternrows have been given names,

the 1D patterns of names inD′ are preprocessed separately.

Whenever a pattern is added to or removed from the 2D dictionary, the precomputed

information about the patterns can be adjusted in time proportional to the size of the 2D

pattern that is entering or leaving the dictionary. That is,Sahinalp and Vishkin’s framework

for dictionary matching allows both 1D dictionaries to efficiently react to a change in the

81

2D dictionary that they represent.

Space complexity of Algorithm 4:The dynamic version we present of the Bird / Baker

algorithm uses extra space proportional to the size of the input. It usesO(ℓ log ℓ) bits of

extra space to name the pattern rows using SV [60] andO(dm′ log dm′) bits of extra space

to store and index the 1D representation of the patterns. During text scanning,O(n2 log n2)

bits of space are used to run SV on each row of text andO(n1 log n1) bits of space are used

to run SV on the named columns of text, one at a time.O(n1n2 log dm
′) bits of extra space

are used to store the names given to text positions.

6.2 2D-DDM in Small-Space For Large Number of Pat-

terns

The dynamic version of the Bird / Baker algorithm presented in Section 6.1 uses space

proportional to the sizes of both the dictionary and the text. In this section we present a

variation of Algorithm 4 that runs in small space for a dictionary in whichd ≥ m. That is,

when the number of patterns is larger than the width of a pattern.

We begin by modifying Algorithm 4 to work with small blocks oftext and thereby

relate the extra space to the size of the dictionary, not the size of the text. We use a known

technique for minimizing space and process the text in smalloverlapping blocks of size

3m′/2×3m/2, wherem′ = max{m1, . . . ,md}. Since each text block is processed in time

proportional to the size of the text block, the overall text scanning time remains linear.

By processing one text block at a time, we reduce the working space toO(ℓ log ℓ +

dm′ log dm′) bits of extra space to preprocess the patterns andO(m logm+mm′ log dm′)

bits of extra space to search the text. This change does not affect the time complexity. We

82

seek to further reduce the working space by employing a smaller space mechanism to name

the pattern rows and subsequently name the text positions.

Recent innovations in succinct full-text indexing provide us with the ability to compress

a suffix tree, using no more space than the entropy of the original data it is built upon. These

self-indexes can replace the original text, as they supportretrieval of the original text, in

addition to answering queries about the data, very quickly.

Several dynamic compressed suffix tree representations have been developed, each of-

fering a different time/space trade-off. Chan et al. presented a dynamic suffix tree that

occupiesO(ℓ) bits of space [14]. Queries, such as edge label retrieval andinsertion or re-

moval of a substring, have anO(log2 ℓ) slowdown. Russo et al. developed a dynamic fully-

compressed suffix tree requiringℓHk(ℓ) + o(ℓ log σ) bits of space, which is asymptotically

optimal underkth order empirical entropy [56]. This compressed suffix treerepresenta-

tion uses a dynamic compressed suffix array and stores a sample of the suffix tree nodes.

Although some operations can be executed more quickly, all operations haveO(log2 ℓ)

time complexity. This dynamic compressed suffix tree supports a larger set of suffix tree

navigation operations than the compressed suffix tree proposed by Chan et al. [14]. It

also reaches a better space complexity and can perform basicoperations more quickly. We

hereafter suppose that a dynamic compressed suffix tree is used to replace the dictionary of

patterns and we refer to the slowdown of operations in the entropy-compressed self-index

asτ .

For a succinct version of Algorithm 4, we use a dynamic compressed suffix tree to

represent and index the pattern rows in entropy-compressedspace. Traversing the dynamic

compressed suffix tree introduces a slight sacrifice in runtime. We modify Algorithm 4 to

use the compressed suffix tree. The changes are limited to steps 1a and 2.

83

During pattern preprocessing, the dynamic compressed suffix tree can be built incre-

mentally, as one pattern row is named at a time. First, traversal of the suffix tree can be

attempted by traversing a path from the root labeled by the characters in the pattern row. If

a matching row is found, the new row is given the same name as the row that it matches.

Otherwise, the new pattern row is inserted into the compressed suffix tree and given a new

name.

The positions of a text block row are also named by traversingthe suffix tree. Here

the suffix tree is not modified by the text. Thus, an entire textblock is named in linear

time, with aτ slowdown. We use a technique similar to the one described by Gusfield in

the computation ofmatching statistics, in [35] Section 7.8. Positions in a text block are

named, row by row, according to the names of pattern rows. To name a new text block row,

traversal begins at the root of the tree, with the edge whose label matches the first position

of the text block row. Whenm consecutive characters trace a path from the root, traversal

reaches a leaf, and the position is named with the matching pattern row. At a mismatch,

suffix links quickly find the longest suffix of the already matched string that matches a

prefix of some pattern row and the next text character is compared to that labeled edge of

the tree.

All pattern rows have widthm. This ensures that each text position can be uniquely

labeled. One pattern row cannot be a substring of another. Thus, we do not share the con-

cern of Amir and Farach’s suffix tree based approach to dictionary matching [3]. They use

lowest marked ancestor queries to address the issue of possibly missing pattern occurrences

when one pattern is a substring of another, and an occurrencemay be skipped when a suffix

link is traversed.

Theorem 6.2.1. If d ≥ m, we can solve the dynamic 2D dictionary matching problem

84

in almost linearO((ℓ + n1n2)τ) time andO(m logm + dm′ log dm′) bits of extra space,

aside from the space used to represent the dictionary in a compressed self-index. Pattern

P of sizep×m can be inserted to or removed from the dictionary inO(pmτ) time and the

updated index will occupy an additionalO(p log dm′) bits of space, wherem′ is updated to

reflect the new maximum pattern height.

Proof. With small blocks of text, andd ≥ m, Algorithm 4 usesO(ℓ log ℓ + dm′ log dm′)

bits of space for preprocessing whenO(ℓ log ℓ) bits are used to prepare the pattern rows

for dynamic dictionary matching. Replacing [60] with the compressed suffix tree traversal,

the algorithm uses entropy-compressed space to represent and index the dictionary and an

extraO(dm′ log dm′) bits of space to name the pattern rows. Sinced ≥ m, O(m logm +

dm′ log dm′) bits of extra space are used to label text positions and perform 1D dynamic

dictionary matching in the columns of text. All operations (preprocess dictionary, update

dictionary, search text) run in linear time, with anO(τ) slowdown to query the dynamic

compressed suffix tree.

6.3 2D-DDM in Small-Space for Small Number of Pat-

terns

This section deals with the case in which the number of patterns is smaller than the common

dimension among all dictionary patterns, i.e.,d = o(m). For this case, we do not allow the

space to label each text block location and therefore the dynamic version of the Bird and

Baker algorithm cannot be applied trivially. We use several combinatorial tricks to preserve

the spirit of Bird and Baker’s algorithm without incurring thenecessary storage overhead.

