2D DICTIONARY MATCHING IN SMALL SPACE

by

SHOSHANA NEUBURGER

A dissertation submitted to the Graduate Faculty in Compbéénce in partial
fulfillment of the requirements for the degree of Doctor ofl®ophy, The City
University of New York

2012

© 2012
Shoshana Neuburger
All Rights Reserved

This manuscript has been read and accepted for the Grada@iéyHn
Computer Science in satisfaction of the dissertation requént for the
degree of Doctor of Philosophy.

Dina Sokol

Date Chair of Examining Committee

Theodore Brown

Date Executive Officer

Amihood Amir

Amotz Bar-Noy

Stathis Zachos
Supervision Committee

THE CITY UNIVERSITY OF NEW YORK

Abstract
2D Dictionary Matching in Small-Space
by

Shoshana Neuburger

Advisor: Professor Dina Sokol

The dictionary matching problem seeks all locations in agitext
that match any of the patterns in a given dictionary. Efficigorithms for
dictionary matching scan the text once, searching for dépas simultaneously.
There are many scenarios in which storage capacity is khutehe data sets
are exceedingly large. The added constraint of performifigjent dictionary
matching using little or no extra space is a challenging aadtjcal problem.
This thesis focuses on the problem of performing dictiomaagching on two-
dimensional data in small space. We have developed thefficsént algorithms
for succinct 2D dictionary matching in both static and dyraatty changing
data. Although time and space optimal dictionary matchilggrithms for
one-dimensional data have recently been developed, they rinat yet been
implemented. Since our two-dimensional algorithms emplog-dimensional
dictionary matching, we created software to solve one-dsimnal dictionary
matching in small space. This is a first step towards devegppoftware for

succinct dictionary matching in two-dimensional data.

iv

Acknowledgements

I would like to express my gratitute to Prof. Dina Sokol for faeing
an exceptional mentor. She has made herself available tonthgwded me
patiently and skillfully through every aspect of the resbaorocess. She has
become a role model both academically and personally.

| have also been privileged to be a student of Prof. Amotz Bay-N
Although | was not his doctoral student, he has shared withhmeedvice
and experience in academia and has inspired me to immerselfntyshe
world of ideas. | have also been fortunate to take coursds Rviof. Stathis
Zachos. It has been an honor and inspiration to interactawidsearcher of his
caliber. Prof. Amihood Amir has graciously given of his timued has a taken
a personal interest that helped shape my research.

It has been an exceptional experience to be a member of tdeajea
program under the direction of Prof. Theodore Brown. My peas@cademic
achievements would not have been possible without the stippastaff at the
Graduate Center who administered the grants that funded adpgte studies
and travels. | have benefited greatly from the teachinguellop that funded
the majority of my dissertation work. As such, | am gratetuPRrof. Aaron
Tenenbaum and to Prof. Yedidyah Langsam of the Brooklyn Cellets

department for providing me with interesting courses tlmahglemented my

studies and for the favorable teaching schedules that nhélealt possible.

Over the years, | have been fortunate to learn from and wotk wi
professors whose creativity has broadened my thinking amose guidance
has been invaluable. These include Prof. Paula WhitlocK, Rimson Yanofsky,
and Prof. S. Muthukrishnan. This section would be incongplét do not
pay tribute to the late Prof. Chaya Gurwitz, who mentored nmeuiphout
my undergraduate experience and pushed me to pursue grastudies in
mathematics and in computer science. Ultimately, it wasitiguence that
led me to pursue a career in academia. Her exceptional rsxample will
always guide me.

Most of all, | would like to thank my parents for their contows
encouragement and motivation. They embody the values atalsah and
hard work. They have imparted these values powerfully thhotheir own
example. | would also like to give a special thank you to mybaunl for being

supportive and encouraging throughout the dissertatioogss.

Vi

Table of Contents

Abstract (Y
Acknowledgements %
Table of Contents Vi
List of Tables vili
List of Figures IX
1 Introduction 1
2 Preliminaries 5
2.1 Periodicity 5
2.2 CONUGACY . .« « v i e 6
2.3 Empirical Entropy e 6
3 Related Work 8
3.1 1D Dictionary Matching 9
3.1.1 LinearTimeandSpace 9
3.1.2 Small-Space Algorithms 10
3.1.3 Dynamic Dictionary Matching 21
3.2 2D Dictionary Matching 51
3.21 LinearTimeandSpace 15
3.2.2 Small-Space Algorithms 18
3.2.3 Dynamic Dictionary Matching 81
33 Indexing 20
3.3.1 SuffixTree 21
3.3.2 Suffix Array e 23

Vi

8

3.3.3 Compressed Data Structures

Succinct 2D Dictionary Matching

4.1 OVEIVIEW ot e e
4.2 Case I: Patterns With Rows of Period Sizen/4
4.2.1 PatternPreprocessing
422 TextScanning.
4.3 Case lI: Patterns With Row of Period Sizen/4
431 Casellad<m
432 Casellbd>m
4.4 DataCompression. v it

Succinct 2D Dictionary Matching With No Slowdown

5.1 Large NumberofPatterns.
5.2 Small NumberofPatterns.
5.2.1 PatternPreprocessing.
522 TextScanning.,

Dynamic 2D Dictionary Matching in Small Space

6.1 2D-DDMinlLinearSpace.

6.2 2D-DDM in Small-Space For Large Number of Patterns

6.3 2D-DDM in Small-Space for Small Number of Patterns
6.3.1 DynamicWitnessTree
6.3.2 GrouplPatterns
6.3.3 GroupllPatterns

Implementation

7.1 Software Development
7.2 Evaluation

Conclusion

Bibliography

Vil

31

..... 2 3

67

...... 9 6
...... 71

List of Tables

3.1 Algorithms for 1D small-space dictionary matching 11

3.2 Comparison of the time complexities of dynamic 2D dicighmatching
algorithms.

3.3 Suffix Array of the strindMississippi

viii

List of Figures

3.1 Suffix tree for the strinylississippi. 21
4.1 2D patterns with their 1D representations 33
4.2 WItnesstree 34
4.3 h-periodicmatrix 73
4.4 Horizontally consistentpatterns 39
4.5 Offsettree e 45
4.6 Duel between candidates in the same column 57
4.7 Duel between candidates inthe samerow 59
5.1 Linearized2D patterns 70
5.2 Witnesstree 70
7.1 Suffix tree for the strinilississippi with several suffix links. 102

Chapter 1

Introduction

Pattern matching is a fundamental problem in computer seiwith applications in a wide
array of domains. In its basic form, a pattern matching smuibcates all occurrences of
a pattern string within a larger text string. A simple comipgttask, such as a file search
utility employs pattern matching techniques, as does a \wosdessor when it searches a
document for a specific word. Computational molecular biglagd the World-Wide Web
provide additional settings in which efficient pattern nmattg algorithms are essential.
Thedictionary matching problens an extension of the single pattern matching paradigm

where the task is to identify setof patterns, called a dictionary, within a given text. Ap-
plications for this problem include searching for specificgses in a book, scanning a file
for virus signatures, and network intrusion detection. Pphablem also has applications
in the biological sciences, such as searching through a Dédfdence for a set of motifs.
Both pattern matching and dictionary matching generalizbéawo-dimensional setting.
Image identification software, which identifies smaller gea in a large image based on
a set of known images, is a direct application of dictionagtehing on two-dimensional

data.

In recent years, there has been a massive proliferatiogitilata. Some of the main
contributors to this data explosion are the World-Wide Wedxt generation sequencing,
and increased use of satellite imaging. Concurrently, imgueas been producing equip-
ment with ever-decreasing hardware availability. Thuseaechers are faced with scenarios
in which this data growth must be accessible to applicatranging on devices that have
reduced storage capacity, such as mobile and satelliteekeviHardware resources are
more limited, yet the consumer’s expectations of softwangability continue to escalate.
This unprecedented rate of digital data accumulation tbe¥epresents a constant chal-
lenge to the algorithms and software developers who mudt with a shrinking hardware
capacity.

A series of succinct dictionary matching algorithms for three-dimensional setting
have in fact been developed. The related problem of smattesplictionary matching in
two-dimensional data has not been addressed until now.ilgialgorithms for 2D dic-
tionary matching are not suitable for the space-constdegedting. This thesis contributes
new algorithms and data structures to fill this void. Our &thms preprocess the dictio-
nary and then scan the text, searching for all patterns samedbusly. Thus, when a text
arrives as input, the running times of our algorithms depenig on the size of the text and
are independent of the size of the dictionary.

The main accomplishment presented in this thesis is thda@went of new techniques
that have proven to be extremely useful for solving dictrgn@aatching in small space.
These innovations include Lyndon word naming in one din@ms2D Lyndon words, the
witness tree, the offset tree, and dynamic dueling. Firstgamonstrate how these tools are
generally used. Then, we show how useful these tools araibedthey can be specifically

used to solve other variations of succinct dictionary miatgh They allow us to achieve

succinct 2D dictionary matching with no slowdown and dynaurfictionary matching in
small space. For each variant of the general 2D dictionatgimrag problem, we combined
the original techniques presented in this thesis with ngwagches to the classic problems.

The first achievement of this thesis is in the developmenteffirst algorithms for
static succinct 2D dictionary matching, when the dictignar known in advance. The
second contribution of this thesis is the presentation c#feicient algorithm for dynamic
2D dictionary matching, when the dictionary can change twuez. Developing an efficient
algorithm for dynamic data presents its own challenge. Wheattern is added to or
removed from the dictionary, we do not reprocess the entiteodary. Rather, the indexes
are updated in time proportional to the size of the patteshithentering or leaving the set
of patterns in the dictionary. All of our new algorithms uskknear working space.

Our algorithms for 2D data use succinct data structurestteeganformation about each
pattern and then form a linear representation of the diatipnThen the text is linearized
in the same manner and the linearized text is searched farpatccurrences. We would
like to create software for 2D dictionary matching in smakhse. However, our algorithms
for succinct 2D dictionary matching rely on succinct 1D dinary matching algorithms.
These algorithms for the 1D setting have not yet been impiéade They rely on intricate
data structures, whose coding is not a trivial task.

The final contribution of this thesis is the development dfwgare for succinct 1D dic-
tionary matching. Our main challenge lay in combining aroathm for the generalized
suffix tree with the succinct data structures that are rgadiilable to us, and were de-
signed with other purposes in mind. In this thesis we pres¢mtion behind our approach
and an overview of our code.

This thesis is organized as follows. Chapter 2 establismesnelogy that will be used

liberally throughout this thesis. In Chapter 3, we revievevaht background on one and
two dimensional dictionary matching as well as recent imtiowns in text indexing. Chap-
ters 4 - 7 present the accomplishments and contributionkisthesis work. In Chapter
4, we introduce our new techniques for succinct dictionaagaiing and present the first
efficient algorithm for succinct 2D dictionary matching. @apter 5, we improve on this
algorithm to perform 2D dictionary matching in small spacel éinear time. In Chapter
6, we extend our focus to the scenario in which the dictiortany change over time and
present the first efficient algorithm for dynamic 2D dictionanatching in small space.
Chapter 7 delineates the techniqgues we employed in develspiftware for succinct 1D

dictionary matching. We conclude with a summary and opeblpros in Chapter 8.

Chapter 2

Preliminaries

2.1 Periodicity

A periodic pattern contains several locations where th&epatan be superimposed on
itself without mismatch. We say a pattermisn-periodicif the origin is the only position
before the midpoint at which the pattern can be superimposetself without mismatch.

In a periodic string, a smallest period can be found whoseat@mation generates the
entire string. A string S is periodic if its longest prefix thgalso a suffix is at least half
the length of S. A proper suffix that is also a prefix of a striagalled aborder. There
is duality between periods and borders. The length of agstnith its longest border
subtracted corresponds to its shortest period.

More formally, a string S iperiodicif S = w/u’ whereu' is a (possibly null) proper
prefix ofu, and;j > 2. A periodic string S can be expressed:as’ for one unique primitive
u. A string S is primitive if it cannot be expressed in the forth= «/, for j > 1 and a
prefix u of S. We refer to both: and|u| as “the period” of S, although S can have several

non-primitive periods. The period of S can also be defined'as b whereb is the longest

5

border of S.
For example, consider the periodic string 8bcabcabcabThe longest border of S is
b =abcabcab Sincel|b| > @ S is periodic.u = abcis the period of S. Another way of

concluding that S is periodic is by the observation that @

2.2 Conjugacy

Two strings,r andy, are said to beonjugatef = = uv, y = vu for some strings, v. Two
strings are conjugate if they differ only by a cyclic perntiaa of their characters.

A Lyndon wordis a primitive string which is strictly smaller than any o$ itonju-
gates for the alphabetic ordering. In other terms, a string a Lyndon word if for any
factorizationr = uv with u, v nonempty, one hasv < vu.

Any string has a conjugate which is a Lyndon word, namelyagst conjugate. Com-
puting the smallest conjugate of a string is a practical wagoimpute a standard represen-

tative of the conjugacy class of a string. This procedureliled canonization

2.3 Empirical Entropy

Empirical entropy is defined in terms of the number of ocawres of each symbol or
group of symbols. Therefore, it is defined for any string withrequiring any probabilistic
assumption and it can be used to establish worst-casegestdtt > 0, the kth order
empirical entropy of a string §7(S), provides a lower bound to the compression we can
achieve for each symbol using a code which depends oh slyenbols preceding it.

Let S be a string of lengtn over alphabel = {«,...,a,}, and letn; denote the

number of occurrences of the symhglinside S. The Oth order empirical entropy of the

string S is defined as

U n;
Hy(S) = — 121 - log .
We can achieve greater compression if the codeword we ussatdr symbol depends
on thek symbols preceding it. For any string of lengthk, let wg denote the string of
single characters following the occurrencesuofn S, taken from left to right. Theth

order empirical entropy aof is defined as

1
Hy(S) =~ > Jws|Hy(ws).
wexk
The valuenH,(S) represents a lower bound to the compression we can achigg us
codes which depend on tihemost recently seen symbols.

For any stringS andk > 0 we have the following hierarchy: [49]

Hi(S) < Hi—1(S) < -+ Ho(S) < log[X]

Chapter 3

Related Work

This chapter provides context for the accomplishmentsgmtesl in this thesis. It portrays
relevant background along with the framework upon whichk thesis work is built. Since
the algorithms we develop in this thesis for succinct 2Didiry matching employ 1D
dictionary matching techniques, we begin in Section 3.1iag@nting efficient 1D dictio-
nary matching algorithms. We begin with the classical lirteae and space algorithm and
then describe recent developments in succinct 1D dictjomatching. We also review the
dynamic dictionary matching algorithms and the few sudclymamic dictionary match-
ing algorithms that have been developed, albeit with a stowd Then, in Section 3.2, we
review dictionary matching algorithms for 2D data to highli the dearth of succinct 2D
dictionary matching algorithms. In Section 3.3 we provideozerview of common data
structures that index a string. We then refer to them frdelgughout this thesis. We focus
on the suffix tree, the suffix array, and the recent advancesmpressed self-indexing that
serve the dual purpose of compressing the underlying dataierultaneously indexing it,

all within very limited amounts of space.

3.1 1D Dictionary Matching

3.1.1 Linear Time and Space

The pattern matching problem consists of locating all omnoes of a pattern string in a
text string. Efficient algorithms preprocess the pattercecso that the search is completed
in time proportional to the length of the teXictionary matchings a generalization of the
pattern matching problem. It seeks to find all occurrencedl @lements of aetof pattern
strings in a text string. The set of pattetbs= { P, P, . .., P,} is called thedictionary.

We can define dictionary matching by:

INPUT: A set of patterng’,, P, . . ., P, of total length/ and a textI" = t,t, .. . t,, all

over an alphabet, with |X| = o.

OUTPUT: All ordered pairg, j) such that patter®; matches the segment of text

beginning at location;.

Knuth, Morris, and Pratt (KMP) developed a well-known lingiane algorithm for pat-
tern matching [44]. They construct an automaton that maigta failure link for each
prefix of the pattern. The failure link of a position pointsitblongest suffix that is also a
pattern prefix. Aho and Corasick (AC) extended the Knuth-Mepiatt algorithm to dic-
tionary matching by forming an automaton of the dictionaltj; [Preprocessing requires
time and space proportional to the size of the dictionarnerTlthe text is scanned once to
identify all pattern occurrences. The search phase rumsegroportional to the length of
the text, independent of the size of the dictionary. The ADmaton branches to different

patterns with similar prefixes, yielding an overé@l{n log o) time to scan the text.

10

3.1.2 Small-Space Algorithms

Linear-time single pattern matching algorithms have achieved impressivelglisspace
complexities. For 1D data, we have pattern matching algogtthat require only constant
extra space [29, 20, 57, 30]. The first time-space optimdepaimatching algorithm is
from Galil and Seiferas [29]. Crochemore and Perrin develdfeo-Way String Match-
ing” [20] which blends the classical Knuth-Morris-PratidalBoyer-Moore [12] algorithms
but computes pattern shifts as needed. Rytter presentedstanbispace, yet linear-time
version of the Knuth-Morris-Pratt algorithm [57]. The atgbm relies on small-space
computation of both approximate periods and lexicograglyianaximal suffixes, which
leads to the computation of periodsdn1) space. Space-efficient real-time searching is
discussed by Gasieniec and Kolpakov [30]. Their innovadig®rithm uses a partialext
function to save space.

Concurrently searching for a set of patterns within limitedrking space presents a
greater challenge than searching for a single pattern inl space. Much effort has re-
cently been devoted to solving 1D dictionary matching in lésace [14, 38, 9, 37]. We
summarize the state of the art for small-space 1D dictiomaayching in Table 3.1 and
describe the results in the following paragraphs.

The empirical entropy of a string4, or H;) describes the minimum number of bits
that are needed to encode the string within context. Engbigntropy is often used as a
measure of space, as it is in Table 3.1. Precise formulag/foand H,. are included in
Section 2.3.

Let D = {P, P,...,FP,;} be a dictionary of 1D patterns of total length 7' =
tity ... t, a text, andocc the number of pattern occurrences in the text. Aho and Cora-

sick presented the first algorithm that solves the dictipmaatching problem irD (¢ log ¢)

11

Space (bits) Search Time Reference
O(llog?) O(n + occ) Aho-Corasick [1]
o) O((n + occ) log? £) Chan et al. [14]
(H(D) + o(flogo) + O(dlog) | O(n(log® ¢+ logd) + occ) | Hon et al. [38]
((Ho(D)+ O(1)) 4+ O(dlog(¢/d)) | O(n+ occ) Belazzougui [9]
(Hi (D) + O(¢) O(n + occ) Hon et al. [37]

Table 3.1: Algorithms for 1D small-space dictionary maichivhere/ is the size of the
dictionary,n is the size of the texy/ is the number of patterns in the dictionasyjs the
alphabet size, anetc is the number of occurrences of a dictionary pattern in tke te
preprocessing time and(n log o + occ) text scanning time [1]. Hashing techniques can
achieve linear time complexity in the Aho-Corasick algarithThe underlying index of
their algorithm occupie®(¢) words, orO(¢log¢) bits. The first algorithm that improves
the space complexity of dictionary matching was presente€lan et al. [14]. They
reduced the size of the dictionary index fratn(¢) words, orO(¢log{) bits, to O(¢)
bits. Their algorithm relies on a compressed represemtadfothe suffix tree and as-
sumes that the alphabet is of constant size. It can find d@qmabccurrences in the text in
O((n + occ) log? ¢) time.

More recently, Hon et al. presented a 1D dictionary matchalggprithm that uses a
sampling technique to compress a suffix tree [38]. The pwtare concatenated, with a
delimiter separating them, to form a single string whicht@ed in a compressed format
that allowsO(1) time retrieval of any character. This results in an algonitfhat requires
(Hy(D) + o(flogo) + O(dlog) space and searches@{n(log® ¢ + logd) + occ) time,
wheree > 0 is any constant. Since the patterns are concatenated libformmpressed
index is constructed (D) = Hy (PP, ... Py).

The first succinct dictionary matching algorithm with novstlown was introduced by
Belazzougui [9]. His algorithm mimics the Aho-Corasick autdan within smaller space.

The algorithm require§(Hy(D) + O(1))+ O(d log(¢/d)) bits. This new approach encodes

12

thegota fail, andreport functions separately. Hon et al. combine Belazzougui's watk
the XBW transform [21] to store an AC automaton in space thadteigh order empirical
entropy bounds of the dictionary with no slowdown [37]. THellow the approach of
Belazzougui [9] to compress the AC automaton and store ieetfuinctions separately.
However, they encode the forward transitions of the triehwiite XBW transform [21].
With this new representation, the space meets optimal cessfn of the dictionary and
runtime is linear.

The most recent result of Hon et al. [37] has essentiallyetidbe problem of succinct
1D dictionary matching. Their algorithm runs in linear timvghin space that meets entropy
bounds of the dictionary.

We point out that the AC automaton (whether compressed Qrreplacesthe actual
dictionary of patterns. That is, once it is constructed, dbtial patterns are not needed
for performing the search. The goal of the small-space 1Drdlgns in Table 3.1 was
to minimize the space needed for this structure, which is serese the space needed for
the input. When analyzing the space needed by small-spaodthigs, we distinguish
between the space used by the data structuresapkicethe actual input, and thextra

spacethat is needed above the input.

3.1.3 Dynamic Dictionary Matching

It is often the case that the dictionary of patterns will adp@over time. Efficient dynamic
dictionary matching algorithms support insertion of a neattgrn to the dictionary and
removal of a pattern from the dictionary. They thereby efiaté the need to reprocess the
entire dictionary and can adapt to changes as they occur.

Amir and Farach introduced the use of the suffix tree for didry matching [3]. They

13

delimit the dictionary patterns withand then concatenate the dictionary with the text and
index T'$D, with artificial suffixes mixed among the genuine suffixesndf pattern can
be a substring of another, the suffix tree contains all thermé&tion needed to perform
dictionary matching. When one pattern can be a substring athan each internal node
is labeled by its nearest ancestor that is a pattern ocagrérhis is done by a depth first
search after the suffix tree is fully constructed. Modifyihg dictionary can trigger the
update of many labels on nodes and can thus require relglibkrentire suffix tree, which
is costly in terms of time. Amir and Farach use an L-tree omtlagked nodes to support
efficient reparenting of nodes. Then, all operations (egssing the dictionary, adding a
pattern, removing a pattern, scanning text) run in lineaetwith anO(log ¢) slowdown.

Amir et al. [5] improved the previous algorithm so that it dowt require any indexing
as the text is processed and can process a text online, asésaiThe suffix tree is simply
traversed as the text is read, using suffix links. Proceghiagatterns and the text meets
the same time complexity as [3], linear with @tlog ¢) slowdown. To know which pattern
is a substring of another, they partition the suffix tree mforest. The)(log ¢) slowdown
in the algorithm is the upper bound on the time complexity pérations in the dynamic
forest. Each marked node in the suffix tree, representingtarpaoccurrence, becomes
the root of a forest component, by removing the edge thatecxisrthe marked node to
its parent. Nodes are mapped between the two data struemdethe root of each forest
component shows which nodes the pattern is a prefix of.

Idury and Schaffer developed a dynamic version of the Ahaa€iok automaton [40].
They update the fail function efficiently but with some slawmadh. The initial construction
of the automaton require3(¢log o) time; this linear time complexity meets that of Aho

and Corasick’s algorithm. This is an improvement over [3,v8}ich incur anO(log ¢)

14

slowdown in preprocessing. However, the other phases oéldgrithm incur a slight
slowdown, as in [3, 5]. Text scanning runsdai((n + occ) log ¢) time and a pattern P, of
lengthp, is added to or removed from the dictionary(xp log ¢) time.

Idury and Schaffer explore alternative representatioribef dynamic AC automaton.
They point out that other trade-offs between search andtapuaes are possible. Using
a different data structure, this algorithm achieves theesaearch time as AC and update
time O(p(k¢'/* + log o)), for any constank > 2.

The dynamic dictionary matching algorithm of Amir et al. fBimics the Aho-Corasick
automaton but stores tiggtoandreporttransitions separately. Overall, there is@(%)
slowdown to update the dictionary or to scan text. Insteati@suffix tree, this algorithm
uses balanced parentheses as the underlying index. Thenfetilon is computed by a “find
nearest enclosing parentheses” operation. To suppoerpagmoval from the dictionary, a
balanced tree is constructed, and preprocessed for lomeshon ancestor queries among
nodes. If only insertion of a pattern, and not removal, igsuied, all operations complete
in linear time. For such a scenario, this algorithm meetdittgar time complexity of the
Aho-Corasick automaton.

Sahinalp and Vishkin achieved dynamic dictionary matchirittp no slowdown [60].
Preprocessing time is linear in the size of the dictionayt scanning is linear in the size
of the text and a pattern is added or removed in time proputito the size of the pattern.
The time complexity of this algorithm meets the standardgeiho and Corasick.

Sahinalp and Vishkin’s algorithm relies on compact tried amew data structure, the
fat tree. This is the first dynamic infrastructure for dicwy matching that does not slow
down the search or indexing processes. Their algorithm @ys@ naming technique and

identifies cores of each pattern using a compact repregantatthe fat tree. If a pattern

15

matches a substring of the text, then the main core of thematind the text substring
should necessarily be aligned. Conversely, if the main adoegst match, the text is easily
filtered to a limited number of positions at which a pattern oacur.

For dynamic dictionary matching in the space constraingdiedion, Chan et al. [14]
use the compressed suffix tree for succinct dictionary nragchThey build on the work
of Amir and Farach [3] to use the suffix tree for dictionary aiig. They replace the
suffix tree with a compressed suffix tree developed by Sadal&8], which is stored in
O(?) bits, and show how to make the data structure dynamic. Thegyritbe how to answer
lowest marked ancestor queries by a balanced parenthpstseatation of the nodes. The
time complexity of inserting or removing a pattern and ofrstag text has a slowdown of
O(log 0).

An improved succinct dynamic dictionary matching algantiwvas developed by Hon
et al. [39]. It uses space that meéth order empirical entropy bounds of the dictionary.
The suffix tree is sampled to save space and an innovativeoshétlproposed for a lowest
marked ancestor data structure. They introduce the cottidsinaf a dynamic interval tree
with a Dietz and Sleator order-maintenance data structire feamework for answering
lowest marked ancestor queries efficiently. Inserting araeing a dictionary patter®,
of length p, requiresO(plogo + log /) time and searching a text of lengthrequires

O(nlog{ + occ) time.

3.2 2D Dictionary Matching

3.2.1 Linear Time and Space

We can define two-dimensional dictionary matching as:

16

INPUT: A set of pattern matrice®;, P, ..., P; and a text matriXl’, all over an

alphabet:, with |X| = o.

OUTPUT: All tuples(h, i, j) such that patter#®, occurs at locatio, j) in T,

e, Tli+k,j+1=Plk+1,1+1], 0<Ek]l<m.

We first consider single pattern matching in two dimensiams then shift our focus
to two-dimensional dictionary matching. The first linesané 2D single pattern matching
algorithm was developed independently by Bird [11] and by B&&e They translate the
2D pattern matching problem into a 1D pattern matching gabl Rows of the pattern
are perceived as metacharacters and named so that distiveet@ceive different names.
The text is named in a similar fashion and 1D pattern matctamegrformed over the text

columns and the pattern of names. Algorithm 1 is an outlindeBird / Baker algorithm.

Algorithm 1 Bird / Baker Algorithm

{1} Preprocess Pattern:
a) Form Aho-Corasick automaton of pattern rows.
b) Name pattern rows using Aho-Corasick and store 1D pattern.
c¢) Construct Knuth-Morris-Pratt automaton of 1D pattern.
{2} Row Matching:
Run Aho-Corasick on each text row.
This labels position at which a pattern row ends.
{3} Column Matching:
Run Knuth-Morris-Pratt on named columns of text.
Output pattern occurrences.

Although this algorithm was initially developed for a siagdattern, it is easily extended
to perform dictionary matching by replacing the KMP autoomawvith another AC automa-
ton. The Bird / Baker algorithm is appropriate for 2D pattetret are of uniform size in at
least one dimension, so that the text can be marked. The BiréerBaethod uses linear

time and space in both the pattern preprocessing and thedamhing stages. The linear

17

time complexity of the algorithm depends on the assumphanthe label of each state fits
into a single word of RAM.

There are several efficient algorithms that perform digrgnmatching over square
patterns. In the 2D dictionary) = {P,, P, ..., P;}, each patterrP; is a square of size
pi X pi, 1 < i < d, and the text T is of size x n. The total size of the dictionary is
|D| = ip?. LetD = ipi.

Amii?Iand Farach [4i]:|cl)resented an algorithm for 2D dictionatching that is suitable
for square patterns of different sizes. Their algorithmo asals with metacharacters but
converts the patterns to a 1D representation by considsubgw/subcolumn pairs around
the diagonals. Then they run Aho-Corasick on text that isalized along the diagonals.
Metacharacters are compared by longest common prefix guerias is done efficiently
with suffix trees of the pattern rows and columns. Text saagtime isO(n?logd), and
the extra space used is proportional to the size of the testtble patterns of names. This
is considered a linear-time algorithm since th@og d) slowdown stems from branching
in the AC automaton.

Giancarlo developed the first 2D suffix tree [31]. At the sammet he introduced a 2D
dictionary matching algorithm for square patterns thatisdal on this data structure, which
he calls an Lsulffix tree. The time and space complexitiesisfalyorithm are comparable
to Amir and Farach’s approach that uses a 1D suffix tree for &@.dPreprocessing of the
pattern builds an Lsuffix tree i@(|D| + D log D) time andO(|D|) space. Based on it, the
text scanning process simulates an automata@(i¥ log D + occ) time.

Idury and Schaffer [41] developed an algorithm for dictignanatching in rectangular
patterns with different heights, widths, and aspect ratiisch patterns cannot be aligned

at a corner so the notion of comparing prefixes and suffixeatéms is not defined. They

18

split patterns into overlapping pieces and apply dictigmaatching as well as techniques
for multidimensional range searching. Idury and Schadfatgorithm requires working
space proportional to the dictionary size, and has a sligitdown in the time for text

processing.

3.2.2 Small-Space Algorithms

An approach for small-space, yet linear-tisiagle pattern matching in 2D was developed
by Crochemore et al. [19]. Their algorithm preprocesses:arn m pattern, of total size
m?2, within only O(logm) working space and scans the text(xil) extra space. Such
an algorithm can be trivially extended to perform dictiognaratching but would require
O(dn) time to process the text, a time complexity that is dependenthe number of
patterns in the dictionary.

None of the existing approaches to 2D dictionary matchirgsantable for a space-
constrained environment. The main contribution of thisthés to address this problem,

both in the static and dynamic settings.

3.2.3 Dynamic Dictionary Matching

We now turn our attention to the scenario in which the diadigncan change over time.
Several different dynamic 2D dictionary matching algarthexist. Table 3.2 summarizes
the different time complexities achieved by the dynamididiary matching algorithms
for square patterns. These results all incorporate somelsion in processing text and in
updating the dictionary; the questionhew muchslowdown.

We use notation consistent with Section 3.2.1. In the dietig, D = {P,, P», ..., P;},

each patterrP; is a square of size; x p;, 1 < i < d, and the text T is of size x n.

19

Dictionary Update Time | Text Searching Time Reference
O(p*log | D)) O((n? + occ) log | D) Amir et al. [6]
O(p*log” | D)) O((n*log D + occ)log | D|) | Giancarlo [31]
O(p* + plog D) O((n? + occ)log D) Choi and Lam [15]

Table 3.2: Comparison of the time complexities of dynamic 2Biahary matching algo-
rithms.

Let P, of sizep x p, denote a square pattern thatdwill be insertecﬂlto or remawed the
dictionary. The total size of the dictionary|iB| =) _p. LetD = > p;.

Amir et al. [6] extended Amir and Farach’s aE)T)lroach for 2Disi1:dlictionary matching
of square patterns to the setting in which the dictionaryateange. For a static dictionary,
they use the suffix tree with lowest common ancestor queoidsrin an automaton that
recognizes patterns in the text. However, they could natiefftly update the precomputed
lowest common ancestor information upon modification ofdiionary. Instead, they
devised a creative workaround for the fail function to wovkmir et al. use Idury and
Schaffer’'s dynamic version of Aho-Corasick [40] to index gagtern substrings. The text
is marked along its diagonals for subrow and subcolumn oenuaes separately. The text is
labeled as in the Bird / Baker algorithm, but each positionvemgitwo labels, each stored
in a separate matrix. Then, pattern occurrences are anaduncrunning the dynamic
version of the Aho-Corasick algorithm over the marked texterf operation, including
text scanning and dictionary preprocessing is close taitirenly anO(log | D|) slowdown
is incurred.

Giancarlo’s 2D suffix tree can be used for dictionary matghioth in the case that
the dictionary is static and in the case that the dictionargdyinamic [31]. There is a
slowdown in the text scanning stage of Giancarlo’s algarithat can handle a dynamic
2D dictionary of square patterns. For the dynamic case, A&tnal. [6] achieved slightly

better time complexity.

20

Choi and Lam [15] set out to demonstrate that Giancarlo’s)strifie based approach
to dictionary matching is just as good as Amir e6automaton based approach. Their
algorithm maintains two augmented suffix trees, an adapesion of Giancarlo’s Lsuffix
tree, and a forest of dynamic trees. They point out that eviémowt their results, for a
dictionary of 2D patterns that are all the same size, Bird ankeBs algorithm can be
extended to insert and delete a patter®ip? log dp?) time, and search a text in((n? +
occ) log dp?) time.

Idury and Schaffer developed a dynamic dictionary matchiggrithm for rectangular
patterns of different sizes [41]. This algorithm is basedeveral applications of the Bird
/ Baker algorithm, by dividing the dictionary into groups afiform height. There is an
O(log" | D|) slowdown in each part of the algorithm, preprocessing thgiatiary, text

scanning, and updating the dictionary.

3.3 Indexing

Indexing is an important paradigm in searching. The texteppcessed so that queries of
the form ‘does pattern P occur in text T@re answered in time proportional to the pattern,
rather than the text. Two popular indexing structures agesttifix tree and the suffix array.
These data structures enable efficient solutions to manyrmonstring problems. Recent
work has compressed these data structures, formed dynataistuctures and developed
full-text indexes. A full-text index gathers all the relexnanformation about text so that the

actual text can be discarded. It often attains better spamglexity than the original text.

21

M i s s i s s i p p i $
1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.1: Suffix tree for the stringississippi.

3.3.1 Suffix Tree

The suffix tree is a compact trie that represents all suffiXebe underlying text. The
suffix tree forT = t,t»---t, iS a rooted, directed tree with leaves, one for each suffix.
Each internal node, except the root, has at least two childEach edge is labeled with

a nonempty substring df and no two edges emanating from a node begin with the same
character. The path from the root to leadpells out suffiXZ'[i ... n|. A special character

is appended to the string before construction of the suf& to guarantee that each suffix
ends at a leaf in the tree. The suffix tree for a string of silerepresented it (n) words,

or O(nlogn) bits, by using indexes of constant size, rather than sulgstrof arbitrary
length, to label the edges of the tree. As an example, thexdude for Mississippi is

shown in Figure 3.1.

22

A suffix tree can be used to index several patterns. Eithepalterns can be concate-
nated with unique characters separating them or a genedali#fix tree can be constructed.
The generalized suffix tree, as described by Gusfield [3¥samt mark artificial suffixes
that span several patterns. It combines the suffixes of theidual patterns in a single data
structure.

The straightforward approach to suffix tree constructicserts each suffix by a se-
guence of comparisons beginning at the root, in quadratie tith respect to the size of
the input. Linear-time construction of the suffix tree, thealled theposition tree was
introduced by Weiner in 1973 [63]. McCreight simplified thenstruction process in 1976
[50]. Weiner’s algorithm scans the text from right to lefodregins with the shortest suffix,
while McCreight's scans the text from left to right and inlizas the data structure with the
longest suffix. In the 1990’s, Ukkonen provided an onlineoalpm that constructs the
suffix tree in linear time [61]. Ukkonen overcame the problefrextending each suffix
on each iteration by introducing a special edge pointem *epresent the current end of
the string. The development of the linear-time suffix treestauction algorithms and the
distinctions between them are described by Giegerich amtz K32].

Suffix links are an implementation trick necessary to aahikwear time and space
complexity in suffix tree construction algorithms. Suffirks allow an algorithm to move
quickly to a distant part of the tree. A suffix link is a poinfesm an internal node labeled
xS to another internal node labeléd wherex is an arbitrary character aridis a possibly
empty substring. The suffix links of Weiner’s algorithm atphabet dependent as they
work in reverse to represent the insertion of any charaefarb a suffix.

Instances arise in which the text indexed by the suffix treegks over time. The dy-

namic suffix tree accommodates the insertion or removallegtsings from the underlying

23

text. The dynamic suffix tree generalizes to represent afs&tings in such a way that
strings can be added and removed efficiently. In Choi and Ldgriemic suffix tree [16],
the update operations take time proportional to the streigginserted or removed from
the tree. Yet, the tree never stores a reference to a stratdhéts been removed, and the
space complexity is bounded by the total length of the s¢rstgred in the tree. They use a

two-way pointer for each edge, which is stored in linear spac

3.3.2 Suffix Array

The suffix array indexes text by storing the lexicographideorof its suffixes. The suffix
array occupies less space than the suffix tree does. As arnpéxatie suffix array for
Mississippi is shown in Table 3.3. Augmented with an LCP array to store ¢ingest

common prefix between adjacent suffixes, efficient pattegincbas performed in the text.