85

We use dynamic data structures that allow the dictionary to be updated efficiently. The

dictionary is indexed by a dynamic compressed suffix tree, after which the patterns can be

discarded. This can be done in space that meetskth order empirical entropy bounds of

the input, as described in Section 6.2. Thus, the compressedself-index does not occupy

extra space. Throughout this chapter, the extra space used by our algorithm is limited to

O(m logm+dm′ log dm′) bits of space. The running time of our algorithm is almost linear,

with a slowdown to accommodate queries to the compressed suffix tree, referred to asτ .

We divide the dictionary patterns into two groups and searchthe text for patterns in

each group separately. In the following sections, we describe first an algorithm for patterns

in which the rows are highly periodic and then an algorithm for all other patterns. We begin

by describing a dynamic data structure that is used by both parts of the algorithm.

6.3.1 Dynamic Witness Tree

In this section we show how to form a dynamic variant of the witness tree, whose static

version was developed in Section 4.2.1. Recall that a witnesstree can be constructed to

name a setS of j strings, each of lengthm, in linearO(jm) time and inO(j) space so

that identical strings receive the same name. An internal node in the witness tree denotes a

position of mismatch, which is an integer∈ [1, m]. Each edge of the tree is labeled with a

single character. Sibling edges must have different labels. A leaf represents a name given

to string(s) inS.

Query: For any two stringss, s′ ∈ S, return a position of mismatch betweens ands′ if

s 6= s′, otherwise returnm+ 1.

Preprocessing the witness tree for Lowest Common Ancestor (LCA) queries on its

leaves allows us to answer the above witness query between any two named strings in

86

S in constant time. This preprocessing can be performed in linear time and space, with

respect to the size of the dynamic tree [17].

Construction of the witness tree begins by choosing any two strings inS and comparing

them sequentially. When a mismatch is found, comparison halts and an internal node

is added to the witness tree to represent this witness of mismatch, with two children to

represent the names of the two strings. If no mismatch is found, the two strings are given

the same name. Each successive string is compared to the witnesses stored in the tree

by traversing a path from the root to identify to which name, if any, the string belongs.

Characters of a new string are examined in the order dictated by traversal of the witness

tree, possibly out of sequence. If traversal halts at an internal node, the string receives a

new name, and a new leaf is added as a child to the internal node. Otherwise, traversal halts

at a leaf, and the new string is compared sequentially to the string represented by the leaf,

as done with the first two strings.

Now we consider the scenario in whichS is a dynamically changing set of strings.

Lemma 6.3.1.A new string is added to the witness tree inO(m) time.

Proof. Including a new string inS and naming it with the witness tree follows the same

procedure that the static witness tree uses to build the witness tree as each pattern is consid-

ered individually. By Lemma 4.2.4, this is done inO(m) time and adds one or zero nodes

to the witness tree.

Lemma 6.3.2.A string is removed from the witness tree inO(1) time.

Proof. In removing a strings from S, there are two possibilities to consider. Ifs is the

only string with its name, remove its leaf. In the event that the parent is an internal node

87

with only one other child, remove the hanging internal node as well. Then, the sibling of

the deleted leaf becomes a child of its grandparent. The other possibility is that some other

string(s) inS bear the same name ass. We do not want to remove a leaf while there is still

a string inS that has its name. Thus, we augment each leaf with an integer field to store the

number of strings inS that have its name. This counter is increased when a new string is

named with an existing name. This counter is decreased when arow is deleted. When the

counter is down to 0, the leaf is discarded, possibly along with its parent node, as described

earlier.

Observation 5.The dynamic witness tree ofj strings, each of lengthm, occupiesO(j log j)

bits of space.

6.3.2 Group I Patterns

As in Chapter 4, we consider two types of patterns, and each onepresents its own difficulty.

In the initial preprocessing step, we divide the patterns into two groups based on the 1D

periodicity of their rows. In Group I, all pattern rows are periodic, with periods≤ m/4.

The difficulty in this case is that many overlapping occurrences can appear in the text in

close proximity to each other, and we can easily have more candidates than the working

space we allow. Patterns in Group II have at least one aperiodic row or one row whose

period is larger thanm/4. Here, each pattern can occur onlyO(1) times in a text block.

Since several patterns can overlap each other in both directions, a difficulty arises in the

text scanning stage. We do not allow the time to verify different candidates separately, nor

do we allow space to keep track of the possible overlaps between different patterns.

88

Preprocessing Dictionary

We follow the succinct preprocessing scheme that we introduced in Chapter 4. We maintain

the assumption of Chapter 4 that each dictionary pattern whose rows are highly periodic

has an LCM that isO(m). We use the dynamic witness tree and dynamic offset tree instead

of their static counterparts. The following preprocessingsteps are initially performed for

each dictionary pattern in Group I and are later used upon arrival of a new pattern.

1. For each pattern row,

(a) Compute period and canonize.

(b) Lyndon word naming with dynamic witness tree, resultingin a 1D dictionary,

D′.

(c) Insert to dynamic compressed suffix tree.

2. Preprocess 1D dictionary:

(a) PreprocessD′ for dynamic dictionary matching.

(b) Build LCM table for each 1D pattern.

(c) Compute 2D Lyndon word of each 1D pattern and store shift.

Add to compressed trie, if multiple patterns have the same 1Dpattern of names.

Lemma 6.3.3. Patterns in Group I are preprocessed inO(ℓτ) time andO(m logm +

dm′ log dm′) bits of extra space.

Proof. Step 1 processes a single pattern row inO(mτ) time andO(m logm) bits of extra

space. Thus, the entire set of pattern rows are processed inO(ℓ) time to gather information

andO(ℓτ) time to index the pattern rows in a dynamic compressed suffix tree. SinceO(1)

89

information is stored per row,O(dm′ log dm′) bits of extra space are used to store informa-

tion gathered about the pattern rows in the dictionary.

Step 2 preprocesses the 1D patterns in the dictionary of names. Using Sahinalp and

Vishkin’s algorithm,O(dm′) time andO(dm′ log dm′) bits of extra space are used to facil-

itate linear time dynamic dictionary matching in a 1D dictionary of sizeO(dm′) [60]. The

LCM tables of the 1D patterns are computed in linear time and occupyO(dm′ logm′) bits

of extra space. The 2D Lyndon word of each pattern can be computed in time proportional

to its size. The 2D Lyndon words of the dictionary occupyO(dm′ log dm′) bits of extra

space. Overall, Step 2 runs inO(dm′) time andO(dm′ log dm′) bits of extra space.

Corollary 6.3.4. A new pattern of sizep × m is added to Group I inO(pmτ) time and

O(m logm+ p log dm′) bits of extra space.

Lemma 6.3.5.A pattern in Group I of sizep×m is removed from the dictionary inO(pmτ)

time and eliminatesO(m logm+ p log dm′) bits of extra space the algorithm allocated for

it.

Proof. The following steps meet the indicated time and space boundsand remove a pattern

from Group I. Each pattern row is removed from the dynamic witness tree, inO(1) time

(by Lemma 6.3.2), and from the dynamic compressed suffix tree, in O(mτ) time. This

takesO(pmτ) time in total. If this is the only pattern with its 1D representation, its LCM

table is deleted and the 1D pattern is removed from the dictionary of names that has been

preprocessed for dynamic dictionary matching. If this is one of several patterns with the

same 1D representation, and the sole member of its consistency class, the 2D Lyndon word

is removed from the compressed trie.

90

Text Scanning

The text is searched for occurrences of patterns in Group I ina three step process. First, the

text block rows are named by the Lyndon words of their periodsusing the dynamic witness

tree of the dictionary (Section 6.3.1). We store the Lyndon word name, period size,LYpos,

right, andleft of each pattern row. Then, the linearized text,T ′, is searched for candidate

positions that match a pattern in the 1D dictionary using 1D dynamic dictionary matching,

since the patterns can be of varying heights. Finally, the verification step finds the actual

pattern occurrences among the candidates. This requires consideration of the alignment of

periods among rows and of the overall width of the 1D names. Since the first two steps

have been described, the remainder of this section discusses the verification stage.

If m′ = O(m), we can use a verification procedure almost identical to the procedure

that appears in Chapter 4. However, if the uniform width,m, is asymptotically smaller

than the height of the tallest pattern,m′, then this algorithm does not yield a linear time

text scanning. This is due to the fact that the algorithm costsO(m′) time to process each

candidate row, resulting inO(m′ ∗m′) time if m = o(m′). For this situation, new ideas are

needed and we introduce a new verification process that verifies a single pattern inO(m′)

time. Since the dictionary hasd patterns, andd < m, the entire text block is verified in

O(mm′) time.

We verify candidates for each pattern,Pi, separately. Verification of each candidate

consists of two tasks:

1. Verify shifts: The verification of shifts is summarized in Algorithm 5 and described

in the following paragraph.

Let P ′
i be the 1D pattern of names forPi. If P ′

i is not periodic, there is no need to

91

Algorithm 5 Verify Shifts for PatternPi

Input: P ′
i : 1D pattern of names forPi,

LW [1...m]: 2D Lyndon word representingPi

compressed trie ofLW [1...m] subsequence at each period
KMP automaton ofP ′

i : longest border horizontally consistent withP ′
i ’s prefixes

if P ′
i is not periodicthen

for all candidate rowsr for patternPi do
computeT LW [1...m] = 2D Lyndon word forT [r...r +mi]
compareLW [1...m] andT LW [1...m]

end for
eliminate candidates that mismatchPi

else
{P ′

i is periodic}
for all p blocks j in P ′

i do
{p block j is a period inP ′

i}
computeT LWj: 2D Lyndon word to represent rows ofp blockj in T
bucket sortT LWj with other shifts for same text rows
matchT LWj against compressed trie

end for
KMP on shifts amongp blocks
eliminate candidates that mismatchPi

end if

92

worry about overlapping candidates, and we verify each candidate row forPi sep-

arately. Verification of theLYposshifts for a candidate ofPi consists of matching

Pi’s 2D Lyndon word with the 2D Lyndon word of the correspondingrows of the

text. If P ′
i is periodic, the idea is similar. We call each period inP ′

i a p block. We

compute the shifts of eachp block separately in the text. In order to remain linear,

we use bucket sort on the shifts of the rows as the 2D Lyndon word for each period

is computed. Since the differentp blocks can have different 2D Lyndon words, we

construct a compressed trie of 2D Lyndon words and match eachtext representa-

tive against the compressed trie. Once the shifts within each p block are verified, it

remains to verify the shifts among thep blocks. Since eachp block has the same

horizontal period (i.e., the LCM of the periods of the rows of ap block), it is possible

to use a Knuth-Morris-Pratt automaton [44] on the shifts to complete the verification.

For this, the preprocessing ofP ′
i stores for each prefix ofP ′

i , the longest border of

the prefix that is horizontally consistent with itself. To comparep blocks when con-

structing the KMP automaton, it suffices to check whether thep blocks point to the

same block in the compressed trie of 2D Lyndon words.

2. Check width: Use range minimum and maximum queries to calculateminRightand

maxLeftfor each candidate ofPi. Then, reverse the shift and make sure that there is

room for the pattern betweenminRightandmaxLeft, i.e., that the candidate spans at

leastm columns.

Time and Space Complexity of Text Scanning:The linear representation of the text

is computed inO(mm′) time and occupiesO(m′ log dm′) bits of space, as shown in Sec-

tion 4.2.2. Candidates can be identified using Sahinalp and Vishkin’s algorithm [60] in time

linear in the 1D representations. Verification as done in Chapter 4 is linear. It remains to

93

show that the new verification, whenm = o(m′), is linear time. Since we haved patterns

andd < m, a linear time search in the 1D text of sizeO(m′) for each pattern, will yield

overallO(mm′) time, linear in the text block. The challenge that arose in Step 1 is the

O(m) time complexity for computing each 2D Lyndon word for the text. For each pattern,

Pi, we have to compute the 2D Lyndon word for every candidate row. However, we can

show that theO(m) work is over all rows of the text when verifyingPi (and not for each

candidate ofPi). Thus, the total complexity for verifyingPi isO(m+m′). Linear time and

space preprocessing schemes allow us to answer range minimum and maximum queries in

O(1) time [28]. Check-width (Step 2) consists of constant-time RMQper candidate, which

totalsO(m′) time overall forPi, and for allPi, 1 ≤ i ≤ d, text scanning completes in

O(mm′) time.

Lemma 6.3.6.A text of sizen1 × n2 is searched for patterns in Group I inO(n1n2τ) time

andO(m logm+m′ log dm′) bits of extra space.

Proof. Each block of text is searched inO(mm′τ) time andO(m logm+m′ log dm′) bits

of extra space. Thus, the entire text is searched for patterns in Group I inO(n1n2τ) time

andO(m logm+m′ log dm′) bits of extra space.

6.3.3 Group II Patterns

Patterns in Group II have at least one aperiodic row or one rowwhose period is larger than

m/4. We assume that each pattern in this group has at least one aperiodic row. The case of

a pattern having a row that is periodic with period size betweenm/4 andm/2 is handled

similarly, since each pattern can occur onlyO(1) times per text block row.