Suffix |11 /8|5(2|1|10|9|7|4| 6 | 3
Index| 1 |2({3|4|5| 6 |7|8|9|10|11

Table 3.3: Suffix Array of the strinlylississippi

The naive approach to suffix array construction sorts thixesfusing a string sorting
algorithm. This ignores the underlying relationship amdmg suffixes. The worst-case
time complexity of such an algorithm is quadratic in the sifghe input. A suffix ar-
ray can be built by preorder traversal of a suffix tree for thme text, and the LCP ar-
ray by constant-time lowest common ancestor queries onrdélee However, this indirect
construction does not achieve better space complexityttieauffix tree, which occupies
O(nlogn) bits. Manber and Myers employ a sort and search paradigneottji construct
the suffix array inO(nlog n) time andO(n) bits of space [48]. Three algorithms were in-

troduced in 2003 to directly construct the suffix array irentime and space [43, 42, 45].

24

Once the suffix array is available, the longest common preft®) array can be created in

linear time and space using range minimum queries.

3.3.3 Compressed Data Structures

A recent trend in pattern matching algorithms has been toscity encode data structures
so that they occupy no more space than the data they are builiTbese compressed
data structures replace the original data, and allow thegpraries as their uncompressed
counterparts with a very minor time penalty. This reseaeshdxtended to dynamic ordered
trees, suffix trees, and suffix arrays, among other datatates:
Many compressed data structures state their space requiteas a function of the

empirical entropy of the indexed text. This is useful beedatigives a measure of the index
size with respect to the size achieved by the lig¢istorder compressor, thus relating the

index size to the compressibility of the text. Empiricalreply is defined in Section 2.3.

Compressed Suffix Array

Since the suffix array is an array ofindexes, it can be stored ilog n bits. The com-
pressed suffix array was introduced by Grossi and Vitter {@4¢duce the size of the suffix
array fromn log n bits toO(n log o) bits. This is at the expense of increasing access time
from O(1) to O(log* n), wheree is any constant witlh < e < 1.

Sadakane modified the compressed suffix array so that it is-andex [58]. That is,
the text can be discarded and the index suffices to answelequesr well as to access sub-
strings of the text. He also reduced the size of the stru¢tut&n log Hy(7')) bits. Pattern
matching using his compressed suffix array has the same timplexity as in the uncom-

pressed suffix array. Grossi et al. further reduced its sige+ L)nHy(T') + o(n) bits, with

25

character lookup time ab(log® n), assuming an alphabet size= O(polylog(n)) [33].
Ferragina and Manzini developed the first compressed suffyy & encode the index
size with respect to the high-order empirical entropy [22]eir self-indexing data structure
is known as the FM-index. The FM-index is based on the Burrdéteeler transform and
uses backward searching. The compressed self-index exgie compressibility of the
text so its size is a function of the compressed text lengtt, &n index supports more
functionality than standard text compression. Navarro Bliakinen improved the FM-
index [51]. They compiled a survey of the various compresaéfix arrays; each offers
a different trade-off between the space it requires anddbkup-times it provides [51].

There are also several options for compressing the LCP array.

Compressed Suffix Tree

Recent innovations in succinct full-text indexing providewith the ability to compress a
suffix tree, using no more space than the entropy of the @igiata it is built upon. These
self-indexes can replace the original text, as they suppttieval of the original text, in
addition to answering queries about the data, very quickly.

The suffix tree for a string” of length n occupiesO(n) words orO(nlogn) bits
of space. Several compressed suffix tree representatimeshesn designed and imple-

mented, each with its particular time-space trade-off.

1. Sadakane introduced the first linear representation ftik Stees that supports all
navigation operations efficiently [59]. His data structuferm a compressed suffix
tree inO(nlog o) bits of space, eliminating thieg n factor in the space representa-
tion. Any algorithm that runs on a suffix tree will run on thisnepressed suffix tree

with an O(polylog(n)) slowdown. It is based on a compressed suffix array (CSA)

26

that occupiesD(n) bits. An implementation has been made publicly available by

Valimaki et al. [62].

This compressed suffix tree was adapted for a dynamicallggihg set of patterns
by Chan et al. [14]. They represent the compressed suffix sgheacombination
of balanced parentheses, LCP array, CSA and FM index. An ebgeitaretrieved
in O(log? n) time and a substring of sizeis inserted or removed from the index in

O(plog®n) time.

2. Russo et al. [56] achieved a fully-compressed suffix trgeiregn Hy (1) +o(n log o)
bits of space, which is essentially the space required bgrtialest compressed suf-
fix array, and asymptotically optimal undéth order empirical entropy. Although
some operations can be executed more quickly, all opesatizeetO(logn) time
complexity. The data structure reaches an optimal lowentdmf space occupancy.
However, traversal is slower than in other compressed duéfes. The static version
of this data structure has been implemented and evaluat&hibgvas and Navarro
[13].

Russo et al. also [56] developed a dynamic fully-compressétk gree but it has
not yet been implemented. All operations are performediwithlog” n) time. This
dynamic compressed suffix tree supports a larger set of gtéfxnavigation opera-
tions than the compressed suffix tree proposed by Chan et4l. l{lalso reaches a

better space complexity and can perform basic operatioms quockly.

3. Fischer et al. achieve faster traversal in their compkssiffix tree [25]. Instead

27

of sampling the nodes, they store the suffix tree as a congaesdfix array (rep-
resenting the order of the leaves), a longest-common-pfle@®) array (represent-
ing the string-depth of consecutive leaves) and data sirestfor range minimum
and previous/next smaller value queries. In its origingdaesition, Fischer et al.'s

fully-compressed suffix tree occupie&(7)(2 log Hkl(T) +1+0(1)) 4 o(n) bits of

space [25]. This data structure has been implemented aihthéxd by Ginovas and

Navarro [13].

With Fischer’'s new compressed representation of the LCR {43, the compressed
suffix tree of Fischer et al. [25] can be stored in even smapace. That is, the suffix
tree can be stored ifl + £)nH,(T) + o(nlog o) bits of space with all operations
computed in sub-logarithmic time. Navigation operatiores@gominated by the time
required to access an element of the compressed suffix anchpythe time re-

quired to access an entry in the compressed LCP array, bothiohvare bounded

by O(log® n),0 < e < 1.

. Ohlebusch et al. developed an improved compressed stgéxrépresentation that
can answer queries more quickly [55]. They point out thatthrapressed suffix tree
generally consists of three separate parts: the lexicbgrapbinformation in a com-
pressed suffix array (CSA), the information about commontsings in the longest
common prefix array (LCP), and the tree topology combined waitiavigational
structure (NAV). Each of these three components functiadependently from the
others and is stored separately. The fully-functional casged suffix tree of Russo

et al. [56] stores the sampled nodes in addition to these onegs.

Ohlebusch et al. developed a mechanism that stores NAV: i o(n) bits so that

some traversal operations can be performed in constant tiedePARENT, SUFFIX

28

LINK, and LCA. In addition, they were able to further compress 48P array. These
results have been implemented by Simon Gog and the codeilialdgaas part of the

Succinct Data Structures Library.

Representations of compressed suffix arrays and compressSBdalrays are inter-
changeable in compressed suffix trees. Combining the differariants yields a rich
variety of compressed suffix trees, although some compitessifix trees favor certain

compressed suffix array or compressed LCP array implemensih5].

Chapter 4

Succinct 2D Dictionary Matching

In this chapter we present the first algorithm that solvesShmll-Space 2D Dictionary
Matching ProblemGiven a dictionary of pattern$}, P, ..., P,;, each of sizen x m, and
a text of sizen x n, we find all occurrences of patterns in the text. We discuiepe that
are all of sizen x m for ease of exposition, but as with Bird / Baker, our algoritham c
be extended to patterns that are the same size in only onasiiomewith the complexity
dependent on the size of the largest dimension. The iniéigtlgf this algorithm appeared

in CPM 2010 [53] and the overall techniques were publishedigoAthmica [52].

4.1 Overview

In the preprocessing phase, the dictionary is linearizeddmgatenating the rows of each
pattern, with a delimiter separating them, and then conediteg the patterns to form a
single string. The linearized dictionary is then storednreatropy-compressed self-index,
allowing the original dictionary to be discarded. The poEgssing phase runs (dm?)

time and use®)(dmlogdm) bits of extra space. Let be an upper bound on the time

29

30

complexity of operations in the self-index and éebe the size of the alphabet. The text
scanning phase takégn?r log o) time and use® (dm log dm) bits of extra space.

Our algorithm preprocesses the dictionary of patternsrbefearching the text once for
all patterns in the dictionary. The text scanning stageailiytfilters the text to a limited
number ofcandidatepositions and then verifies which of these positions areshgiattern
occurrences. We allo®w(dm log dm) bits of working space to process the text and locate
patterns in the dictionary. The text scanning stage doedep®nd on the size of the dictio-
nary. The data structures we use for indexing are dynamiagltine pattern preprocessing
stage and static during the text scanning stage.

A known technique for minimizing space is to work with smalkdapping text blocks
of size3m /2 x 3m /2. The potential starts all lie in the upper-left/2 x m /2 square. This
way, the size of our working space relies on the size of thiastiary, not on the size of the
text.

We divide patterns into two groups based on 1D periodicityr &gorithm considers
each of these cases separately. A pattern can consist otmatvare periodic with period
< m/4. Alternatively, a pattern can have one or more possibly iager rows whose
periods are larger tham /4. In each of these cases, the bottlenecks are quite different
In the case of highly periodic pattern rows, a single pattemm overlap itself with several
occurrences in close proximity to each other and we canyelagile more candidates than
the space we allow. In the case of an aperiodic row, there i®r@ fimited number of
pattern occurrences, but several patterns can overlapotfaehin both directions.

A pattern can have only periodic rows with all periodsn /4 (Case I) or have at least
one aperiodic row or a row with a period m /4 (Case Il). Case | is addressed in Section

4.2 and Case Il is addressed in Section 4.3.

31

In the case that > m, i.e., whendm = Q(m?), we have more space to work with
as the text is processed. We can stoxen?) information for a text block and present a

different algorithm for that case in Section 4.3.2.

4.2 Case I: Patterns With Rows of Period Size< m /4

We store the linearized dictionary in an entropy-compreé$sen that allows constant time
random access to any character in the original data, sutle @@mpression scheme of Fer-
ragina and Venturini [23] or of Fredriksson and Nikitin [2Hor Case | patterns we do not
need additional functionality in the self-index, thus wenahd construct a compressed suffix
tree or suffix array. The space needed for storing the diatyoP in entropy-compressed
form is (H, (D) + v where~ is the low-order term},and depends on the particular com-
pression scheme that is employed.

We overcome the extra space requirement of traditional 2Dodiary matching algo-
rithms with an innovative preprocessing scheme that nagsa®terns to represent them
in 1D. The pattern rows are initially classified into groupgh each group having a single
representative. We storevdtness or position of mismatch, between the group represen-
tatives. A 2D pattern is named by the group representativedcoh of its rows. This is
a generalization of the naming technique used by Bird and byB@kname 2D data in
1D. The preprocessing is performed in a single pass overdtterps. O(1) of information
is stored per pattern row, occupying a total oti@(log dm) bits of space. Details of the
preprocessing stage can be found in Section 4.2.1.

In the text scanning phase, we name the rows of the text to &t representation of

the 2D text. Then, we use an Aho-Corasick (AC) automaton to weamnklidates of possible

1For example, using Ferragina and Venturini [28])= O(log%(k log o + loglog ?)).

32

pattern occurrences in the 1D text@{n? log o) time. In this part of the algorithny can
be viewed as the size of the alphabet of names if it is smdikem the original alphabet;
o < dm. Since similar pattern rows are grouped together, we neetlification stage to
determine if the candidates are actual pattern occurreli¢igs additional preprocessing of
the 1D pattern representations, a single pass sufficesifg petential pattern occurrences

in the text. The details of the text scanning stage are destin Section 4.2.2.

4.2.1 Pattern Preprocessing

A dictionary of patterns with highly periodic rows can océlidm) times in a text block.
It is difficult to search for these patterns in small spacessiine output can be larger than
the amount of extra space we allow. We take advantage of ttedpgty of pattern rows
to succinctly represent pattern occurrences. The disthateeen any two overlapping
occurrences of’; in the same row is the Least Common Multiple (LCM) of the periofls
all rows of P,. We precompute the LCM of each pattern so thét) space suffices to store
all occurrences of a pattern in a row, a@ddm log dm) bits of space suffice to store all
occurrences of patterns whose rows are periodic with pgrogh /4.

We introduce two new data structures, the witness tree andftbet tree. The witness
tree facilitates the linear-time preprocessing of pattews. The offset tree allows the text
scanning stage to achieve linear time complexity, independf the number of patterns in

the dictionary. They are described later in this section.

Lyndon Word Naming

Since conjugacy is an equivalence relation, we can partthie pattern rows into disjoint

groups based on the conjugacy of their periods. We use the same to represent all

Pattern 1 Pattern 2 Pattern 3

=

= =

(oo oo oo o
ol |o|o|o|o|e v
v o |oc|e|o|n|oc|o
olo|e |o|e|w|e o
o oo o|oc|e|e o
ol |o|o|o|oc|e v
o o |oc|e|e|n|c|o
olo|e |o|oc|w | |oc
olo|e|loc|o|w|e o
olo|oc|ly|o|le|o|o
oo |oc|o|e|oc|o |
oclo|o|e|oc|o|e |
oloc|le|oc|e|e|e |
oclo|oc|ley|e|e|o|o
oo |o|lo|o|o|o |
clo|o|w|o|n|o|w

olo|lo|ew|o|w |

‘b‘N|H|b|w‘N‘N|H|

o o |oc|e|e o |oc|o
v o|lo|o|e || |o
o o |oc|e|e o |oc|o

NSNS

‘b‘w"_\‘b‘w‘w‘w"ﬂ‘
olo|w|o|ew|[o]|o|w
olo|o|oc|o|o|o o
olo|w|o|e|[o]|o|w
olo|o|o|e|o|o o

®

Figure 4.1: Three 2D patterns with their 1D representationg use these patterns to
illustrate the concepts, although their periods are latgenm /4. Patterns 1 and 2 are
different, yet their 1D representations are the same.

rows whose periods are conjugate. The smallest conjugatevadrd, i.e., its Lyndon
word, is the standard representation of its conjugacy cl&monizationis the process
of computing a Lyndon word, and can be done in linear time gates [46]. We name
one pattern row at a time by finding its period and canonizindfia new Lyndon word
or a new periocsizeis encountered, the row is given a new name. Otherwise, the ro
adopts the name already given to another member of its cacyugjass. Each 2D pattern
obtains a 1D representation of names in a similar manneetBittdl / Baker algorithm, but
using Lyndon word naming. The extra space needed to storeDhatterns of names is
O(dmlog dm) bits.

Three 2D patterns and their 1D representations are showigume=4.1. To understand
the naming process, we will look at Pattern 1. The period effittst row isaabh which is
four characters long. It is given the narheWhen the second row is examined, its period
is found to beaabg which is also four characters longabbandaabcare both Lyndon
words of size four, but they are different, so the second somamed. The period of the
third row isabca which is represented by the Lyndon waadbc Thus, the second and
third rows are given the same name even though they are mitdde

When naming a pattern row, its period is identified using knd&ahniques in linear

34

time and space, e.g., using a KMP automaton [44] of the strirfigen, we compute and
store several discrete pieces of information per row: jksine (inlog m /4 bits), name (in
log dm bits), and position of the first Lyndon word occurrence inpleeiod, which we call
LYpos(in log m /4 bits).

We use thavitness treedescribed in the following subsection, to name the pat@us.
A separate witness tree is constructed for each period $ize witness tree allows linear
time naming of each Lyndon word by keeping track of failuresyndon word character

comparisons.

Witness Tree

Name | Period size | Lyndon word
aabb

aabc

abc
ab

aacc

aaab

N({oju|[bh|wW|N|K
BT T O ST OV I

acbc

Figure 4.2: A witness tree for the Lyndon words of length 4 #ira in the table of names.

Witness Tree

Components of witness tree:
* Internal node:position of a character mismatch. The position is an integidr, m].

» Edge: labeled with a character in the alphabet. Two edges emaniom a node

must have different labels.

35

 Leaf: an equivalence class representing one or more pattern rows.

When a new row is examined, we need to determine if the Lyndam wbits period
has already been named. The witness tree allows us to igémibnly named string of the
same size that has no recorded position of mismatch withdhestring. Then, the found
string is compared sequentially to the new row. A witness toe Lyndon words of length
four is depicted in Figure 4.2.

The witness tree is used as it is constructed in the pattesprpecessing stage. As
strings of the same size are compared, points of distintt@ween the representatives of
1D names are identified and stored in a tree structure. Whesraatch is found between
strings that have no recorded distinction, comparisorshaitd the point of failure is added
to the tree. Characters of a new string are examined in the did@ated by traversal of
the witness tree, possibly out of sequence. If traversas ladlan internal node, the string
receives a new name. Otherwise, traversal halts at a leithemew string is sequentially
compared to the string represented by the leaf.

As an example, we explain how the naihbecame a leaf in the witness tree of Figure
4.2. We seek to classify the Lyndon waadbg using the witness tree for Lyndon words of
size four. Since the root represents position 4, the firstpaoison finds that, the fourth
character irmcbg matches the edge connecting the root to its right childs Dhings us to
the right child of the root, which tells us to look at positiBnSince there is b at the third
position ofacbg we reach the leaf labelé Thus, we compare the Lyndon worasbcand
aabc They differ at the second position, so we create an interodé for position 2, with

children leading to leaves label@dind7, and their edges labeledandc, respectively.

Lemma 4.2.1. Of the named strings that are the same size as a new stritigere is at

most one equivalence clagsthat has no recorded mismatch against

36

Proof. The proof is by contradiction. Suppose we have two suchetagsand;. Bothh
and; have the same size aand neither has a recorded mismatch witBy transitivity of
the equivalence relation, we have not recorded a mismatwtebah and;j. This means
thath andj should have received the same name. This contradicts thenptien thath

andj are different classes. O

Lemma 4.2.2. The witness trees for the rows @patterns, each of size& x m, occupies

O(dmlog dm) bits of space.

Proof. The proof is by induction. The first time a string of sizés encountered, the tree
for strings of sizeu is initialized to a single leaf. The subsequent examinatiba string
of sizewu will contribute either zero or one new node (with an accomypanedge) to the
tree. Either the string is given a name that has already b&sthar it is given a new name.
If the string is given a name already used, the tree remaicisanged. If the string is given
a new name, it mismatched another string of the same sizee Hne two possibilities to
consider.

(i) A leaf is replaced with an internal node to represent tbsifppn of mismatch. The
new internal node has two leaves as its children. One leaésepts the new name, and the
other represents the string to which it was compared. Theauges are labeled with the
characters that mismatched.

(i) A new leaf is created by adding an edge to an existingrm@knode. The new edge

represents the character that mismatched and the new prateats the new name. [
Corollary 4.2.3. The witness tree for Lyndon words of lengthas depth< .