94

For patterns in Group II, many different pattern rows can overlap in a text block row.

As a result, it is difficult to employ a succinct naming schemeto linearize the text block and

find all occurrences of patterns in the text. Instead, we use the aperiodic row of each pattern

to filter the text block and identify a limited set of candidates for pattern occurrences. We

use dynamic dueling to eliminate inconsistent candidates within each text column. Then, a

single pass over the text suffices to verify all remaining candidates for pattern occurrences.

Preprocessing Patterns

The following preprocessing steps are initially performedfor each dictionary pattern in

Group II and are later used upon arrival of a new pattern.

1. Locate first aperiodic row in each pattern and preprocess for dynamic dictionary

matching.

2. Name pattern rows using a single witness tree and store 1D patterns of names.

3. Insert pattern rows to dynamic compressed suffix tree.

4. Construct dynamic suffix tree of 1D patterns.

5. Preprocess witness tree and suffix tree for dynamic LCA.

Lemma 6.3.7.Patterns in Group II are preprocessed inO(ℓτ) time andO(dm log dm +

dm′ log dm′) bits of extra space.

Proof. 1. The period of a pattern row is computed inO(m) time andO(m logm) bits of

extra space [46]. At most, all pattern rows are examined, inO(ℓ) time andO(m logm) bits

of extra space. Sahinalp and Vishkin’s preprocesses these rows inO(dm) time and stores

information inO(dm log dm) bits [60].

95

2. Pattern rows are named by the witness tree inO(ℓ) time. By Observation 5, the dynamic

witness tree of pattern rows occupiesO(dm′ log dm′) bits of space. A single witness tree

suffices since all pattern rows are the same size.

3. The set of pattern rows is indexed by the dynamic compressed suffix tree inO(ℓτ) time.

4. The 1D dictionary of names is stored inO(dm′ log dm′) bits of space and its dynamic

generalized suffix tree is constructed inO(dm′) time and occupiesO(dm′ log dm′) bits of

space [16].

5. The dynamic suffix and witness trees are preprocessed in linear time to answer LCA

queries inO(1) time [17].

Corollary 6.3.8. The dictionary is updated to add a new pattern of sizep×m to Group II

in O(pmτ) time andO(pm log dm+ p log dm′) bits of extra space.

Lemma 6.3.9.A pattern in Group II of sizep×m is removed from the dictionary inO(pmτ)

time and eliminatesO(m logm+ p log dm′) bits of extra space the algorithm allocated for

it.

Proof. The following steps are performed to remove a pattern from Group II:

The first aperiodic row of the pattern is removed from the 1D dictionary that has been

preprocessed for dynamic dictionary matching inO(m) time and deallocatesO(m logm)

bits of space [60].

The 1D representation of the pattern is deleted and it is removed from the suffix tree of 1D

patterns inO(p) time and deallocatesO(p log dm′) bits of space [16].

Each row of the pattern is removed from the compressed suffix tree inO(pmτ) time.

96

Text Scanning

The text is searched for patterns in Group II in almost the same way as in the static al-

gorithm of Chapter 4. The only difference between the text scanning stage of the static

algorithm and that of the dynamic algorithm lies in the method used to identify 1D pattern

occurrences in the linearized text. The Aho-Corasick automaton is not suitable for a dy-

namic dictionary since it is not updated efficiently. Rather,we use Sahinalp and Vishkin’s

method for dynamic dictionary matching since it completes all preprocessing and searching

tasks, including updating the dictionary, in linear time and space. We summarize the text

scanning and the complexity analysis in the following.

Summary of Text Scanning

1. Identify candidates: Sahinalp and Vishkin’s 1D dynamic dictionary matching al-

gorithm finds occurrences of the first aperiodic row of the patterns. It searches the

text block, one row at a time, inO(mm′) time andO(m logm) bits of extra space.

O(dm′) candidates are stored inO(dm′ log dm′) bits of extra space.

2. Duel vertically:

(a) An LCP query between suffixes of the 1D patterns finds the number of rows that

match in overlapping candidates. An LCA query in the generalized suffix tree

of 1D patterns is performed inO(1) time and space to find a row of mismatch.

(b) We use the witness tree to compare row names inO(1) time. An LCA query in

the witness tree of the pattern rows is performed inO(1) time and space. Then

a character in each pattern row is retrieved inO(τ) time.

Time: each duel takesO(τ) time. Due to transitivity, the number of duels is limited

97

by the number of candidates. There areO(dm′) candidate positions, withd < m so

this step completes inO(mm′τ) time.

3. Verify candidates: Duels eliminate horizontally inconsistent candidates. A duel

consists of an LCP query on the dynamic compressed suffix tree in O(τ) time. By

transitivity, the number of candidates limits the number ofduels. WithO(dm′) can-

didates, andd < m, dueling is completed inO(mm′τ) time. We verify one text block

row at a time and mark positions at which a pattern row (1D name) is expected to be-

gin. The surviving labels are carried to the next row. This uses space proportional to

the labels for one text row plus the number of candidates,O(m logm+ dm′ log dm′)

bits. Each text character within an anticipated pattern occurrence is only compared

to one pattern character, inO(τ) time, which isO(mm′τ) time overall.

Lemma 6.3.10.A text of sizen1 × n2 is searched for patterns in Group II inO(n1n2τ)

time andO(m logm+ dm′ log dm′) bits of extra space.

Proof. Each block of text is searched inO(mm′τ) time andO(m logm+dm′ log dm′) bits

of extra space. Thus, the entire text is searched for patterns in Group II inO(n1n2τ) time

andO(m logm+ dm′ log dm′) bits of extra space.

Theorem 6.3.11.Our algorithm for dynamic 2D dictionary matching whend < m com-

pletes inO((ℓ+n1n2)τ) time andO(dm log dm+dm′ log dm′) bits of extra space. Pattern

P of sizep×m can be inserted to or removed from the dictionary inO(pmτ) time and the

index will occupy an additionalO(p log dm′) bits of space, wherem′ is updated to reflect

the new maximum pattern height.

98

Proof. We separate the patterns into two groups and search for patterns in each group

separately. Classifying a pattern entails finding the periodof each pattern row. This is done

in O(m) time andO(m logm) bits of extra space per row [46]. Overall, the dictionary is

separated into two groups inO(ℓ) time andO(m logm) bits of extra space.

For patterns in Group I, this complexity is demonstrated by Lemmas 6.3.3, 6.3.5, 6.3.6 and

Corollary 6.3.4.

For patterns in Group II, this complexity is demonstrated byLemmas 6.3.7, 6.3.9, 6.3.10

and Corollary 6.3.8.