Lemma 4.2.4. A pattern row of sizé(m) is named inO(m) time using the appropriate

witness tree.

37

2 1A - 1A a [[a cllala c
ala b |a il 2 |la b
alble lala a [[b [[c [la [|a blc |a
PR PR O cle e e e e Te 1e
2lbla b la a [[b [la [[b [|a blalb
2lb 16 12 la a [[b [[b [la [|a b b

cla|a|b|c < 2Pl lala[b
2lb a6 la a [[b [la [[b [|a b |a

Figure 4.3: An h-periodic matrix with h-period of size 4. Tigure on the right shows that
the matrix can overlap itself at this distance, with no migrhan the region of overlap.
Proof. By Lemma 4.2.1, a new string is compared to at most one othegsjr A withess
tree is traversed from the root to identify Traversal of a witness tree ceases either at
an internal node or at a leaf. The time spent traversing aisré®unded by its depth.
By Corollary 4.2.3, the tree-depth ¢3(m), so the tree is traversed @(m) comparisons.

Thus, a new string is classified with(m) comparisons.

Preprocessing the 1D Patterns

We initially focus on h-periodic patterns in this sectione \iscuss h-aperiodic at the end

of the section.

Definition 4.2.1. [18] An m x m matrix is h-periodi¢ or horizontally periodic, if two
copies of the matrix can be aligned in the top row so that tier® mismatch in the region

of overlap and the number of overlapping column ig:/2.
An h-periodic pattern is depicted in Figure 4.3.

Definition 4.2.2. Theh-periodof an h-periodic matrix is the minimum column number at

38

which the matrix can be aligned over itself.

Observation 1. If a 2D pattern is h-periodic then each of its rows is perioditowever,

the converse is not necessarily true.

Once the pattern rows are named, an Aho-Corasick (AC) autonstmnstructed for
the 1D patterns of names. (See Figure 4.1 for the 1D namege¥ fhatterns.) Several
different patterns have the same 1D name if their rows betortpe same equivalence
class. This is easily detected in the AC automaton since #tienns occur at the same
terminal state.

The next preprocessing step computes a Least Common Myliphg) table for each
distinct 1D pattern. The LCM table stores the LCM of the periofithe firsti rows of the
pattern in entryL.C' M i], for 1 < i < m. Each LCM entry can be computed incrementally,
one row atatimeLC'M [i] is computed fron.C M [i—1] and the period of row. The LCM
of two numbersr andy can be found by multiplying: by y and dividing the product by
the greatest common divisor ofandy, which can be found i® (min(x,y)) time. Thus,
each value take®(m) time andO(1) space to compute and the entire table is constructed
in linear time with respect to the size of a pattern.

The LCM of an h-periodic pattern reveals the horizontal diseabetween its potential
occurrences in a text block. This conserves space as thefeveer candidates to maintain.
In addition, we use this to conserve verification time. The L&@Mle of each 1D pattern
can be stored i (m log m) bits of space since the LCM of an h-periodic pattern must be
< m/2. Thus, the LCM tables occupy(dm logm) bits overall.

We say that two distinct patterns drerizontally consisterit one pattern can be placed
on the other in the first row so that they overlap in at leas?2 columns and their overlap is

identical. Note that simply having the same 1D represematoes not render candidates

39

horizontally consistent, although it is a necessary caonlitHorizontally consistent pat-
terns can be obtained from one another by removing sevdrahos from one end and then
extending each row at the other end by continuing its perpothb same number of char-
acters. Figure 4.4 depicts a pair of horizontally consigpatterns. Horizontal consistency
is determined by the periods of the pattern rows, i.e., thinames, and the Lyndon word
alignment between the pattern rows. Two distinct patteamsle horizontally consistent

even if they are not h-periodic. We discuss this case at tHegthe section.

LYpos D

oo |o(oc|(o|(T|(0 (o

o|o |T|v |T|v |T|T

oo oc(o(e (oo (a
oo (o (o (oo (o o
o|o|e (oo (o oo
o|lo oy (v (e (oo
ARG RE]
o |oc|e (oo (o e o
olo|r|r|o|(N|kr

ool ojloc(e o T

|0 |oc|w |0 |0 |oc|o

0| |T|oc|oc|oc|o|v

oo olo|e oo (o
o|o || v |0 | o o
o logle oo o oo
o|o|o|v|v | |T|T
olo oo (oo o o
O(N|W|lr N O|lw

EIRIEIRIBRIRNIEGIE

o|lo|o|y |o|e (oo

EZIRIRIRIRIRIBE
o |loc|ey|oc|e e e o

ofle||of|o|| o|| o] 0| @

oclo|loc|y|o|le |oc|o
MIEIRIEIRIBIRIE

NIBIEIEBRERE

o |lo|le|oc|lo|e oo

el EIBRIBRIBRIEIRIBE

Q
—
—_
O
~—
—_
O
—

Figure 4.4: (a) Horizontally consistent patterns have laygring columns: one is a hori-
zontal shift of the other. Each matrix is shown withlitéposarray and the first occurrence
of the Lyndon word in each row is highlighted. (b) The matrixtbe left is Pattern 2 of

Figure 4.1. (c) In the matrix on the right, Pattern 2 is shifieft by two columns.

Each row of a pattern is represented by its name arldyifgs To convert a pattern to
one that is horizontally consistent with it, its rows areftgu by the same constant, but the
LY posof its rows may not be. However, the shift is the same acrassas, relative to the
period size of each row. Figure 4.4 shows an example of hotdtly consistent patterns
and the relative shifts of their rows. Notice that (c) can bemed from (b) by shifting two
columns towards the left. The first occurrence of the Lyndondwof the first row is at the

third position in (b) and at the first position in (c). Thisflseems to reverse in the third

40

row, since the Lyndon word first occurs at the first positiotbjnand at the third position in
(c). However, the relative shift remains the same acrogswah, with respect to the period

size of each row. We summarize this relationship in the walhg lemma.

Lemma 4.2.5. Two patterns with the same 1D representation laogizontally consistent
iff the LYPos of all their rows are shifted b mod period size of the roqwvhereC is an

integer.

Proof. Let patternsP; and P; be horizontally consistent. Then, their correspondingsrow
are shifted by the same constant. Mathxis obtained fromP; by removingC' columns
from the beginning of?; and then extending each row 8f by C characters in its period.
ThelLYposof a row is between 1 and the period size of a row. On a row witlodesizeu,

a shift of C columns translates to a shift of C madSimilarly, if we know that the shift of
each row is C mod, the 2D patterns must be horizontally consistent.

]

We say that a matriX’ has ahorizontal prefix(resp. suffix)U if U is an initial (resp.

ending) sequence of contiguous columng’in

Definition 4.2.3. Two matrices,P; and P, are horizontal 2D conjugaté P, = UV,
P, = VU for some horizontal prefix/ and horizontal suffid” of P, and the period of

every row ofP;, is a 1D conjugate of the period of its corresponding rowFin

Two matrices are horizontal 2D conjugate if they differ objya cyclic permutation of their
columns and the Lyndon word representing each pair of cooreging rows is identical.
When it is clear from the context, we simply use the word coajago refer to horizontal

2D conjugate.

41

Observation 2. If the h-periods of two patterns are horizontal 2D conjugditesn the 2D

patterns are horizontally consistent.

We have shown that two periodic strings that can overlap bsertian half their length
have periods that are conjugate. There we used the Lyndash e¥dhe period as the rep-
resentative of each class of consistent periodic stringgheé same way, two h-periodic
patterns that are horizontally consistent must have hedsrihat are horizontal 2D conju-
gate. We use horizontal 2D conjugacy as an equivalencearlamong h-periodic pat-
terns. Furthermore, we define tB® Lyndon wordand we use it as the representative of
each horizontal consistency class, in a similar mannergd Bhequivalence relation.

We represent a horizontal 2D conjugate as a sequgnce . . ., ¢,, wherec; represents
the position in row of the first occurrence of the Lyndon word of the period of rowhe
LYposarray of a patterrP is the horizontal 2D conjugate sequence of the h-periof.of
Each conjugate of the h-period &fwill have a distinct sequence which we refer to as the

conjugate’d_Yposarray.

Definition 4.2.4. A 2D Lyndon wordof a matrix is theLYpos array that is the smallest

over all the horizontal 2D conjugates of the matrix, for themerical ordering.

We use the 2D Lyndon word of the h-period Bfto classify patternP as belonging
to exactly one horizontal consistency class. We can contpet@D Lyndon word of the
pattern by computing theYposarray for each conjugate of the h-period and then finding
the minimum. This computation can be doneCifim?) time by generating eachYpos
array from the pattern’sYposarray and the periods of the rows. We maintain only the
running minimum and the current sequence as the sequercgsrarated, and thagm)

space suffices.

42

For the preprocessing, these time and space complexiteacaeptable. However,
when it comes to classifying text blocks, the process ofutating a 2D Lyndon word will
have to be more efficient. Therefore, we presen®am) time algorithm to calculate the
2D Lyndon word for a pattern of siz@(m?). This procedure is delineated in Algorithm 2
and described in the following paragraphs.

We examine one row at a time, and focus on a shrinking subssifté at which the
2D Lyndon word can occur. For row we begin by shifting the firstYposentry to the
first column we are considering. Suppose the first such colamnLetu = LCM[i — 1].
Columnsz, z+wu, z+2u, . . . are columns at which the 2D Lyndon word can possibly occur.
We systematically find the numerically smallest sequerase iy row.

For each row, we use the rowls’posentry to calculate the shifts at the columns that
can be the 2D Lyndon word. For each rowhere are two possibilities. If its period is a
factor of LC'M[i — 1], the shiftedLYposentry will be identical in all columns that we are
considering. Otherwise, whenC' M [i] is larger thanL.C'M [i — 1], we calculate the shifted
LYposentry in each column that may be the class representativen, e identify the
minimum among these values and discard all columns in whiehshift in row: is not
the minimum. We store the shift at which this minimum valustfoccurs. The remaining
columns that we consider for the 2D Lyndon word are at a digtarfiLC' M [i] from each
other. As long as there are several columns we are consigéhiis continues until either
the last row is reached drC'M [i] = LCM[m]. Once this occurs, only one shiftéd'pos

value will be computed for each subsequent row.

Observation 3. Letz andy be distinct integers. If neither nor y is a factor of the other,

LCM (z,y) > 2.

Lemma4.2.6.The 2D LYndon word for the h-period of a pattern of sizem, is computed

43

Algorithm 2 Computing a 2D Lyndon Word

Input: LY pos[1...m], period[l...m], LC'M[1...m] for matrix M.
Output: 2D Lyndon word LW [1...m], and its shift: (i.e. column number id/).

LW[1] + 0
z < LYpos[1]
{LYpos[1]is first column of shift §
{columnsz, z + period[l], z + 2 x period[1], . .. can be 2D Lyndon worH
for i < 2tom do
if LCM[i — 1] MOD period[i] = 0 then
{if period of row: is a factor of cumulative LCN
LW i] < (LYpos[i]-z) MOD periodl[i]
else
{LCM]i] > LCM]i — 1]}
firstLYshift« (LYpos]i]-z) MOD period][i]
{shift LYposl[i]to z}
LW i] + min ((firstLYshift-j « LC'M[i — 1]) MOD period[i])
{minimize overj > 0 such that + j « LCM[i — 1] < LCM[m|}
z+=j* LCM[i — 1]
{adjustz by j that minimizes shift in previous equatipn
end if
I+
end for

44

in O(m) time andO(m log m) bits of extra space.

Proof. The h-period of a pattern has widllC' M [m] < m. Thus, we begin with a set of
at mostLC' M [m] columns as possibilities for the 2D Lyndon word. As rpig examined,

the if statement in Algorithm 2 has two possibilities:

(i) Its period is a factor of.C'M[i — 1]: computation is done i®(1) time and space.

(i) LCM|i] > LCM]i — 1]: LYposis shifted for several columns. The values are com-
pared and all but the shifts of minimum value are discardedemthe LCM value is
adjusted, the number of columns that we consider is shatteBye Observation 3, at
least half the possibilities are discarded. We can chagedmputations for shifting
LYposvalues in row: to the set of shifts that are eliminated. Over all rows, attmos

columns can be eliminated and thus the time rem&ifis).

The 2D Lyndon word of a pattern is stored @(m logm) bits of space. Along the
way, the only extra information we store are the shitt&gosvalues for a small number of
columns € m/4) in one row: at a time, at some initial shift and then at regular intervals

of LC'M(i].

Offset Tree

If several patterns share a 1D name, and their h-periodsatreanizontal 2D conjugate,
they will each have a unique 2D Lyndon word. We need an efficAd&y to compare the
text to all of these patterns. Thus, we construct a compddsedabeled by the 2D Lyndon

words, which we call anffset tree An example of an offset tree is shown in Figure 4.5.

45

Offset Tree

Name | Period | Patternl | Patternl Pattern2 | Pattern2
size LYpos Lyndon Word | Lypos Lyndon Word

4 0 0 2 0

F I IS IS FPUN (Y OO IR IS
[N [N I NS I N8 VVR) RN S
o|lr|lw|o|o|w|o
o|lr|lw|o|o|w|o
oOfIN|W| LR |[NIO|W
o|lo|r|r|o|[Nn|r

[Pattern 1] [Pattern 2]

Figure 4.5: Offset tree for Pattern 1 and Pattern 2 (the firsfdatterns of Figure 4.1) which
have the same 1D name. Th¥posentries of Pattern 1 are not shifted since its actual shift
is its 2D Lyndon word, while th&yposentries of Pattern 2 are shifted Bynod period size

of row, to match the 2D Lyndon word shown in Figure 4.4(c).

Components of offset tree:

Root: represents the first row of a pattern.

Internal node:represents a row index from 1 to, strictly larger than its parent’s.

Edge:labeled by a subsequence of the 2D Lyndon word.

Leaf: represents a consistency class of dictionary patterns.

We construct an offset tree for each set of patterns with énees1D name. We clas-
sify one pattern at a time. Once we have computed the 2D Lymawd of each pattern,
we traverse the tree and compare the 2D Lyndon words in séguerder until either a
mismatch is found or we reach a leaf. If a mismatch occurs &dge leading to a leaf,
a new internal node with a leaf are created, to representdbiéigm of mismatch and the
new consistency class, respectively. If a mismatch ocduae adge leading to an internal

node, a new branch is created with a new leaf to representthi€onsistency class.

46

Observation 4. The offset trees fod 1D patterns, each of size, haveO(d) nodes and

thus can be stored i®(d log d) bits of space.

Lemma 4.2.7.Given a set of 2D Lyndon words that are representative ofrdiffeconsis-

tency classes, we can classify a 2D Lyndon wor@{m) time.

Proof. The offset tree for a 1D pattern of length has string-deptk< m. This is because
each node represents a position from Iri@and each node represents a position strictly
greater than that of its parent. A pattern is classified byetrging the offset tree and
comparing the Lyndon word offsets labeling the edges uittiee a point of failure or a
leaf is reached. Since a tree of string-degthn is traversed from the root i@ (m) time, a

2D Lyndon word of lengthn is classified inD(m) time.

h-Aperiodic patterns

Thus far we have classified only h-periodic patterns intozomtal consistency classes. If
a pattern is not h-periodic it can still overlap another nguehiodic pattern with more than
m/2 columns. The LCM of the periods of all row&(C'M[m], tells us whether a pattern
is h-periodic or not so we can easily split Case | patterns tintgse that are h-periodic
and those that are not h-periodic. If two h-aperiodic patieare horizontally consistent,
their periods have the same relative shifts over all theirstoSince the 2D Lyndon word
captures the relative shifts of all pattern rows, we can usengdar technique to classify
h-aperiodic patterns whose rows are highly periodic.

We assume that each dictionary pattern whose rows are hggnlgdic has an LCM
that isO(m). This ensures that in the standard RAM model, standard agtibron the

LCM table can be performed in constant time. Note that the 2Bdoy word may not

a7

be theLYposarray for any conjugate of an h-aperiodic pattern. Howeatere artificially
enlarge the pattern by extending the periods, we will exahtueach a column that is
minimal over all possible columns with these relative shifVe will never need to enlarge

a pattern beyondC'M[m| = O(m) and therefore the time complexity remains as stated.
In summary, pattern preprocessingdm?) time andO(dm log dm) bits of space:
1. For each pattern row,

(a) Compute period and canonize.

(b) Store period size, name, first Lyndon word occurrehd0s.
2. Construct AC automaton of 1D patterns.
3. Compress dictionary. Can discard original dictionary.
4. For each 1D pattern of names,

(a) Compute LCM table.

(b) Compute 2D Lyndon word. Store shift at which it occurs.

5. Build offset tree for multiple patterns of same 1D name.

4.2.2 Text Scanning

The text scanning stage has three steps.

1. Name rows of text.

2. ldentify candidates with a 1D dictionary matching altgfom, e.g. AC.

48

3. Verify candidates separately for each text row using ffsettrees of the 1D patterns.

Step 1. Name Text Rows

We search a 2D text for a 1D dictionary of patterns using a 1D-Ebrasick (AC) au-
tomaton. A 1D pattern can begin at any of the first2 positions of a text block row. The
AC automaton can branch to one of several characters; we athord the time or space
to search for each of them in the text block row. Thus, we ndreeaws of a text block
before searching for patterns. The divide-and-conquerilkgn of Main and Lorentz finds
all maximal repetitions in linear time, searching for ref@hs to the right and to the left of
the midpoint of a string [47]. Repetitions of lengthm that cross the midpoint and have a

period size< m/4 are the only ones that are of interest to our algorithm.

Lemma 4.2.8. At most one maximal periodic substring of lengthn with period< m /4

can occur in a text block row of sizen /2.

Proof. The proof is by contradiction. Suppose that two maximal qukd substrings of
lengthm, with period< m/4 occur in a row. Call the periods of these stringandv.
Since we are looking at periodic substrings that begin widmm /2 x m/2 square, the
two substrings overlap by at least/2 characters. Since andv are no larger tham /4,

at least two adjacent copies of battandwv occur in the overlap. This contradicts the fact
that bothu andv are primitive.

]

After finding the only maximal periodic substring of lengthm with period< m/4,

the text block rows are named in much the same way as the patt@s are named. The

49

period of the maximal run is found and canonized. Then, the@piate witness tree
is used to name the text block row. We use the witness treerootesd during pattern
preprocessing since we are only interested in identifyaxy block rows that correspond
to Lyndon words found in the pattern rows. At most one pattem will be examined to
classify the conjugacy class of a text block row. In additiothe name, period size, and
LYpos we maintain deft and aright pointer for each row of a text blockeft andright
mark the endpoints of the periodic substring in the text.sThbcess is repeated for each
row, andO(m) information is obtained for the text block.