Chapter 7

Implementation

The succinct 1D dictionary matching problemwas recently closed with the development

of an algorithm that meets optimal time and space bounds. There is a lag in the imple-

mentation of the theoretical contributions to solve this problem. This is likely due to their

complexity and the novelty of the data structures which theyrely upon. Thus, as part of

this thesis we have developed a succinct dictionary matching program that is more intuitive

and relies on more commonly used data structures. Our algorithms for succinct 2D dic-

tionary matching reduce the two-dimensional problem to itsone-dimensional counterpart

in different ways. Hence, we see the development of softwarefor succinct 1D dictionary

matching as a first step towards developing a program that solves 2D dictionary matching

in small space.

We took the following steps to create our succinct 1D dictionary matching program.

1. Coded Ukkonen’s suffix tree construction algorithm.

2. Modified suffix tree to form generalized suffix tree.

3. Wrote program to perform dictionary matching over generalized suffix tree.

99

100

4. Merged dictionary matching software with compressed suffix tree.

7.1 Software Development

We created a time and space efficient program for dictionary matching on one-dimensional

data. We chose to use the suffix tree as the data structure for this implementation, since

there are compressed suffix tree representations that reachempirical entropy bounds of the

input string. Furthermore, these data structures have beenimplemented and their code is

readily available. These implementations have been provento be very space efficient in

practice.

We began by distilling the precise implementation details necessary to convert a regular

suffix tree to a generalized suffix tree for dictionary matching. Ukkonen’s suffix tree con-

struction algorithm [61] extends quite naturally to the construction of a generalized suffix

tree for several strings [35], which can be used in a straightforward manner for dictionary

matching. We coded Ukkonen’s suffix tree construction algorithm and modified it to index

a set of strings. Since it is an online algorithm, it can insert one string at a time to the index.

We give a brief outline of Ukknonen’s algorithm in the following paragraphs, and our

specifications of the algorithm’s flow are depicted in pseudocode in Algorithm 6.

Ukkonen’s algorithm is linear time and online. The eleganceof Ukkonen’s algorithm

is evident in its key property. The algorithm admits the arrival of the string during con-

struction. Yet, each suffix is inserted exactly once, and never updated after its insertion. An

extra variable is incremented as characters arrive, eliminating the need to update each of

the leaves representing suffixes already indexed by the tree. The end index of each leaf is

demarcated by this special variable. Thus, a leaf is never updated after its creation.

As a new character is appended to the string, Ukkonens’s algorithm makes sure that all

101

Algorithm 6 Ukkonen’s suffix tree construction algorithm

j = -1;
{j is last suffix inserted}
for i = 0 to n− 1 do
{phasei: i is current end of string}
while j < i do
{let j catch up toi}
if singleExtensionAlgorithm(i, j)then

break;{implicit suffix so proceed to next phase}
end if
if lastNodeInserted 6= root then
lastNodeInserted.SuffixLink ← root;

end if
lastNodeInserted← root;

end while
end for

suffixes of the input string are indexed by the tree. As soon asa suffix is implicitly found

in the tree, modification of the tree ceases until the next newcharacter is examined. The

next phase begins by extending the implicit suffix with the new character. A suffix link is

a pointer from the internal node at the end of the path labeledxS to the internal node at

the end of the path labeledS, wherex is an arbitrary character andS is a possibly empty

substring. A suffix tree with several suffix links is shown in Figure 7.1. Using suffix links

and a pointer to the last suffix inserted, a suffix is added to the tree in amortized constant

time. The combination of one-time insertion of each suffix and rapid suffix insertion results

in linear-time suffix tree construction.

The generalized suffix treeis a suffix tree for a set of strings. A suffix tree is often

used to index several strings by concatenating the strings with unique delimiters between

them. With that approach, a significant amount of space is wasted by indexing artificial

suffixes that span several strings. Ukkonen’s algorithm lends itself to a more space efficient

construction of the generalized suffix tree in which only actual suffixes are stored.O(1)

102

M i s s i s s i p p i $

� � � � � � � � 	 �
 �� ��

����

�����
�	�	

����

������

����

����

�����

�	���

������
����

�����

�����
�	�	

������

��
���

����

�	���

�����

�	���

�����

�	���
s6

s11

s8

s5 s2 s1
s10

s9
s7

s4

s3

s12

Figure 7.1: Suffix tree for the stringMississippi with several suffix links.

extra information is stored at each node, representing the string number of the node. The

generalized suffix tree then consists of the suffix trees of the individual patterns merged

together. It is built incrementally, in anonlinefashion, inserting one string at a time.

Dictionary matching over the generalized suffix tree of patterns mimics Ukkonen’s pro-

cess for inserting a new string into a generalized suffix tree(as shown in Algorithm 6),

pretending to index the text, without modifying the actual tree. The text is processed in

an online fashion, traversing the tree of patterns as each successive character is read. A

pattern occurrence is announced each time a labeled leaf is encountered. A leaf is labeled

when it represents the entire pattern, i.e., its first suffix,to indicate a pattern occurrence

when traversal reaches the leaf. At a position of mismatch ora pattern occurrence, suffix

links are used to navigate to successively smaller suffixes of the matching string. When a

suffix link is used within the label of a node, the corresponding number of characters can be

skipped, obviating redundant character comparisons. Thisensures that the text is scanned

103

Algorithm 7 Dictionary matching over the generalized suffix tree

1: curNode← root
2: textIndex← 0
3: curNodeIndex← 0
4: skipcount← 0
5: usedSkipcount← false
6: repeat
7: lastNode← curNode
8: if usedSkipCount6= true then
9: textIndex+ =curNodeIndex

10: curNodeIndex← 0
11: curNode← curNode.child(text[textIndex])
12: if curNode.length> 0 then
13: curNodeIndex++ {already compared the first character on the edge}
14: end if
15: else
16: usedSkipCount← false
17: end if
18: {compare text}
19: while curNodeIndex<curNode.lengthAND curNodeIndex+textIndex<text.length

do
20: if text[textIndex+curNodeIndex] 6= pat[curNode.stringNum][curNode.beg+

curNodeIndex] then
21: break{mismatch}
22: end if
23: curNodeIndex++
24: end while
25: if curNodeIndex=curNode.lengthAND curNode.firstLeaf()then
26: announce pattern occurrence
27: end if
28: if curNodeIndex = curNode.length AND curNode.length >

0 AND text[textIndex + curNodeIndex − 1] =
pat[curNode.stringNum][curNode.beg + curNodeIndex− 1] then

29: continue{branch and continue comparing text to patterns}
30: end if
31: handleMismatch
32: until textIndex+curNodeIndex≥ text.length{scan entire text}

104

Algorithm 8 Handling a Mismatch

if curNode.depth6= 0 OR lastNode.depth6= 0 then
if curNode.suffixLink = rootAND lastNode.suffixLink6= root then

curNode← lastNode
curNodeIndex← curNode.length{mismatched when trying to branch}
textIndex− = curNode.length

end if
if curNode.parent= root AND curNodeIndex= 1 then

textIndex++
curNodeIndex= 0
curNode = curNode.parent
continue{when traverse suffix link: will be at mismatch, so skip 1 char}

end if
useSkipcountTrick(skipcount, curNode)

else
{mismatch at root}
textIndex++

end if

in linear time. We modified the peudocode in Algorithm 6 to perform dictionary matching.