Complexity of Step I The largest periodic substring of a row of width /2, if it
exists, can be found i®(m) time and space [47]. Its period can be found and canonized
in linear time and space [46]. The row is nameditm) time and space using the appro-
priate witness tree (Lemma 4.2.4). Overéll;n?) time andO(m log dm) bits of space are

needed to name the rows of a text block.

Step 2. Identify Candidates

After Step 1 completes, a 1D text remains, each row labelé¢d &iname, period size,
LYpos andleft, right boundaries. A 1D dictionary matching algorithm, such as ACised
to mark occurrences of 1D patterns. We call a text row at whidD pattern occurs a
candidate row The occurrence of a 1D pattern indicates the potentialroenae of one or
more 2D patterns since several 2D dictionary patterns cem the same 1D name. We do
not store individual candidate positions within a candddatv since the set of positions is
O(m?) in size and can. occupy too much space.

Complexity of Step 2 1D dictionary matching in a string of size is accomplished in

O(mlog o) time with O(dm log dm) bits of space for the AC automaton.

50

Step 3. Verify Candidates

The occurrence of a 1D pattern is not sufficient evidencedlt#d pattern actually occurs
since several patterns can share a 1D representation. \Wemeerify the alignment of
the periods among rows as well as the overall width of the 1Des We verify each
candidate row irQ(m) time using the concept of horizontal consistency and treebffee
of 2D Lyndon words.

A segment of the text block that is rows long is classified by its 2D Lyndon word in
the same way that the patterns are. This classificationrdates horizontal consistency
of candidates in a row. The 2D Lyndon word qf rows in a text block is computed and
classified with the offset tree i(m) time. This allows the text scanning stage to complete
in time proportional to the text size, independent of theidiary size.

We must confirm that the labeled periodic string extends avéeastn columns in
each of then rows that follow a candidate row. We are interested in theimum of all
right pointers,minRight as well as the maximum of akft pointers,maxLeft as this is
the range of positions in which the pattern(s) can occuhdfgattern will not fit between
minRightandmaxLefti.e.,minRight— maxLeft< m, the candidate row is eliminated.

At this point, we know which patterns are horizontally catesnt with the text block
row. The last step is to locate the positions at which eactepabegins, within the row.
Since we store the shift at which the 2D Lyndon word occurs pathern, we can reverse
the shift to find the location at which each pattern begindentext. The reverse shift is
computed for each pattern that is horizontally consistetit thie text. Letz be the position
at which we expect a pattern to begin in the text block row. @&wlas:z < maxLeft,
we increment: by the LCM of the pattern. Then, we announce positioas a pattern

occurrence wheminRight — z > m. Subsequent occurrences of the pattern in the same

51

row are separated by a distancel@f M/ [m| columns.

Complexity of Step 3 O(m) rows in a text block can contain candidates. At each
candidate row, the 2D Lyndon word is computed and classifi€d(in) time, by Lemmas
4.2.6 and 4.2.7. The computation mixLeftandminRightfor the m rows that a pattern
can span takeS(m) time. The actual locations of a pattern occurrence are &somhined
in O(m) time. Overall, a text block is verified i@ (m?) time, proportional to the size of a
text block. The verification process requi@ém log dm) extra bits of space.

Complexity of Text Scanning Stage Each block of text is processed separately in
O(m) space and iO(m?log o) time. Since the text blocks ar@(m?) in size, there are
O(n?/m?) blocks of text. OverallD(n?log o) time andO(m log dm) extra bits of space

are required to process a text of sizex n.

4.3 Case lI: Patterns With Row of Period Size> m /4

We consider the case of a dictionary of patterns in which gmattern has at least one
aperiodic row. The case of a pattern having a row that is geriwith period size between
m/4 andm/2 can be treated similarly, since each pattern can occur@(ly times on one
row of a text block.

In the case of one or more aperiodic pattern rows in the pettenany different patterns
can overlap in a text block row. As a result, it is difficult tmploy a naming scheme to
find all occurrences of patterns. However, it is straightfnd to initially identify a limited
number of candidates of pattern occurrences. Verificatidhese candidates in one pass
over the text presented a difficulty.

We allow O(dmlog dm) bits of space to process a block of text. In the event that

d < m, Case lla, this limit on space is a significant constraint. \dgress this case in

52

Section 4.3.1. Whed > m, Case llb, the number of candidates for pattern occurrences
can exceed the size of a text block. It is difficult to verifbua large number of candidates

in time proportional to the size of a text block. Because wevaNvorking space larger
than the size of a text block, there is no need to begin byifiljethe text and identifying

a limited set of candidate positions. We present a diffeaégurithm to handle this case in
Section 4.3.2.

For Case Il patterns, we agdinearizethe dictionary by concatenating the rows of all
patterns, inserting a delimiter at the end of each row. Wa tkelace the original dictio-
nary by storing an entropy-compressed self-index of thesliized dictionary. For Case lla,
a compressed suffix array (CSA) and compressed LCP array esatgosufficient infor-
mation for our dictionary matching algorithm. However, insg€dlb, we need the ability to
traverse the compressed suffix tree. For consistency, wastishe usage of a compressed
suffix tree in both cases. The time-space trade-offs of uarammpressed suffix tree rep-
resentations are described in Section 3.3.3. Any comptesgdéx tree representation can
be used in this algorithm. We useto refer to the time complexity of operations in the

compressed suffix tree.

4.3.1 Casella:d <m

The aperiodic row (or row with period m/4) of each pattern can only occax(1) times
in a text block row. Thus, we use an aperiodic row of each pattefilter the text block.
The text scanning stage first identifies a small set of pastibat are candidates for pattern
occurrences. Then, the verification stage determines wdfitthese candidates are actual
pattern occurrences. After preprocessing the dictiorta®t, scanning proceeds in time

proportional to the text block size.

53

Pattern Preprocessing

We form an AC automaton of one aperiodic row of each pattery),tke first aperiodic row
of each pattern. There can bg1) candidates for any non-periodic row in a text block row.
In total, there can b&(dm) candidates in a text block, with candidates for severairtist
1D patterns on a single row of text. If the same aperiodic roaucs in several patterns,
we can even find several candidates at the same text position.

The pattern rows are named to form a 1D dictionary of patteiistinct rows are
given different names, much the same way that Bird and Bakerecba 2D pattern to a
1D representation. However, Bird and Baker form an AC automatall pattern rows. We
do not allow that much space. Instead, we use a witness &eerided in Section 4.2.1, to
store distinctions between the pattern rows, which aretrétigs of lengthm. The witness
tree of the row names is preprocessed for Lowest Common Asrc@<tA) to provide a
witness between any pair of distinct pattern rows in corigtare.

Preprocessing proceeds by indexing the 1D patterns. Wedayeneralized suffix tree
of the 1D patterns of names, complete with suffix links. Thi#xstree is preprocessed for
LCA to allow O(1) time Longest Common Prefix (LCP) queries between suffixes of the

1D patterns.
In summary, pattern preprocessing is as follows:

1. Construct AC automaton of first aperiodic row of each patt&tore row number of

each of these aperiodic rows.
2. Name pattern rows using a single witness tree. Store liBrpatof names.

3. Preprocess witness tree for LCA.

54

4. Construct generalized suffix tree of 1D patterns. Pregofor LCA.

Lemma 4.3.1.The pattern preprocessing stage for Case lla completéXihn?) time and

O(dmlog dm) extra bits of space.

Proof. 1. The AC automaton of the first non-periodic row of each patie constructed in
O(dm) time and is stored i®(dm log dm) bits.

2. ByLemma 4.2.2, the witness tree occupi¥gm log dm) bits of space. By Lemma 4.2.4,
pattern rows are named with the witness tre®idm?) time.

3. The witness tree and generalized suffix tree are premeddn linear time to answer
LCA queries inO(1) time [36, 10].

4. The 1D dictionary of names is stored{dm log dm) bits of space and its generalized

suffix tree is constructed and stored in time and space ptiopat to this 1D representation.

Text Scanning

The text scanning stage has three steps.

1. Identify candidates in text block with 1D dictionary miaittg of a non-periodic row

of each pattern.
2. Duel to eliminate vertically inconsistent candidates.

3. Verify pattern occurrences at surviving candidate pmsst

55

Step 1. Identify Candidates

We do not name all text positions as Bird and Baker do, sincevthidd requireO(m?)
space per text block. Neither do we use the witness tree te mlaentext block rows as we
do for the patterns whose rows are highly periodic, sinceynmames can overlap in a text
block row. Instead, text scanning begins by identifyingnaited set of positions that are
candidates for pattern occurrences. Unlike patterns ifistegroup (Case I), each pattern
can only occuO(1) times in the text block.

We locate the first aperiodic row of each pattern and congtuerset of strings as
a 1D dictionary of patternsO(dm) candidates are found by performing 1-D dictionary
matching, e.g. AC, on this limited set of pattern rows overtéxe block, row by row. Then
we update each candidate to point to the position at whichxpeat a 1D pattern name to
begin. This is done by subtracting the row number of the seteaperiodic row within the
pattern from the row number of the candidate in the text hlock

Complexity of Step 1: 1D dictionary matching on a text block tak€$m? log o) time
with the AC method. Marking the positions at which patteras begin is done in constant
time per candidate found; overall, this requif@gim) time. The AC 1D dictionary match-
ing algorithm uses extra space proportional to the dictigr@(dm log dm) bits of space.

The candidates can also be storediflm log dm) bits of space.

Step 2. Eliminate Vertically Inconsistent Candidates

We call a pair of patternsonsistentf they can overlap in a single text block. Overlapping
segments of consistent candidates can be verified simolighe In this stage we eliminate
inconsistent candidates with a dueling technique insgyettie 2Dsinglepattern matching

algorithm of Amir et al. [2]. In the single pattern matchinig@rithm, a witness table is

56

computed in advance, and duels are performed between eaesliof the same pattern. In
dictionary matching, we want to perform duels between aiatdis fodifferentpatterns. It
would be inefficient both in terms of time and space to stotaegises between all locations
in all patterns.

We call two patternsertically consistenif they can overlap in the same column. Note
that vertically consistent patterns have a suffix/prefixahan their 1D representations.
Thus, we duel between candidates within each column wsingmic duelingln dynamic
dueling, no witness locations are computed in advance. @fgiaen two candidate patterns
and their locations, candidaté at location(i, j) in the text and candidat8 at location
(k,j) in the text,i < k. Since all of our candidates are inary2 x m/2 square, we know
that there is overlap between the two candidates.

A dynamic duel consists of two steps. In the first step, the dpasentation of names
is used forA and B, denoted byAd’ andB’. An LCP query between the suffix—i+1 of A’
againstB’ returns the number of overlapping rows that match. If thimber is> i+m—k
then the two candidates are consistent. Otherwise, we &e@ @i “row-witness,” i.e. the
LCP points to the first row at which the patterns differ. In tke@nd step of the duel, an
LCA query in the witness tree provides a position of mismatetwieen the two different
pattern rows, and we use that position to eliminate one dr tabdidates.

Text block columns are scanned top-down, one at a time, erméte vertical consis-
tency of candidates. We confirm consistency pairwise ovecémdidates within a column,
since consistency is a transitive relation. A duel elimasadt least one element of a pair
of inconsistent candidates. If only the lower candidateilied this does not affect the

consistent candidates above it in the same column, as tbkestithiconsistent with the text

57

|:> © - © '—[(@]
© ©
Consistent .
Candidates Consistent Consistent
|j © Candidates Candidates — |j ©
m
cre e
© Inconsistent ©
|j Candidates
© | LL[® -

(a) (b) (c)

Figure 4.6: (a) Duel between vertically inconsistent cdatis in a column. (b) Surviving
candidates if the lower candidate wins the duel. (c) Sungwandidates if the upper
candidate wins the duel.

character. However, if the lower candidate survives, gigeirs the elimination of all candi-
dates withinm rows above it. Pointers link consecutive candidates in eatdmn. This
way, a duel eliminates the set of consistent candidatesatigatvithin range of the mis-
match. This is shown in Figure 4.6. Distinct patterns havieint 1D representations.
Thus, the same method can be used when two (or more) carsliiatar at a single text
position.

The pass over the text to check for consistency ensures dmaidates within each
column are vertically consistent. Consistency in otherdiio&s (including horizontal con-

sistency) is established in Step 3 while comparing charsstxjuentially against the text.

Complexity of Step 2: The consistency of a pair of candidates is determined by an LCP

guery followed by a duel between characters. We use datetstes that can answer LCP
queries inO(1) time over the 1D patterns of names. Duels are performed wittieases
generated by an LCA query in the witness tree over the patbeva inO(1) time. Due to
transitivity, the number of duels will be no more than the @mof candidates. There are

O(dm) candidate positions, witth < m, so this step completes {(m?7) time. The only

58

slowdown is in retrieving pattern characters for the duEhig is true even in the event that

several candidates occur at the same text position.)

Step 3. Verify Surviving Candidates

After eliminating vertically inconsistent candidates, veify pattern occurrences in a sin-
gle scan of the text block. Beginning at the first candidatetipos characters in the text
block are compared sequentially to the expected characténg appropriate pattern. If
two candidates overlap in a text block, we compare the oppittey text characters to a
substring of only one pattern row, to verify them simultansg.

Before we scan a text block row, we mark the positions at whiehewpect to find a
pattern row, by carrying candidates from one row to the negtraerging this with the list
of candidates that begin on the new row. Then, the text bloskis scanned sequentially,
comparing one text character to one pattern character e tintil a pattern row of
another candidate is encountered. Then we perform an LCR quer the pattern row that
is currently being used for verification and the pattern rbat is expected to begin. If the
distance between the candidates is smaller than the LCP) aedoéses the inconsistency
among candidates.

Since consistency is transitive, duels are performed ors phicandidates. Yet, there
are times at which the detection of an inconsistency mustimdite several candidates. If
several LCP queries have already succeeded in a row (thaeibawe a set of consistent
patterns), and then we encounter a failure, we eliminateaaitlidates that are consistent
with the candidate that lost and are within range of the mismaAs in the search for
vertical consistency, we chain candidates to facilitai® pnocess.

Consider Figure 4.7. Suppose we are at positioim row « of pattern P, and we

59

approach the expected beginning of réw pattern,. An LCP query on suffixr of o and
the entires determines if they can overlap at this distance. Let the LCtRexe substrings
bel; and the distance betweerandf in the text be,. Supposé; < m — [,. That s, the
mismatch is within the expected overlap. Then we can du&de the candidates using
the text character at -+ [, to eliminate one or both candidates. Howevetl,; i m — [,
the text can be compared to a substring of either pattern noge shese substrings are

identical.

Figure 4.7: Consistency is determined by LCP queries and duels

Complexity of Step 3: Time Complexity: Each text block character that is within
an anticipated pattern occurrence is scanned once and cemfzaa pattern character,
yielding O(m?7) time. When a new label is encountered on a row, a duel is peeftrm
Each duel consists of an LCP query on the compressed suffixtteeh is done inDO(7)
time. Since each candidate can only be eliminated oncesitraty of dueling ensures that
the number of duels i©(dm), which is strictly smaller than the size of the text block whe

d < m.

60

Space Complexity: When a text block row is verified, we mark omss at which a pattern
row (1D name) is expected to begin. These labels can be dedafter the row has
been verified and the information is carried to the next roausl the space needed is
proportional to the number of candidates, plus the labelsfie text row,O(dm log dm)

bits.

Lemma 4.3.2.The text scanning stage for Case lla, whieqi m, completes it (n?r log o)
time andO(dm log dm) bits of space, in addition to the entropy compressed sdrof

the linearized dictionary.

Proof. This follows from the complexity of Steps 1, 2, and 3.

4.3.2 Casellb:d>m

Sinced > m and our algorithm allow®)(dm log dm) extra bits of space, we hag&m?)
space available. This allows us to store information propoal to the size of the text
block. In its original form, the Bird / Baker algorithm uses ahdACorasick automaton
to name the pattern rows and the text positions. We can ingiém similar algorithm
to name the pattern rows and the text positions if we use alasngdace mechanism to
determine the names.

We can name the text positions using the compressed suféxofr@attern rows in
much the same way as an AC automaton. With suffix links, we nfwa@ositions of the
text block, row by row, according to the names of pattern rofd¢sginning at the root of
the tree, we traverse the edge whose label matches the firstatar of the text block row.
Whenm consecutive characters trace a path from the root, and saweaches a leaf, the

position is named with the appropriate pattern row. At a nairn, we traverse suffix links

61

to find the longest suffix of the already matched string thatchres a prefix of a pattern
row and compare the next text character to that labeled efdipe tree. With suffix links,
this is done in time proportional to the number of charactieas have already matched a
path from the root of the tree. This is done in the spirit of Ok&n’s online suffix tree
construction algorithm which runs in linear time [61].

After naming text positions at which a pattern row occurs,di@ionary matching is
used to find actual occurrences of the 2D patterns in the legk b\WWe mention the usage of
an Aho-Corasick (AC) automaton of the linearized patterngbytl D dictionary matching

algorithm can be used as a black box.

Lemma 4.3.3. The algorithm for 2D dictionary matching in Case Ilb, whé&p> m, com-
pletes inO(n?7 log o) time andO(dm log dm) bits of space, after constructing and storing

the entropy compressed self-index of the linearized diatipin O (m?7) time.

Proof. It suffices to show that the procedure complete®im?r log o) time for a text
block of size3m/2 x 3m/2. The algorithm names the text positions by traversing the
compressed suffix tree of the dictionarym?r log o) time and then locates occurrences
of the 1D patterns of names with 1D dictionary matchingifim?) time. Our algorithm
uses an AC automaton of the dictionary of 1D pattern namesamnpressed suffix tree
of the linearized dictionaryO(dm log dm) bits of space suffice to store an AC automa-
ton of the 1D patterns of names. A compressed self-index angpressed suffix tree
can be stored in entropy compressed space [24]. After farrhie two data structures,

O(m?log dm)=0(dmlog dm) bits of space are used to name a text block. O

Theorem 4.3.4.0ur algorithm for 2D dictionary matching completesiridm?+n?r log o)

time andO(dm log dm) bits of extra space.

62

Proof. Our algorithm is divided into several cases.
Case I: pattern rows are all periodic with perigdn /4.

The complexity of the pattern preprocessing stage is suimgthin Section 4.2.1 and
the complexity of the text scanning stage is summarized cti@e4.2.2. Both of them
meet the bounds specified by this theorem.

Case II: at least one pattern row is aperiodic or has period/4.
Case llaid < m. The complexity is summarized in Lemmas 4.3.1 and 4.3.2.

Case llb:d > m. The complexity is summarized in Lemma 4.3.3.

4.4 Data Compression

The compressed pattern matching probleeeks all occurrences of a pattern in text, and
works with a pattern and text that are stored in compresgaal fAmir et. al. presented an
algorithm for strongly-inplace single pattern matchingid LZ78-compressed data [7].
They define an algorithm adrongly inplacef the extra space it uses is proportional to the
optimal compression of the data. Their algorithm preprsesshe pattern of uncompressed
sizem x m in O(m?) time and searches a text of uncompressedssizen in O(n?) time.
Our preprocessing scheme can be applied to their algorithmchieve an optimaD (m?)
preprocessing time, resulting in an overall time comple&ftO(m? + n?).

In the compressed dictionary matchipgoblem, the input is in compressed form and
one would like to search the text for all occurrences of amyneint of asetof patterns.
Case | of our algorithm, for patterns with rows of periadsn /4, is both linear time and
strongly inplace. It can be used for 2D compressed dictionatching when the patterns

and text are compressed by a scheme that can be sequerg@dyndressed in small space.

63

For example, LZ78 [64] has this property.

Our algorithm is strongly inplace since it us@$dm log dm) bits of space and this is
the best that can be achieved by a scheme that linearize@Bgudittern row-by-row. Case
| of our algorithm requires only)(1) rows of the pattern or text to be decompressed at a
time so it is suitable for a compressed context. A strongptace 2D dictionary matching

algorithm for the case in which a pattern row is aperiodicagm® an open problem.

Chapter 5

Succinct 2D Dictionary Matching With

No Slowdown

In this chapter we achieve succinct 2D dictionary matchmgtrictly linear time, with
no slowdown. We extend new developments in succinct 1Dafiatly matching to the
two-dimensional setting, in a way similar to the Bird and Ba(88) extension of the Aho-
Corasick 1D dictionary matching algorithm (AC). This problé&mot trivial, due to the
small space that we allow to index the dictionary and the s&teto label each position
of the text. However, we modify the technique of dynamic dhgeto make use of recent
achievements in 1D dictionary matching, thus eliminating $lowdown in searching the
text for patterns whose rows are not highly periodic. We @tlachieve a linear time
algorithm that solves thBmall-Space 2D Dictionary Matching Problenfihis algorithm
was published in WADS 2011 [54].

Given a dictionaryD of d patterns,D = {P,...,P;}, each of sizen x m, and
a textT of sizen x n, our algorithm finds all occurrences &f, 1 < i < d, inT.

During the preprocessing stage, the patterns are storedtiopg compressed form, in

64

65

|D|Hi(D) + O(|D]) bits. H,(D) denotes thé:ith order empirical entropy of the string
formed by concatenating all the patterns/i row by row. Preprocessing completes in
O(|D|) time usingO(dm log dm) bits of extra space. Then, the text is searche@f7’|)
time usingO(dm log dm) bits of extra space. For ease of exposition, we discussrpatte
that are all of sizen x m, however, our algorithm generalizes to patterns that arsdme
size in only one dimension, and the complexity would depemdhe size of the largest
dimension. As in [9] and [37], the alphabet can be non-constesize.

This chapter is organized as follows. We begin by reviewimg dictionary match-
ing version of the Bird / Baker algorithm [11, 8] and Hon et adigccinct 1D dictionary
matching algorithm with no slowdown [37]. We outline how $t possible to combine
these algorithms to yield a linear time yet small space 2@iahary matching algorithm
for certain types of patterns. Then, in Section 5.2, we nligtish between highly periodic
patterns and non-periodic patterns. We follow the appreaskeveloped in Chapter 4 for
the periodic case since it is a suitable linear time algoritin Sections 5.2.1 and 5.2.2
we deal with the non-periodic case, and introduce an algorthat achieves linear time

complexity.

5.1 Large Number of Patterns

The first linear-time 2D pattern matching algorithm was digwed independently by Bird
[11] and by Baker [8], which we henceforth refer to as BB. Althbtige BB algorithm was
initially presented for a single pattern, it is easily exted to perform dictionary matching.
Algorithm 3 is an outline of the dictionary matching versioiBB.

Space Complexity of BB: We uses to denote the number of states in the Aho-Corasick

automaton ofD, AC1. Note thats < |D| = dm?. O(slog s) bits of space are needed to

66

Algorithm 3 Dictionary Matching Version of Bird / Baker Algorithm

{1} Preprocess Pattern:
a) Form Aho-Corasick automaton of pattern rows, called AC1.
Let s denote the number of states in AC1.
b) Name pattern rows using AC1, and store a 1D pattern of names
for each pattern irD, calledD’.
c¢) Construct AC automaton d¥’, called AC2.
Let s’ denote the number of states in AC2.
{2} Row Matching:
Run Aho-Corasick on each text row using AC1.
This labels positions at which a pattern row ends.
{3} Column Matching:
Run Aho-Corasick on named text columns using AC2.
Output pattern occurrences.

store AC1, and labeling all text locations uge&:? log dm) bits of space. Overall, the BB
algorithm use®) (s log s + n*log dm) bits of space.

Our objective is to improve upon this space requirement. i\seattempt to conserve
space, we replace the traditional AC algorithm in Step 1 of BB whe compressed AC
automaton of Hon et al. [37]. The algorithm of [37] indexee D dictionary in space
that meets the information-theoretic lower bounds of tloatiahary. At the same time, it
achieves optimal time complexity. We can use their algoritis a black box replacement
for the AC automata in both Steps 1a and 1c of the BB algorithm.

To reduce the algorithm’s working space, we work with smaéirtapping text blocks
of size3m/2 x 3m/2. This way, we can replace th@(n?log dm) bits of space used to
label the text in Step 3 witlh(m? log dm) bits of space, relating the working space to the

size of the dictionary, rather than the size of the entiré tex

Theorem 5.1.1.We can solve the 2D dictionary matching problem in lin€dtim?* + n?)

time andsHy(D) + s'Hx(D') + O(s + m?*log dm) bits of space.

67

Proof. Since the algorithm of Hon et al. [37] has no slowdown, reipigthe AC automata

in BB with compressed AC automata preserves the linear timgptaxity. Preprocessing
usessHy(D) + O(s) + s'Hi(D') + O(s') bits of space. The compressed AC1 automaton
usessHy(D) + O(s) bits of space and it replaces the original dictionary, wiiike com-
pressed AC2 automaton us€$/,(D’) + O(s’) extrabits of space. Text scanning uses
O(m?log dm) extra bits of space to label each location of a text block.

]

Although this is an improvement over the space required byutitcompressed version
of BB, we would like to improve on this further. Our aim is to reguhe working space
to O(dmlogdm) bits, thus completely eliminating the dependence of thekimgrspace
on the size of the given text. Yet, note that this constrdiitadlows us to storeO(1)
information per pattern row to linearize the dictionary Ine tpreprocessing. In addition,
we will have the ability to storé(1) information about each pattern per text row to allow
linearity in text scanning.

The following corollary restates Theorem 5.1.1 in term&¢#im log dm) for the case
of a dictionary with many patterns. It also omits the tefid, (D')+O(s'), sinces’ H,(D')+
O(s") = O(dmlog dm).

Corollary 5.1.2. If d > m, we can solve the 2D dictionary matching problem in linear

O(dm? + n?) time andsHy (D) + O(s) + O(dm log dm) bits of space.

5.2 Small Number of Patterns

The rest of this chapter deals with the case in which the nuwijgatterns is smaller than

the dimension of the patterns, i.@.,= o(m). For this case, we cannot label each text

68

location and therefore the Bird and Baker algorithm cannofpéied trivially. We present
several clever space-saving tricks to preserve the spiBird and Baker’s algorithm with-
out incurring the necessary storage overhead.

There are two types of patterns, and each one presents itsliffvenlty. In the first
type, which we call Case 1 patterns, all rows are periodich witriods< m/4. The
difficulty in this case is that many overlapping occurrencas appear in the text in close
proximity to each other, and we can easily have more careidatn the working space
we allow. The second type, Case 2 patterns, have at least enedip row or one row
whose period is larger than /4. Here, each pattern can occur orily1) times in a text
block. Since several patterns can overlap each other indi@btions, a difficulty arises in
the text scanning stage. We do not allow the time to veriffedént candidates separately,
nor do we allow space to keep track of the possible overlapdifierent patterns.

In the initial preprocessing step, we divide the patterts two groups based on 1D
periodicity. For Case 1 patterns, we use the algorithm weldped in Chapter 4. The

following lemma summarizes its complexity.

Lemma 5.2.1. 2D dictionary matching for Case 1 patterns can be don®idm? + n?)
time andO(dm log m) bits of space, aside from thé7, (D) + O(s) bits of space that store

compressed self-index of the dictionary.

For Case 2 patterns, candidates are identified by followiegsdme framework we
introduced in Chapter 4. However, we use a different methoddofication. We make use
of new developments in succinct 1D dictionary matching. \8&the latest compressed AC
automaton for two purposes, to represent the dictionarytamuex the data at the same
time. Thus, we eliminate the slowdown incurred by a com@eéssiffix tree representation

of the pattern rows. This allows our algorithm to performymamic duebetween a pair of

69

candidates in constant time, resulting in an algorithm thas in linear time.
In the remainder of this section, we assume that each pdtterat least one aperiodic
row. The case of a pattern having a row that is periodic wittogesize betweem: /4 and

m/2 will add only a small constant to the stated complexities.

5.2.1 Pattern Preprocessing

This is an outline of the steps in pattern preprocessingicHdbat we use the compressed
AC automaton as the representation and index of the patters), after which the original

dictionary can be discarded.

1. Construct (compressed) AC automaton of first aperiodicabeach pattern. Store

row number of each of these rows within the patterns.
2. Form a compressed AC automaton of the pattern rows.
3. Construct witness tree of pattern rows and preprocessGér. L

4. Name pattern rows. Index the 1D patterns of names in a stefx

In the first step, we form an AC automaton of one aperiodic rbwazh pattern, say,
the first aperiodic row of each pattern. This will allow us titefi the text and limit the
number of potential pattern occurrences to consider. Sirecese only one row from each
pattern, using a compressed version of the AC automatortisnap.

In the second step, the pattern rows are named as in BB to forbh dictionary of
patterns. Here we use a compressed AC automaton of therpaites. An example of two

patterns and their 1D representation is shown in Figure 5.1.

70

Pattern 1 Pattern 2
alb|b|b 1 al|b|b|b 1
a|b|b|b 1 alal|b]|c 2
alal|b]|c l 2 c|bj|c|a I 3
a|b|b|b 1 b|bfa|a 4

Figure 5.1: Two linearized 2D patterns with their 1D names.

Another necessary data structure is the witness tree, wincimtroduced in [53] and
described in Chapter 4. A witness tree is used to store paminctions between differ-
ent patterns, or pattern rows, of the same length. A witrreggarovides a witness between
pattern rows in constant time if it is preprocessed for Lavi@smmon Ancestor (LCA).

Figure 5.2 depicts a witness tree of the row names used ind-fg.

Witness Tree

Name | String
1 abbb

aabc

cbca

bbaa

Alw]|nN

Figure 5.2: A witness tree for several strings of length 4.

Preprocessing proceeds by indexing the 1D patterns of nawledorm a suffix tree
of the 1D patterns to allow efficient computation of longesienon prefix (LCP) queries

between substrings of the 1D patterns.

Lemma 5.2.2. The pattern preprocessing stage for Case 2 patterns consglet@(dm?)

time andO(dm log m) extra bits of space.

71

Proof. The AC automaton of the first non-periodic row of each pattsroonstructed in
O(dm) time and is stored ilW(dm logm) bits, in its uncompressed form. A compressed
AC automaton of all pattern rows occupieS; (D) + O(s) bits of space and can then be-
come the sole representation of the dictionary [37]. Theegs tree occupi&s(dm log m)

bits of space. A rooted tree can be preprocessed in lineardimd space to answer LCA
queries inO(1) time [36, 10]. The patterns are converted to a 1D representatO(dm?)
time. A suffix tree of the 1D dictionary of names can be cortdéd and stored in linear

time and space, e.g., [61].

5.2.2 Text Scanning

The text scanning stage has three steps.

1. Identify candidates in text block with 1D dictionary miaittg of a non-periodic row

of each pattern.
2. Duel to eliminate inconsistent candidates within eadbroo.

3. Verify pattern occurrences at surviving candidate jpamrsst

Step 1. Identify Candidates

We identify a limited set of candidates in the text block gslib dictionary matching on the
first aperiodic row of each pattern. There can be only oneroenae of any non-periodic
pattern row in a text block row. Each occurrence of an aperipdttern row demarcates a
candidate, at mostper row. In total, there can be upde: candidates in a text block, with

candidates for several distinct 1D patterns on a single rotexa. If the same aperiodic

72

row occurs in several patterns, several candidates cam attlie same text position, but
candidates are still limited t@ per row.

We run the Aho-Corasick algorithm over the text block, row bw,rto find up todm
candidates. Then we update each candidate to reflect thieoposi which we expect a
pattern to begin. This is done by subtracting the row numb#reoselected aperiodic row
within the pattern from the row number at which it is found e text block.

Complexity of Step 1: 1D dictionary matching on a text block tak€$m?) time with
the AC method. Marking the positions at which patterns cagirbes done in constant
time per candidate found; overall, this requit@&lm) = o(m?) time. The AC algorithm
uses extra space proportional to the dictionary, whiah(igm log m) bits of space for this
limited set of pattern rows. Thén candidates can also be storedidm logm) bits of

space.

Step 2. Eliminate Vertically Inconsistent Candidates

Recall that we call a pair of candidates for pattern occuesoansistentf all positions of
overlap match. Vertically consistent candidates are twalickates that appear in the same
column, and have a suffix/prefix match in their 1D represeriat For our purposes, we
need only eliminate vertically inconsistent candidatefotgecomparing text and pattern
characters at which patterns are expected to occur. Thupewerm duels between the
candidates in a given column, pairwise. In order to verifgdidates in a single pass over
the text, we take advantage of the fact that overlapping setgrof consistent candidates
can be verified simultaneously.

We perform duels between one pair of candidates at a time lanthate inconsistent

candidates. Then we remain with a set of consistent caredidatverify in the text. Until

73

this thesis work, the dueling paradigm had not been appiigictionary matching since it

is prohibitive to precompute and store witnesses for alkfids overlaps of all candidate
patterns in a set of patterns. However, we developed an ativewvay of performing duels
for a set of 2D patterns. ldynamic duelingno witness locations are computed in advance.
We store a minimal amount of information that allows us tocedfitly generate witnesses
on the fly, as they are needed in a duel.

A duel consists of two steps. In the first step, an LCP query ed hrepresentation of
the patterns is used to generate a “row-witness,” the firgtatovhich the candidates differ.
In the second step of the duel, we use the witness tree tcelticatposition of mismatch
between the two different pattern rows, and we use thatipodib eliminate one or both
candidates.

To demonstrate how a witness is found and the duel is perfihrnve return to the
patterns in Figure 5.1. Assume two candidates exist; dyrbeiow a candidate for Pattern
1, we have a candidate for Pattern 2. The LCR2i, (second suffix of linearized Pattern
1) and1234(linearized Pattern 2) is 2. Sin@e< 3, the LCP query reveals that the patterns
are inconsistent, and that a witness exists between ththfoaw of Pattern 1 (name 1) and
the third row of Pattern 2 (name 3). We then procure a witness the witness tree shown
in Figure 5.2 by taking the LCA of the leaves that representesinand 3. The result of
this query shows that the first position is a point of distimctoetween names 1 and 3. If
the text has an ‘a’ at that position, Pattern 1 survives tred.dDtherwise, if the character
is a ‘c’, Pattern 2 survives the duel. If neither ‘a’ nor ‘c’@ga at the text location, both

candidates are eliminated.

Lemma 5.2.3. A duel between two candidate pattethsnd B in a given columry of the

text can be performed in constant time.

74

Proof. The suffix tree constructed in Step 4 of the pattern prepeidcgsanswers LCP
queries in the 1D patterns of names(@1) time. The witness tree gives a position of
a row-witness inO(1) time, and retrieving the text and pattern characters tooparthe
actual duel takes constant time.

]

Complexity of Step 2: Step 2 begins with at mogin candidate positions. Each candi-
date is involved in exactly one duel, and is either killedumws/es. If a candidate survives,
it may be visited exactly one more time to be eliminated by & 8eneath it. Since a duel
is performed in constant time, by Lemma 5.2.3, this step detepinO(dm) time. Recall

thatd < m. Hence, the time for Step 2 8(m?).

Step 3. Verify Surviving Candidates

After eliminating vertically inconsistent candidates, veify pattern occurrences in a sin-
gle scan of the text block. We process one text block row ainea tio conserve space.
Before scanning the current text block row, we label the pmstat which we expect to
find a pattern row. This is done by merging the labels from tteipus row with the list
of candidates that begin on the new row. If a new candidat&ieduced in a column that
already has a label, we keep only the label of the lower caeidrhis is permissible since
the label must be from a consistent candidate in the sameneolThus, each position in
the text has at most one label.

The text block row is then scanned sequentially, to markad@ocurrences of pattern
rows. This is done by running AC on the text row with the conspesl AC automaton of
all pattern rows. The lists of expected row names and actmahames are then compared

sequentially. If every expected row name appears in theblexk row, the candidate list

75

remains unchanged. If an expected row name does not appeandalate is eliminated.
The pointers that connect candidates are used to elimiaaiidates in the same column
that also include the label that was not found.

After all rows are verified in this manner, all surviving céhates in the text are pattern
occurrences of their respective patterns.

Complexity of Step 3: When a text block row is verified, we mark each position at
which a pattern row (1D name) is expected to begin. Thisdiitnited bym /2 due to the
vertical consistency of the candidates. We also mark apiatstrn row occurrences in the
text block row which are again no more thary2 due to distinctness of the row names.
Thus, the space complexity for Step 3$m). The time complexity is also linear, since
AC is run on the row in linear time, and then two sorted listgaftern row names are

merged. Over albm /2 rows in the text block, the complexity of Step 3gm?).

Lemma 5.2.4.The algorithm for 2D dictionary matching, when pattern rows aot highly
periodic andd < m, completes irD(n?) time andO(dm log m) bits of space, in addition

to sHy(D) + O(s) bits of space to store the compressed AC automaton of tHertacy.

Proof. This follows from Lemma 5.2.2 and the complexities of Step®, and 3.

]

Theorem 5.2.5.0ur algorithm for 2D dictionary matching completesiridm? +n?) time

andO(dmlog dm) bits of extra space.

Proof. Ford > m, this is stated in Corollary 1 of Theorem 5.1.1.
Ford < m, the patterns are split into groups according to the pecitydof their rows.
A pattern is classified in linear time by finding the period atke of its rows, e.g., using a

KMP automaton [44].

For Case 1 patterns, this is proven in Lemma 5.2.1.

For Case 2 patterns, this is proven in Lemma 5.2.4.

76

Chapter 6

Dynamic 2D Dictionary Matching in

Small Space

This chapter develops the first efficient dynamic dictionaxgtching algorithm for two-
dimensional data in the space-constrained environmeng. algorithm is a succinct and
dynamic version of the classic Bird / Baker algorithm. Since foléow their labeling
paradigm, our algorithm is well-suited for a dictionary ettangular patterns that are the
same size in at least one dimension. Our algorithm uses amdgrmpressed suffix tree
as a compressed self-index to represent the dictionarytmomnrcompressed space. All
tasks are completed by our algorithm in linear time, ovediiog the slowdown in querying
the compressed suffix tree.