The pseudocode is in Algorithm 7, with its submodules extracted to Algorithms 8 and 9.

We now provide the intuition behind the skip-count trick. Itis based on the property

of suffix trees summarized in the following lemma. Recall thata suffix link is a directed

edge from the internal node at the end of the path labeledxS to another internal node at

the end of the path labeledS, wherex is an arbitrary character andS is a possibly empty

substring. We can similarly define suffix links for leaves in the tree. The suffix link of the

leaf representing suffixi points to the leaf representing suffixi+ 1.

Lemma 7.1.1. In any suffix tree, the number of nodes along the path labeledα is at least

as large as the number of nodes along the path from the root labeledxα.

Proof. The proof is by contradiction. Supposeα’s path has fewer nodes thanxα’s. This

means that some suffix ofxα is not indexed by the suffix tree. This implies that the suffix

105

Algorithm 9 Skip-Count trick

repeat
curNode← curNode.suffixLink
usedSkipCount← true
textPos= curNodeIndex+textIndex
skipcount← curNode.length− curNodeIndex
if skipcount≥ curNode.lengththen

if curNode.length= 0 then
usedSkipCount← false{branch at next iteration of outer loop, look for next text
char}
curNodeIndex← 0
skipcount← 0

else
if skipcount= curNode.lengththen

curNodeIndex−−
usedSkipCount← false{branch at next iteration of outer loop}

end if
skipcount− = curNode.length
curNode← curNode.parent

end if
else

curNodeIndex← curNode.length− skipcount
skipcount← 0

end if
until skipcount≤ 0
textIndex= textPos− curNodeIndex

106

Algorithm 10 Announcing Pattern Occurrence in CST

if getCharAtNodePos(curNode, curNodeIndex)= END OF STRING MARKER then
pos← csa[lb(curNode)]− 1
{lb(v) returns the left bound of nodev in the suffix array}
{pos is dictionary index immediately preceding this leaf’s ancestor emanating from
root}
if pos< 0 then

occ← true{beginning of first pattern}
else
c← getCharAtPatternPos(pos)
if c = END OF STRING MARKER then

occ← true{beginning of some pattern after first}
end if

end if
end if

tree is not fully constructed. Hence, a contradiction.

Corollary 7.1.2. If the suffix link of the root points to itself, every node of the suffix tree has

a suffix link.

The skip-count trick that we use is fashioned after Ukkonen’s. In his suffix tree con-

struction algorithm, he uses suffix links to navigate acrossand then skip down the appropri-

ate number of characters. We navigate across the tree and then jump up to the appropriate

position at which the mismatch occurred. We make this modification since it is more ef-

ficient to navigate up a tree than down. That is, every node hasa single parent but when

navigating to a child, several branches may have to be considered. We are able to make

this improvement since our algorithm uses a fully constructed suffix tree. The suffix link

of every node must already exist. On the partially constructed tree, that Ukkonen uses,

this is not guaranteed. However, Ukkonen’s algorithm uses the fact that the parent node

must already have a suffix link. When a suffix link is traversed,we know the number of

characters to skip going up the tree as this is the number of characters that remain along the

107

edge after the position of mismatch. Yet, we do not know at which node we will end up.

The shorter label may be split over more edges than the longerlabel spans. This is a result

of Lemma 7.1.1.

In addition to these implementation details, a key challenge in implementing dictionary

matching, as pointed out in [3], is when one pattern string isa proper substring of another.

In the straightforward traversal, these pattern occurrences can be passed unnoticed in the

text. A solution to this problem is to augment each node of thesuffix tree with an extra

field that points to its lowest ancestor that is a pattern occurrence. This information can be

obtained in linear time by performing a depth-first traversal of the suffix tree.

The suffix tree is a versatile tool in string algorithms, and is already needed in many

applications to facilitate other queries. Thus, in practice, our dictionary matching program

requires very little additional space. This tool is itself acontribution, allowing efficient

dictionary matching in small space, however, we improved this application by using a com-

pressed suffix tree as the underlying data structure.

We ported our dictionary matching code to run over a compressed suffix tree. We would

have liked to create a dynamic dictionary matching program that runs in small space. How-

ever, neither of the dynamic compressed suffix tree representations have been implemented

yet. None of the existing compressed suffix suffix tree representations have online con-

struction algorithms so we cannot build the compressed suffix tree incrementally, one pat-

tern at a time. Instead, we concatenate the dictionary with aunique delimiter, the end of

string marker, between each pattern and index this single string. We used the Succinct Data

Structures Library (SDSL)1 since it provides a C++ implementation of several compressed

suffix tree representations.

1http://www.uni-ulm.de/en/in/institute-of-theoretical-computer-science/
research/sdsl.html

108

Although the ultimate capability of the compressed suffix tree is modeled after the

functionality of its uncompressed counterpart, many operations that are straightforward in

the uncompressed suffix tree require creativity in the compressed suffix tree. Understanding

how the suffix tree components are represented in the compressed variation is a necessary

prerequisite to finding these workarounds to seemingly straightforward navigational tasks.

Furthermore, the compressed suffix tree is a self-index and allows us to discard the original

set of patterns. Thus, we had to figure out which component data structure to query in

order to randomly access a single pattern character. For instance, announcing a pattern

occurrence (Algorithm 7, line 25) is not simply a question ofchecking whether traversal

has reached the end of a leaf representing the first suffix of a pattern. A simpleif statement

is replaced by the segment of pseudocode delineated in Algorithm 10 and described in the

following paragraph.

Instead of anif statement that checks properties of a leaf, we perform the following

computation, involving several function calls, to determine if we have found a pattern in

the text. When traversing the compressed suffix tree according to the text, a mismatch

along an edge leading into a leaf may in fact be a pattern occurrence. Thus, we first check

if the mismatch is at an end of string marker, which mismatches every text character. Then,

we have to determine if this leaf represents the first suffix ofsome pattern. This is done by

finding out which character precedes the beginning of this leaf’s path from the root. If the

path begins at the beginning of the dictionary, this leaf represents the first suffix of the first

pattern, and we announce a pattern occurrence. Otherwise, if the character at that position

is a pattern delimiter, we know this suffix is an entire dictionary pattern, and also announce

a pattern occurrence.