The static succinct 2D dictionary matching algorithm with slowdown presented in
Chapter 5 is not suitable for the dynamic setting. It reliegt@succinct 1D dictionary
matching algorithm of Hon et al. [37], which does not readitimit changes to the dictio-

nary. Instead, we adapt the succinct 2D dictionary matchiggrithm of Chapter 4 to the

77

78

dynamic setting. We develop a dynamic algorithm that méetditne and space complex-
ities that were achieved in the static version of the algarit The dictionary is initially
processed in time proportional to the size of the diction&ybsequently, a pattern is in-
serted or removed in time proportional to the single patesize. We modify the witness
tree (Section 4.2.1) to form a dynamic data structure thatsnhe space and time com-
plexities achieved by the static version. The dynamic veisrieee accommodates insertion
or removal of any string in time proportional to the stringgagth.

We defineTwo-Dimensional Dynamic Dictionary MatchiigD-DDM) as follows. Our
algorithm is given a dictionary of patterns,D = {P,..., P,}, of total size/. Each
patternF; is of sizem; x m, 1 < i < d. We user to denote the time it takes to access
a character or perform other queries in the compressednskdk of the dictionary. The
dictionary is initially preprocessed i0(¢7) time. A patternP, of sizep x T, is inserted to
or removed from the dictionary i@ (pmr) time. Our algorithm searches a téxtof size
ny X ny in O(nyny7) time for all occurrences af;, 1 < i < d. Using recent results; is
at mostlog® £. Our algorithm use® (dm log dm + dm/ log dm’) bits of extra space, where
m' = max{my,...,mg}.

The succinct 2D dictionary matching algorithm of Chapter 4 weesented in terms of
a static dictionary in which all patterns are the same siZgoih dimensions, resulting in
a dictionary of sizelm?. In this chapter, we work with a dictionary of patterns tha af
uniform width, but of varying heights. We perform a more dethanalysis and distinguish
between the sources of time complexities. Specifically, mayee which time complexi-
ties are proportional to the uniform width of the pattérmg, which are proportional to the

height of the largest patterny’, and which are proportional to the actual dictionary size,

1We chose this notation since it is visual. The bar represeatsform width, while the prime is vertical,
representing a uniform height.

79

While doing this, we discovered the need for more efficienthnégues in the verification
process in order for the text scanning to remain linear insike of the text, in the case
thatm' is an order of magnitude larger than Herein lies one of the contributions of this
chapter.

We begin by presenting a linear-time dynamic 2D dictionaatehing algorithm that
uses extra space proportional to the size of the input. [tidBe6.2, we describe a succinct
variation of this linear space algorithm for a dictionaryttwa large number of patterns.
For all other dictionaries, patterns are divided into twougps; patterns in each group
are searched for separately and in different ways. We desour approach to dynamic

dictionary matching for each group of patterns in Sectié 6.

6.1 2D-DDM in Linear Space

In this section we present a linear-time dynamic 2D dictignaatching algorithm that
uses extra space proportional to the size of the input. Itdgreamic succinct variant of
the Bird / Baker algorithm. In the multiple pattern matchingsien of the Bird / Baker
algorithm, 1D dictionary matching is used in two differerdys. First, the pattern rows are
seen as a 1D dictionary and this set of “patterns” is useaéatize the dictionary and then
to label text positions. A separate 1D dictionary is formédhe linearized 2D patterns.
The Bird / Baker algorithm is suitable for 2D patterns that draraform size in at least
one dimension, so that the text can be marked with at most ame it each text location.
The Bird / Baker method uses linear time and space in both therpaireprocessing and
the text scanning stages.

Sahinalp and Vishkin’s dynamic 1D dictionary matching aition (SV) uses a naming

80

technique rather than a dictionary-matching automatoh [86t, it is a suitable replace-
ment for the Aho-Corasick automata in the Bird / Baker algoritfifmus, the combination
of these techniques, one for dynamic dictionary matchingDrand another for static 2D
dictionary matching, yields a dynamic 2D dictionary matghalgorithm that runs in linear
time. This modification extends the Bird / Baker algorithm tccaanmodate a changing
dictionary, yet it does not introduce any slowdown. Thisaillpm is outlined in Algorithm

4.

Algorithm 4 Dynamic Version of Bird / Baker Algorithm

{1} Preprocess Pattern:
a) Name pattern rows using SV [60].
b) Store 1D pattern of names for each patterircalledD’.
c) Preproces®’ using SV to later perform 1D dynamic dictionary matching.
{2} Row Matching:
Use SV on each row of text to find occurrencedx$ pattern rows.
This labels positions at which a pattern row ends.
{3} Column Matching:
Run SV on named columns of text to find occurrences of patteons D’ in the text.
Output pattern occurrences.

Initially, the dictionary of pattern rows is empty. One 2Qttean is linearized at a time,
row by row. As a pattern row is examined, it can be viewed asteote which to perform
dictionary matching. If a pattern row is identified in the npattern row, then it is given
the same name as the matching row. Otherwise, this new rosers&s a new 1D pattern
and added to the dictionary of pattern rows. Once the pattsva have been given names,
the 1D patterns of names ¥’ are preprocessed separately.

Whenever a pattern is added to or removed from the 2D dictyptiae precomputed
information about the patterns can be adjusted in time ptmpal to the size of the 2D
pattern that is entering or leaving the dictionary. Tha®Sehinalp and Vishkin’s framework

for dictionary matching allows both 1D dictionaries to affiatly react to a change in the

81

2D dictionary that they represent.

Space complexity of Algorithm 4: The dynamic version we present of the Bird / Baker
algorithm uses extra space proportional to the size of thetinlt usesO(¢log ¢) bits of
extra space to name the pattern rows using SV [60]@ftin’ log dm’) bits of extra space
to store and index the 1D representation of the patterngnBtext scanning))(n, log ns)
bits of space are used to run SV on each row of text@d, log n,) bits of space are used
to run SV on the named columns of text, one at a timéz; n, log dm’) bits of extra space

are used to store the names given to text positions.

6.2 2D-DDM in Small-Space For Large Number of Pat-
terns

The dynamic version of the Bird / Baker algorithm presentedenti®n 6.1 uses space
proportional to the sizes of both the dictionary and the. témtthis section we present a
variation of Algorithm 4 that runs in small space for a diadgoy in whichd > m. That is,
when the number of patterns is larger than the width of a patte

We begin by modifying Algorithm 4 to work with small blocks téxt and thereby
relate the extra space to the size of the dictionary, notieeds the text. We use a known
technique for minimizing space and process the text in sovatlapping blocks of size
3m' /2 x 3m /2, wherem’ = max{m,, ..., mq}. Since each text block is processed in time
proportional to the size of the text block, the overall tecdrgning time remains linear.

By processing one text block at a time, we reduce the workirgepoO (¢ log ¢ +
dm’log dm’) bits of extra space to preprocess the patterngamalog m + mm’ log dm’)

bits of extra space to search the text. This change doesfeot #ie time complexity. We

82

seek to further reduce the working space by employing a smsplace mechanism to name
the pattern rows and subsequently name the text positions.

Recent innovations in succinct full-text indexing providewith the ability to compress
a suffix tree, using no more space than the entropy of thenadigata it is built upon. These
self-indexes can replace the original text, as they supgtrieval of the original text, in
addition to answering queries about the data, very quickly.

Several dynamic compressed suffix tree representatioresiiesan developed, each of-
fering a different time/space trade-off. Chan et al. pre=grat dynamic suffix tree that
occupieO(¢) bits of space [14]. Queries, such as edge label retrievalresadtion or re-
moval of a substring, have a(log” ¢) slowdown. Russo et al. developed a dynamic fully-
compressed suffix tree requirid@l,(¢) + o(¢log o) bits of space, which is asymptotically
optimal underkth order empirical entropy [56]. This compressed suffix tregresenta-
tion uses a dynamic compressed suffix array and stores aasariniie suffix tree nodes.
Although some operations can be executed more quickly, parations have)(log? ¢)
time complexity. This dynamic compressed suffix tree suigpaiarger set of suffix tree
navigation operations than the compressed suffix tree gegpby Chan et al. [14]. It
also reaches a better space complexity and can performdyaesiations more quickly. We
hereafter suppose that a dynamic compressed suffix treedsaseplace the dictionary of
patterns and we refer to the slowdown of operations in theoppicompressed self-index
asrT.

For a succinct version of Algorithm 4, we use a dynamic corsged suffix tree to
represent and index the pattern rows in entropy-compresgsazk. Traversing the dynamic
compressed suffix tree introduces a slight sacrifice in mti\WWe modify Algorithm 4 to

use the compressed suffix tree. The changes are limitedae $teand 2.

83

During pattern preprocessing, the dynamic compressed stdf can be built incre-
mentally, as one pattern row is named at a time. First, tsaVef the suffix tree can be
attempted by traversing a path from the root labeled by tlagaciters in the pattern row. If
a matching row is found, the new row is given the same nameeasoth that it matches.
Otherwise, the new pattern row is inserted into the compiessffix tree and given a new
name.

The positions of a text block row are also named by traverthiegsuffix tree. Here
the suffix tree is not modified by the text. Thus, an entire t#gtk is named in linear
time, with a7 slowdown. We use a technique similar to the one describedusfi€d in
the computation ofmatching statisticsin [35] Section 7.8. Positions in a text block are
named, row by row, according to the names of pattern rows ahoena new text block row,
traversal begins at the root of the tree, with the edge wredsel matches the first position
of the text block row. Whemz consecutive characters trace a path from the root, traversa
reaches a leaf, and the position is named with the matchitigrpaow. At a mismatch,
suffix links quickly find the longest suffix of the already nmfagd string that matches a
prefix of some pattern row and the next text character is coedp@ that labeled edge of
the tree.

All pattern rows have widthr. This ensures that each text position can be uniquely
labeled. One pattern row cannot be a substring of anothers, Me do not share the con-
cern of Amir and Farach’s suffix tree based approach to diatip matching [3]. They use
lowest marked ancestor queries to address the issue obpossssing pattern occurrences
when one pattern is a substring of another, and an occurreagde skipped when a suffix

link is traversed.

Theorem 6.2.1.1f d > m, we can solve the dynamic 2D dictionary matching problem

84

in almost linearO((¢ + nins)7) time andO(m log ™ + dm’log dm’) bits of extra space,
aside from the space used to represent the dictionary in gpoessed self-index. Pattern
P of sizep x m can be inserted to or removed from the dictionaryifpimr) time and the
updated index will occupy an addition@l(p log dm’) bits of space, where)' is updated to

reflect the new maximum pattern height.

Proof. With small blocks of text, and > m, Algorithm 4 usesD(¢log ¢ + dm’logdm’)

bits of space for preprocessing whéx/ log ¢) bits are used to prepare the pattern rows
for dynamic dictionary matching. Replacing [60] with the qussed suffix tree traversal,
the algorithm uses entropy-compressed space to reprasiridex the dictionary and an
extraO(dm' log dm') bits of space to name the pattern rows. Sidce m, O(m logm +
dm’log dm’) bits of extra space are used to label text positions and pertd dynamic
dictionary matching in the columns of text. All operatiopsgprocess dictionary, update
dictionary, search text) run in linear time, with ar{r) slowdown to query the dynamic

compressed suffix tree.

6.3 2D-DDM in Small-Space for Small Number of Pat-
terns

This section deals with the case in which the number of patisrsmaller than the common
dimension among all dictionary patterns, i o(m). For this case, we do not allow the
space to label each text block location and therefore thamysversion of the Bird and

Baker algorithm cannot be applied trivially. We use sevenatlinatorial tricks to preserve

the spirit of Bird and Baker’s algorithm without incurring thecessary storage overhead.

85

We use dynamic data structures that allow the dictionaryetaifpdated efficiently. The
dictionary is indexed by a dynamic compressed suffix treey afhich the patterns can be
discarded. This can be done in space that me#torder empirical entropy bounds of
the input, as described in Section 6.2. Thus, the compresséthdex does not occupy
extra space Throughout this chapter, the extra space used by our #igoiis limited to
O(mlogm+dm’log dm’) bits of space. The running time of our algorithm is almostéin
with a slowdown to accommodate queries to the compressér sak, referred to as.
We divide the dictionary patterns into two groups and sed#nehtext for patterns in

each group separately. In the following sections, we deediist an algorithm for patterns
in which the rows are highly periodic and then an algorithmeibother patterns. We begin

by describing a dynamic data structure that is used by batk pathe algorithm.

6.3.1 Dynamic Witness Tree

In this section we show how to form a dynamic variant of thenests tree, whose static
version was developed in Section 4.2.1. Recall that a wittregscan be constructed to
name a seb of j strings, each of length, in linearO(jm) time and inO(j) space so
that identical strings receive the same name. An internéémo the witness tree denotes a
position of mismatch, which is an integer{1, m]. Each edge of the tree is labeled with a
single character. Sibling edges must have different laleleaf represents a name given
to string(s) inS.
Query: For any two strings, s’ € S, return a position of mismatch betweerand s’ if
s # &', otherwise returmn + 1.

Preprocessing the witness tree for Lowest Common AncesiGA)Lgueries on its

leaves allows us to answer the above witness query betwaebhnvannamed strings in

86

S in constant time. This preprocessing can be performed eafitime and space, with
respect to the size of the dynamic tree [17].

Construction of the witness tree begins by choosing any twgstin S and comparing
them sequentially. When a mismatch is found, comparisors lzaitl an internal node
is added to the witness tree to represent this witness of atdmuwith two children to
represent the names of the two strings. If no mismatch isdptire two strings are given
the same name. Each successive string is compared to thessgis stored in the tree
by traversing a path from the root to identify to which nanfeany, the string belongs.
Characters of a new string are examined in the order dictatgchbersal of the witness
tree, possibly out of sequence. If traversal halts at annatenode, the string receives a
new name, and a new leaf is added as a child to the internal @itlerwise, traversal halts
at a leaf, and the new string is compared sequentially tottirggepresented by the leaf,
as done with the first two strings.

Now we consider the scenario in whiéhis a dynamically changing set of strings.
Lemma 6.3.1. A new string is added to the witness treelvn) time.

Proof. Including a new string it and naming it with the witness tree follows the same
procedure that the static witness tree uses to build thesgsttree as each pattern is consid-
ered individually. By Lemma 4.2.4, this is donedi{m) time and adds one or zero nodes

to the witness tree.

Lemma 6.3.2. A string is removed from the witness tregliil) time.

Proof. In removing a strings from S, there are two possibilities to consider. slis the

only string with its name, remove its leaf. In the event tlna parent is an internal node

87

with only one other child, remove the hanging internal noslevall. Then, the sibling of
the deleted leaf becomes a child of its grandparent. The ptiesibility is that some other
string(s) inS bear the same name asWe do not want to remove a leaf while there is still
a string inS that has its name. Thus, we augment each leaf with an integetdi store the
number of strings irt' that have its name. This counter is increased when a nevg s$rin
named with an existing name. This counter is decreased whan & deleted. When the
counter is down to 0, the leaf is discarded, possibly alorty it8 parent node, as described
earlier.

O

Observation 5. The dynamic witness tree pétrings, each of length, occupieg)(; log j)

bits of space.

6.3.2 Group | Patterns

As in Chapter 4, we consider two types of patterns, and eacprasents its own difficulty.
In the initial preprocessing step, we divide the patterms two groups based on the 1D
periodicity of their rows. In Group I, all pattern rows areripdic, with periods< m/4.
The difficulty in this case is that many overlapping occuceshcan appear in the text in
close proximity to each other, and we can easily have mordidates than the working
space we allow. Patterns in Group Il have at least one apeniod or one row whose
period is larger thamn/4. Here, each pattern can occur oiily1) times in a text block.
Since several patterns can overlap each other in both dinscta difficulty arises in the
text scanning stage. We do not allow the time to verify défgrcandidates separately, nor

do we allow space to keep track of the possible overlaps legtwdferent patterns.

88

Preprocessing Dictionary

We follow the succinct preprocessing scheme that we inttedin Chapter 4. We maintain
the assumption of Chapter 4 that each dictionary pattern evhmss are highly periodic
has an LCM that i$) (7). We use the dynamic witness tree and dynamic offset treeddst
of their static counterparts. The following preprocessteps are initially performed for

each dictionary pattern in Group | and are later used upaveaof a new pattern.

1. For each pattern row,

(a) Compute period and canonize.

(b) Lyndon word naming with dynamic witness tree, resuliimg 1D dictionary,
D'

(c) Insert to dynamic compressed suffix tree.

2. Preprocess 1D dictionary:

(a) Preproces®’ for dynamic dictionary matching.
(b) Build LCM table for each 1D pattern.

(c) Compute 2D Lyndon word of each 1D pattern and store shift.

Add to compressed trie, if multiple patterns have the sampdtizrn of names.

Lemma 6.3.3. Patterns in Group | are preprocessed (¢r) time andO(mlogm +

dm’log dm’) bits of extra space.

Proof. Step 1 processes a single pattern rowimn) time andO(m logm) bits of extra
space. Thus, the entire set of pattern rows are processed jriime to gather information

andO(¢r) time to index the pattern rows in a dynamic compressed suéfex tSince) (1)

89

information is stored per row)(dm’ log dm’) bits of extra space are used to store informa-
tion gathered about the pattern rows in the dictionary.

Step 2 preprocesses the 1D patterns in the dictionary of silansing Sahinalp and
Vishkin’s algorithm,O(dm’) time andO(dm’ log dm') bits of extra space are used to facil-
itate linear time dynamic dictionary matching in a 1D dic#éwy of sizeO(dm’) [60]. The
LCM tables of the 1D patterns are computed in linear time amtegO (dm' log m’) bits

of extra space. The 2D Lyndon word of each pattern can be ctadpuo time proportional

to its size. The 2D Lyndon words of the dictionary occupyim’ log dm’) bits of extra
space. Overall, Step 2 runs@dm’) time andO(dm' log dm') bits of extra space.

O

Corollary 6.3.4. A new pattern of size x m is added to Group | irO(pmr) time and

O(mlogm + plog dm') bits of extra space.

Lemma 6.3.5.A pattern in Group | of sizg x m is removed from the dictionary 0 (pimr)
time and eliminate® (m log m + p log dm’) bits of extra space the algorithm allocated for
it.

Proof. The following steps meet the indicated time and space boamdisemove a pattern
from Group |. Each pattern row is removed from the dynamiaess tree, irO(1) time
(by Lemma 6.3.2), and from the dynamic compressed suffix ire@®(mr) time. This
takesO (pm7) time in total. If this is the only pattern with its 1D represation, its LCM
table is deleted and the 1D pattern is removed from the diatypof names that has been
preprocessed for dynamic dictionary matching. If this ie of several patterns with the
same 1D representation, and the sole member of its consystéass, the 2D Lyndon word

is removed from the compressed trie.