109

7.2 Evaluation

We plan to assess the effectiveness of our software against space efficient 1D dictionary

matching software. Specifically, we will compare our approach to that of Fredriksson

[26] who achieves dictionary matching in small space andexpectedlinear time using com-

pressed self-indexes and backward DAWG matching. The space used by his algorithm is

close to the information theoretic bounds of the patterns. However, the algorithm is not

online in the sense that it cannot process a text as it arrives.

Since we are primarily interested in large sets of data on which dictionary matching is

performed, we will use realistic sets of biological, security and virus detection data. For

biological sequences, we obtained fly sequences from FlyBase2, and flu sequences from

the Influenza Virus Sequence Database3. Network intrusion detection system signatures

are readily available at ClamAV4, and virus signatures at Snort5.

2http://flybase.org/static_pages/downloads/bulkdata7.html
3http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/nph-select.cgi?go=

database
4http://www.clamav.net
5http://www.snort.org/

Chapter 8

Conclusion

This thesis has contributed several algorithms for efficient yet succinct 2D dictionary match-

ing. We have developed the first linear-time small-space 2D dictionary matching algorithm.

We have extended our focus to the dynamic setting and developed an algorithm whose

running time is linear, besides the slowdown to query the compressed suffix tree of the

dictionary. Yet its extra working space is quite limited.

The algorithms developed in this thesis for 2D data are suitable for rectangular patterns

that are all the same size in at least one dimension. We would like to expand our focus

to consider dictionary matching for other kinds of 2D dictionaries in the space-constrained

environment. Succinct 2D dictionary matching among squarepatterns of different sizes

has not yet been addressed and requires a different set of techniques.

When the dictionary contains rectangular patterns of different height, width and aspect

ratios, a method that labels text positions is not appropriate. Idury and Schaffer developed

both static and dynamic dictionary matching algorithms forsuch patterns [41]. They use

techniques for multidimensional range searching as well asseveral applications of the Bird

/ Baker algorithm, after splitting each pattern into overlapping pieces and handling these

110

111

segments in groups of uniform height. Idury and Schaffer’s algorithms require working

space proportional to the dictionary size. The static version has anO(|D| log(d + σ))

slowdown to preprocess a dictionaryD of d patterns and anO(log2 |D| log(B + d + σ))

slowdown to scan the text, whereB is the largest size of any pattern. The dynamic version

has anO(log4 |D|) slowdown to preprocess the dictionary, insert, or remove a pattern, and

anO(log4 |D| logB) slowdown to scan the text, whereB is the largest size of any pattern.

We see our succinct version of the Bird / Baker algorithm as a first step towards addressing

the more general problem of succinct static and dynamic 2D dictionary matching among

all rectangular patterns.

Other interesting variations of small-space 2D dictionarymatching include the approx-

imate versions of the problem in which one or more changes occur either in the patterns or

in the text. The approximate matches may accommodate character mismatches, insertions,

deletions, “don’t care” characters, or swaps. Beyond their theoretical intrigue, these prob-

lems all have many practical applications. We hope to explore these problems in future

research.

We have developed software for succinct 1D dictionary matching. We would like to de-

velop software fordynamicsuccinct dictionary matching, in which a pattern can be inserted

to or removed from the dictionary without reprocessing the entire dictionary. Our program

relies on the compressed suffix tree to index the dictionary.A natural way of generalizing

this program to the dynamic setting would use a dynamic compressed suffix tree as the

underlying index. However, the existing dynamic compressed suffix tree representations

[14, 56] have not yet been implemented.

Our algorithms for succinct 2D dictionary matching employ techniques for succinct 1D

dictionary matching. Thus, we see our 1D dictionary matching program as a first step in

112

developing software for succinct 2D dictionary matching. We hope to expand our dictio-

nary matching software to employ our new techniques and to perform dictionary matching

among 2D data.

Bibliography

[1] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic

search.Communications of the ACM, 18(6):333–340, 1975.

[2] A. Amir, G. Benson, and M. Farach. An alphabet independentapproach to two-

dimensional pattern matching.SIAM Journal on Computing, 23(2):313–323, 1994.

[3] A. Amir and M. Farach. Adaptive dictionary matching. InIEEE Symposium on

Foundations of Computer Science (FOCS), pages 760–766, 1991.

[4] A. Amir and M. Farach. Two-dimensional dictionary matching. Information Process-

ing Letters, 44(5):233–239, 1992.

[5] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. Dynamic dictionary match-

ing. Journal of Computer and System Sciences, 49(2):208–222, 1994.

[6] A. Amir, M. Farach, R. M. Idury, J. A. L. Poutré, and A. A. Scḧaffer. Improved

dynamic dictionary matching.Information and Computation, 119(2):258–282, 1995.

[7] A. Amir, G. M. Landau, and D. Sokol. Inplace 2d matching incompressed images.

Journal of Algorithms, 49(2):240–261, 2003.

[8] T. J. Baker. A technique for extending rapid exact-match string matching to arrays of

more than one dimension.SIAM Journal on Computing, (7):533–541, 1978.

113

114

[9] D. Belazzougui. Succinct dictionary matching with no slowdown. InSymposium on

Combinatorial Pattern Matching (CPM), pages 88–100, 2010.

[10] M. A. Bender and M. Farach-Colton. The lca problem revisited. InLatin American

Theoretical Informatics Symposium (LATIN), pages 88–94, 2000.

[11] R. S. Bird. Two dimensional pattern matching.Information Processing Letters,

6(5):168–170, 1977.

[12] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commununications

of the ACM, 20(10):762–772, 1977.

[13] R. Cánovas and G. Navarro. Practical compressed suffix trees. InSymposium on

Experimental Algorithms (SEA), pages 94–105, 2010.

[14] H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Compressed indexes for dy-

namic text collections.ACM Trans. Algorithms, 3(2), 2007. Article 21.

[15] Y. Choi and T.-W. Lam. Two-dimensional dynamic dictionary matching. InInter-

national Symposium on Symbolic and Algebraic Computation (ISAAC), pages 85–94,

1996.

[16] Y. Choi and T. W. Lam. Dynamic suffix tree and two-dimensional texts management.

Information Processing Letters, 61(4):213–220, 1997.

[17] R. Cole and R. Hariharan. Dynamic LCA queries on trees.SIAM Journal on Com-

puting, 34(4):894–923, 2005.

[18] M. Crochemore, L. Gasieniec, R. Hariharan, S. Muthukrishnan, and W. Rytter. A

constant time optimal parallel algorithm for two-dimensional pattern matching.SIAM

Journal on Computing, 27(3):668–681, 1998.

115

[19] M. Crochemore, L. Gasieniec, W. Plandowski, and W. Rytter. Two-dimensional pat-

tern matching in linear time and small space. InSymposium on Theoretical Aspects

of Computer Science (STACS), pages 181–192, 1995.

[20] M. Crochemore and D. Perrin. Two-way string-matching.Journal of the ACM,

38(3):650–674, 1991.

[21] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees

for optimal succinctness, and beyond. InIEEE Symposium on Foundations of Com-

puter Science (FOCS), pages 184–196, 2005.

[22] P. Ferragina and G. Manzini. Indexing compressed text.Journal of the ACM,

52(4):552–581, 2005.

[23] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy

bounds.Theoretical Computer Science, 372(1):115–121, 2007.

[24] J. Fischer. Wee LCP.Information Processing Letters, 110(8-9):317–320, 2010.

[25] J. Fischer, V. M̈akinen, and G. Navarro. Faster entropy-bounded compressedsuffix

trees.Theoretical Computer Science, 410(51):5354–5364, 2009.

[26] K. Fredriksson. Succinct backward-DAWG-matching.ACM Journal of Experimental

Algorithmics, 13, 2009. Article 8.

[27] K. Fredriksson and F. Nikitin. Simple random access compression. Fundamenta

Informatica, 92(1-2):63–81, 2009.

[28] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for

geometry problems. InACM Symposium on Theory of Computing (STOC), pages

135–143, 1984.

[29] Z. Galil and J. Seiferas. Time-space-optimal string matching (preliminary report). In

ACM Symposium on Theory of Computing (STOC), pages 106–113, 1981.

116

[30] L. Gasieniec and R. M. Kolpakov. Real-time string matching in sublinear space. In

Symposium on Combinatorial Pattern Matching (CPM), pages 117–129, 2004.

[31] R. Giancarlo. A generalization of the suffix tree to square matrices, with applications.

SIAM Journal on Computing, 24(3):520–562, 1995.

[32] R. Giegerich and S. Kurtz. From ukkonen to mccreight and weiner: A unifying view

of linear-time suffix tree construction.Algorithmica, 19(3):331–353, 1997.

[33] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–850, 2003.

[34] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. InACM Symposium on Theory of Computing

(STOC), pages 397–406, 2000.

[35] D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and

Computational Biology. Cambridge University Press, 1997.

[36] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.

SIAM Journal on Computing, 13(2):338–355, 1984.

[37] W.-K. Hon, T.-H. Ku, R. Shah, S. V. Thankachan, and J. S. Vitter. Faster compressed

dictionary matching. InSymposium on String Processing and Information Retrieval

(SPIRE), pages 191–200, 2010.

[38] W.-K. Hon, T. W. Lam, R. Shah, S.-L. Tam, and J. S. Vitter. Compressed index for

dictionary matching. InData Compression Conference (DCC), pages 23–32, 2008.

[39] W.-K. Hon, T. W. Lam, R. Shah, S.-L. Tam, and J. S. Vitter. Succinct index for

dynamic dictionary matching. InInternational Symposium on Symbolic and Algebraic

Computation (ISAAC), pages 1034–1043, 2009.

117

[40] R. M. Idury and A. A. Scḧaffer. Dynamic dictionary matching with failure functions.

Theoretical Computer Science, 131(2):295–310, 1994.

[41] R. M. Idury and A. A. Scḧaffer. Multiple matching of rectangular patterns.Informa-

tion and Computation, 117(1):78–90, 1995.

[42] J. Karkkainen and P. Sanders. Simple linear work suffix array construction. InIn-

ternational Colloquium on Automata, Languages and Programming (ICALP), pages

943–955, 2003.

[43] D. K. Kim, J. S. Sim, H. Park, , and K. Park. Linear-time construction of suffix arrays.

In Symposium on Combinatorial Pattern Matching (CPM), pages 186–199, 2003.

[44] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.SIAM

Journal on Computing, 6(2):323–350, 1977.

[45] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. In

Symposium on Combinatorial Pattern Matching (CPM), pages 200–210, 2003.

[46] M. Lothaire.Applied Combinatorics on Words (Encyclopedia of Mathematics and its

Applications). Cambridge University Press, New York, NY, USA, 2005.

[47] M. G. Main and R. J. Lorentz. An O(n log n) algorithm for finding all repetitions in a

string. Journal of Algorithms, 5(3):422–432, 1984.

[48] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.

SIAM Journal on Computing, 22(5):935–948, 1993.

[49] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,

48(3):407–430, 2001.

[50] E. M. McCreight. A space-economical suffix tree construction algorithm.Journal of

the ACM, 23(2):262–272, 1976.

118

[51] G. Navarro and V. M̈akinen. Compressed full-text indexes.ACM Computing Surveys,

39(1), 2007. Article 2.

[52] S. Neuburger and D. Sokol. Succinct 2d dictionary matching. Algorithmica, pages

1–23. 10.1007/s00453-012-9615-9.

[53] S. Neuburger and D. Sokol. Small-space 2d compressed dictionary matching. In

Symposium on Combinatorial Pattern Matching (CPM), pages 27–39, 2010.

[54] S. Neuburger and D. Sokol. Succinct 2d dictionary matching with no slowdown. In

Algorithms and Data Structures Symposium (WADS), pages 619–630, 2011.

[55] E. Ohlebusch, J. Fischer, and S. Gog. CST++. InSymposium on String Processing

and Information Retrieval (SPIRE), pages 322–333, 2010.

[56] L. M. S. Russo, G. Navarro, and A. L. Oliveira. Fully compressed suffix trees.ACM

Transactions on Algorithms, 7(4):53:1–53:34, 2011.

[57] W. Rytter. On maximal suffixes and constant-space linear-time versions of kmp algo-

rithm. Theoretical Computer Science, 299(1-3):763–774, 2003.

[58] K. Sadakane. New text indexing functionalities of the compressed suffix arrays.Jour-

nal of Algorithms, 48(2):294–313, 2003.

[59] K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing

Systems, 41(4):589–607, 2007.

[60] S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of pat-

terns using a labeling paradigm. InIEEE Symposium on Foundations of Computer

Science (FOCS), pages 320–328, 1996.

[61] E. Ukkonen. On-line construction of suffix trees.Algorithmica, 14(3):249–260, 1995.

119

[62] N. Välimäki, V. Mäkinen, W. Gerlach, and K. Dixit. Engineering a compressed suffix

tree implementation.ACM Journal of Experimental Algorithmics, 14, 2009. Article

2.

[63] P. Weiner. Linear pattern matching algorithm. InIEEE Symposium on Switching and

Automata Theory, pages 1–11, 1973.

[64] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.

IEEE Transactions on Information Theory, 24(5):530–536, 1978.