90

Text Scanning

The text is searched for occurrences of patterns in Group tlimee step process. First, the
text block rows are named by the Lyndon words of their pericgisg the dynamic witness
tree of the dictionary (Section 6.3.1). We store the Lyndandmname, period sizéYpos
right, andleft of each pattern row. Then, the linearized teéXt, is searched for candidate
positions that match a pattern in the 1D dictionary using ¥Beainic dictionary matching,
since the patterns can be of varying heights. Finally, thdigation step finds the actual
pattern occurrences among the candidates. This requinsgdenation of the alignment of
periods among rows and of the overall width of the 1D namenceSthe first two steps
have been described, the remainder of this section disstisseerification stage.

If m’ = O(m), we can use a verification procedure almost identical to tbeqalure
that appears in Chapter 4. However, if the uniform widih), is asymptotically smaller
than the height of the tallest pattenn,, then this algorithm does not yield a linear time
text scanning. This is due to the fact that the algorithm=Ogin’) time to process each
candidate row, resulting i@(m’ « m’) time if m = o(m'). For this situation, new ideas are
needed and we introduce a new verification process thateggfsingle pattern i@(m')
time. Since the dictionary haspatterns, and < m, the entire text block is verified in
O(mm') time.

We verify candidates for each patteri, separately. Verification of each candidate

consists of two tasks:

1. Verify shifts: The verification of shifts is summarized in Algorithm 5 andcdebed
in the following paragraph.

Let P! be the 1D pattern of names fét. If P/ is not periodic, there is no need to

91

Algorithm 5 Verify Shifts for Patternp;

Input: P/: 1D pattern of names faF;,
LW I1...m]: 2D Lyndon word representing;
compressed trie aE1V[1...m| subsequence at each period
KMP automaton of?/: longest border horizontally consistent wii's prefixes

if P/ is not periodicthen
for all candidate rows for patternP; do
computel’_LW1...m| = 2D Lyndon word forZ’[r...r + m,]
compareLW[l...m| andT_LW[1...m]
end for
eliminate candidates that mismateh
else
{P!is periodig
for all p_blocks jin P! do
{p-block j is a period inP/}
computel’_LW;: 2D Lyndon word to represent rows pfblock; in T
bucket sortl’_LW; with other shifts for same text rows
match?_LW; against compressed trie
end for
KMP on shifts among_blocks
eliminate candidates that mismateh
end if

92

worry about overlapping candidates, and we verify each idael row for P; sep-
arately. Verification of the.Yposshifts for a candidate oP; consists of matching
P;’s 2D Lyndon word with the 2D Lyndon word of the corresponditogvs of the
text. If P/ is periodic, the idea is similar. We call each periodiha p_block. We
compute the shifts of eaghblock separately in the text. In order to remain linear,
we use bucket sort on the shifts of the rows as the 2D Lyndoml fareach period
is computed. Since the differeptblocks can have different 2D Lyndon words, we
construct a compressed trie of 2D Lyndon words and match eathepresenta-
tive against the compressed trie. Once the shifts withit @agock are verified, it
remains to verify the shifts among theblocks. Since eaclp_block has the same
horizontal period (i.e., the LCM of the periods of the rows pf&ock), it is possible
to use a Knuth-Morris-Pratt automaton [44] on the shiftsamplete the verification.
For this, the preprocessing &f stores for each prefix aP/, the longest border of
the prefix that is horizontally consistent with itself. Tongparep_blocks when con-
structing the KMP automaton, it suffices to check whethenthé&cks point to the

same block in the compressed trie of 2D Lyndon words.

2. Check width: Use range minimum and maximum queries to calcutaiteRightand
maxLeftfor each candidate df;. Then, reverse the shift and make sure that there is
room for the pattern betweeninRightandmaxLeft i.e., that the candidate spans at

leastm: columns.

Time and Space Complexity of Text ScanningThe linear representation of the text
is computed inD(mm’) time and occupie®(m’log dm') bits of space, as shown in Sec-
tion 4.2.2. Candidates can be identified using Sahinalp astakin’s algorithm [60] in time

linear in the 1D representations. Verification as done in @rapis linear. It remains to

93

show that the new verification, whem = o(m’), is linear time. Since we havépatterns
andd < mm, a linear time search in the 1D text of sigém') for each pattern, will yield
overall O(mm') time, linear in the text block. The challenge that arose epSt is the
O(m) time complexity for computing each 2D Lyndon word for thettdxor each pattern,
P;, we have to compute the 2D Lyndon word for every candidate tdawever, we can
show that theO(77) work is over all rows of the text when verifying; (and not for each
candidate of?). Thus, the total complexity for verifying; is O(m+m’). Linear time and
space preprocessing schemes allow us to answer range miramal maximum queries in
O(1) time [28]. Check-width (Step 2) consists of constant-time R candidate, which
totals O(m') time overall for P;, and for allP;, 1 < i < d, text scanning completes in

O(mm') time.

Lemma 6.3.6. A text of sizev; x n, is searched for patterns in Group | if(nyne7) time

andO(mlogm + m'log dm') bits of extra space.

Proof. Each block of text is searched @(mmm/7) time andO(m log m + m/ log dm’) bits
of extra space. Thus, the entire text is searched for pattar@roup | inO(n n,7) time

andO(mlogm + m'log dm') bits of extra space.

6.3.3 Group Il Patterns

Patterns in Group Il have at least one aperiodic row or onewbwase period is larger than
m/4. We assume that each pattern in this group has at least oriedipeow. The case of
a pattern having a row that is periodic with period size betw@/4 andm/2 is handled

similarly, since each pattern can occur o6lyl1) times per text block row.

94

For patterns in Group Il, many different pattern rows canrlaygein a text block row.
As aresult, itis difficult to employ a succinct naming scheminearize the text block and
find all occurrences of patterns in the text. Instead, wehsaperiodic row of each pattern
to filter the text block and identify a limited set of candielafor pattern occurrences. We
use dynamic dueling to eliminate inconsistent candidatdgmeach text column. Then, a

single pass over the text suffices to verify all remainingdt@ates for pattern occurrences.

Preprocessing Patterns

The following preprocessing steps are initially perforrfedeach dictionary pattern in

Group Il and are later used upon arrival of a new pattern.

1. Locate first aperiodic row in each pattern and preprocesslyfnamic dictionary

matching.
2. Name pattern rows using a single witness tree and storeaftBrps of names.
3. Insert pattern rows to dynamic compressed suffix tree.
4. Construct dynamic suffix tree of 1D patterns.
5. Preprocess witness tree and suffix tree for dynamic LCA.

Lemma 6.3.7. Patterns in Group Il are preprocessed (W ¢7) time andO(dm log dm +

dm’log dm’) bits of extra space.

Proof. 1. The period of a pattern row is computed(xir) time andO(m log) bits of
extra space [46]. At most, all pattern rows are examined@)(if) time andO (m log m) bits
of extra space. Sahinalp and Vishkin’s preprocesses tloesein O(dm) time and stores

information inO(dm log dm) bits [60].

95

2. Pattern rows are named by the witness trge(if) time. By Observation 5, the dynamic
witness tree of pattern rows occupi@sdm’ log dm') bits of space. A single witness tree
suffices since all pattern rows are the same size.

3. The set of pattern rows is indexed by the dynamic compdesisiix tree inO(¢7) time.

4. The 1D dictionary of names is stored@dm’log dm') bits of space and its dynamic
generalized suffix tree is constructed(xidm’) time and occupie®(dm’ log dm’) bits of
space [16].

5. The dynamic suffix and witness trees are preprocessedaarlitime to answer LCA

queries inO(1) time [17].

]

Corollary 6.3.8. The dictionary is updated to add a new pattern of gsizem to Group Il

in O(pmT) time andO (pm log dm + plog dm') bits of extra space.

Lemma 6.3.9.A pattern in Group |l of size x7 is removed from the dictionary iD(pimr)
time and eliminate® (7 log m + p log dm’) bits of extra space the algorithm allocated for
it.

Proof. The following steps are performed to remove a pattern froou@il:

The first aperiodic row of the pattern is removed from the 1Etidhary that has been
preprocessed for dynamic dictionary matching) time and deallocate® (7 log)
bits of space [60].

The 1D representation of the pattern is deleted and it is veohtrom the sulffix tree of 1D
patterns inD(p) time and deallocated(p log dm’) bits of space [16].

Each row of the pattern is removed from the compressed sugfxinO (pmT) time.

96

Text Scanning

The text is searched for patterns in Group Il in almost theesaray as in the static al-
gorithm of Chapter 4. The only difference between the texhsitey stage of the static
algorithm and that of the dynamic algorithm lies in the melthised to identify 1D pattern
occurrences in the linearized text. The Aho-Corasick automs not suitable for a dy-
namic dictionary since it is not updated efficiently. Ratles,use Sahinalp and Vishkin’s
method for dynamic dictionary matching since it completegraprocessing and searching
tasks, including updating the dictionary, in linear timela@pace. We summarize the text
scanning and the complexity analysis in the following.

Summary of Text Scanning

1. Identify candidates: Sahinalp and Vishkin’s 1D dynamic dictionary matching al-
gorithm finds occurrences of the first aperiodic row of thegyat. It searches the
text block, one row at a time, i@ (mm’) time andO (7 log) bits of extra space.

O(dm') candidates are stored ((dm’ log dm’) bits of extra space.
2. Duel vertically:

(a) AnLCP query between suffixes of the 1D patterns finds thebeuwf rows that
match in overlapping candidates. An LCA query in the geneedlisuffix tree

of 1D patterns is performed if(1) time and space to find a row of mismatch.

(b) We use the witness tree to compare row namés(in time. An LCA query in
the witness tree of the pattern rows is performedin) time and space. Then

a character in each pattern row is retrievedifr) time.

Time: each duel takeS(7) time. Due to transitivity, the number of duels is limited

97

by the number of candidates. There arglm') candidate positions, withh < 772 so

this step completes i@ (mm/T) time.

3. Verify candidates: Duels eliminate horizontally inconsistent candidates. ueld
consists of an LCP query on the dynamic compressed suffixiirég) time. By
transitivity, the number of candidates limits the numbedoéls. WithO(dm') can-
didates, and < m, dueling is completed i®(mm’7) time. We verify one text block
row at a time and mark positions at which a pattern row (1D nasexpected to be-
gin. The surviving labels are carried to the next row. Thissuspace proportional to
the labels for one text row plus the number of candida&s; log 7 + dm’ log dm’)
bits. Each text character within an anticipated patterruoeaice is only compared

to one pattern character, @(7) time, which isO(mm/7) time overall.

Lemma 6.3.10.A text of sizer; x ny is searched for patterns in Group Il i@(nn,7)

time andO(m logm + dm’ log dm’) bits of extra space.

Proof. Each block of text is searched@(mm/) time andO (7 log m + dm' log dm') bits
of extra space. Thus, the entire text is searched for patterGroup Il inO(n,ny7) time
andO(m logm + dm' log dm’) bits of extra space.

]

Theorem 6.3.11.0ur algorithm for dynamic 2D dictionary matching wheén< m com-
pletes inO((¢+ nyn9)7) time andO(dm log dm + dm’ log dm’) bits of extra space. Pattern
P of sizep x m can be inserted to or removed from the dictionaryi(pimr) time and the
index will occupy an additionaD(plog dm') bits of space, where)' is updated to reflect

the new maximum pattern height.

98

Proof. We separate the patterns into two groups and search formmfiite each group
separately. Classifying a pattern entails finding the pesfaghch pattern row. This is done
in O(m) time andO(m logm) bits of extra space per row [46]. Overall, the dictionary is
separated into two groups (¢) time andO(m log m) bits of extra space.

For patterns in Group I, this complexity is demonstrated bgnimas 6.3.3, 6.3.5, 6.3.6 and
Corollary 6.3.4.

For patterns in Group I, this complexity is demonstrated_bynmas 6.3.7, 6.3.9, 6.3.10

and Corollary 6.3.8.

Chapter 7

Implementation

The succinct 1D dictionary matching problewas recently closed with the development
of an algorithm that meets optimal time and space boundsreTisea lag in the imple-
mentation of the theoretical contributions to solve thiglgem. This is likely due to their
complexity and the novelty of the data structures which ttedy upon. Thus, as part of
this thesis we have developed a succinct dictionary maggbtiogram that is more intuitive
and relies on more commonly used data structures. Our #igwifor succinct 2D dic-
tionary matching reduce the two-dimensional problem t@its-dimensional counterpart
in different ways. Hence, we see the development of softd@rsuccinct 1D dictionary
matching as a first step towards developing a program the¢s@D dictionary matching
in small space.

We took the following steps to create our succinct 1D diadigymmatching program.

1. Coded Ukkonen'’s suffix tree construction algorithm.
2. Modified suffix tree to form generalized suffix tree.

3. Wrote program to perform dictionary matching over geneedl suffix tree.

99

100

4. Merged dictionary matching software with compressetixstree.

7.1 Software Development

We created a time and space efficient program for dictionatghing on one-dimensional
data. We chose to use the suffix tree as the data structurbigointplementation, since
there are compressed suffix tree representations that eeaginical entropy bounds of the
input string. Furthermore, these data structures have ineglemented and their code is
readily available. These implementations have been prawvére very space efficient in
practice.

We began by distilling the precise implementation detagsassary to convert a regular
suffix tree to a generalized suffix tree for dictionary matchiUkkonen’s suffix tree con-
struction algorithm [61] extends quite naturally to the sipaction of a generalized suffix
tree for several strings [35], which can be used in a striogiard manner for dictionary
matching. We coded Ukkonen’s suffix tree construction algor and modified it to index
a set of strings. Since itis an online algorithm, it can iheee string at a time to the index.

We give a brief outline of Ukknonen’s algorithm in the followy paragraphs, and our
specifications of the algorithm’s flow are depicted in pseadie in Algorithm 6.

Ukkonen’s algorithm is linear time and online. The elegaot®kkonen’s algorithm
is evident in its key property. The algorithm admits thealriof the string during con-
struction. Yet, each suffix is inserted exactly once, ané&naepdated after its insertion. An
extra variable is incremented as characters arrive, editimg the need to update each of
the leaves representing suffixes already indexed by the Titee end index of each leaf is
demarcated by this special variable. Thus, a leaf is nevdatend after its creation.

As a new character is appended to the string, Ukkonens’siigpmakes sure that all

101

Algorithm 6 Ukkonen’s suffix tree construction algorithm
j=-1;
{j is last suffix insertef
fori=0ton —1do
{phasei: i is current end of string
while j < ¢ do
{let j catch up ta'}
if singleExtensionAlgorithm(i, jhen
break;{implicit suffix so proceed to next phajse
end if
if last Nodelnserted # root then
last Nodelnserted.Suf fixLink < root;
end if
last Nodelnserted < root;
end while
end for

suffixes of the input string are indexed by the tree. As soaa sHfix is implicitly found
in the tree, modification of the tree ceases until the next deavacter is examined. The
next phase begins by extending the implicit suffix with thevredaracter. A suffix link is
a pointer from the internal node at the end of the path labeletb the internal node at
the end of the path labeleg] wherex is an arbitrary character arfflis a possibly empty
substring. A suffix tree with several suffix links is shown iiglre 7.1. Using suffix links
and a pointer to the last suffix inserted, a suffix is added edrie in amortized constant
time. The combination of one-time insertion of each suffid eapid suffix insertion results
in linear-time suffix tree construction.

The generalized suffix trees a suffix tree for a set of strings. A suffix tree is often
used to index several strings by concatenating the strintpsumique delimiters between
them. With that approach, a significant amount of space iseddsy indexing artificial
suffixes that span several strings. Ukkonen’s algorithrddetself to a more space efficient

construction of the generalized suffix tree in which onlyuatisuffixes are storedO(1)

102

Mi s s i s s i p p i $
1 2 3 4 5 6 7 8 9 10 11 12

Figure 7.1: Suffix tree for the stringississippi with several suffix links.

extra information is stored at each node, representingtthmgsiumber of the node. The
generalized suffix tree then consists of the suffix trees efitldividual patterns merged
together. It is built incrementally, in amlinefashion, inserting one string at a time.
Dictionary matching over the generalized suffix tree ofgrais mimics Ukkonen’s pro-
cess for inserting a new string into a generalized suffix (eseshown in Algorithm 6),
pretending to index the text, without modifying the actuakt The text is processed in
an online fashion, traversing the tree of patterns as eaotessive character is read. A
pattern occurrence is announced each time a labeled leat@intered. A leaf is labeled
when it represents the entire pattern, i.e., its first suféixndicate a pattern occurrence
when traversal reaches the leaf. At a position of mismatch pattern occurrence, suffix
links are used to navigate to successively smaller suffikéiseomatching string. When a
suffix link is used within the label of a node, the correspagdiumber of characters can be

skipped, obviating redundant character comparisons. dissires that the text is scanned

103

Algorithm 7 Dictionary matching over the generalized suffix tree

1: curNode< root
2: textindex— 0
3: curNodelndex— 0
4: skipcount— 0
5. usedSkipcount- false
6: repeat
7. lastNode+ curNode
8: if usedSkipCoung truethen
9: textindex- =curNodelndex
10: curNodelndex— 0
11: curNode« curNode.child(text[textindex])
12: If curNode.lengtlk 0 then
13: curNodelndex+ {already compared the first character on the édge
14: end if
15: else
16: usedSkipCount- false
17: endif
18: {compare text
19: while curNodelndexcurNode.lengthAND curNodelndextextindextext.length
do
20: if text[textIndex+cur Nodelndex| # pat[curNode.string Num|[cur Node.beg+
cur NodeIndex] then
21: break{mismatch
22: end if
23: curNodelndex+

24: end while
25: if curNodelndex=curNode.lenghiND curNode.firstLeaf(}hen

26: announce pattern occurrence

27: endif

28: if curNodelndex = curNode.length AND curNode.length >
0 AND texttextIndex + curNodelndex — — 1] =
patlcur Node.string Num][cur Node.beg + cur NodelIndex — 1] then

29: continue{branch and continue comparing text to pattérns

30: endif

31: handleMismatch
32: until textindex+curNodelndex text.length{scan entire tex}t

104

Algorithm 8 Handling a Mismatch

if curNode.depth 0 OR lastNode.deptk: 0 then
if curNode.suffixLink = rooAND lastNode.suffixLirnk root then
curNode<« lastNode
curNodelndex— curNode.lengt{ mismatched when trying to brangh
textindex— = curNode.length
end if
if curNode.parent root AND curNodelndex= 1 then
textindex-+
curNodelndex= 0
curNode = curNode.parent
continue{when traverse suffix link: will be at mismatch, so skip 1 ghar
end if
useSkipcountTrick(skipcount, curNode)
else
{mismatch at rogt
textindex++
end if

in linear time. We modified the peudocode in Algorithm 6 tofpan dictionary matching.
The pseudocode is in Algorithm 7, with its submodules ex¢réito Algorithms 8 and 9.
We now provide the intuition behind the skip-count trick.idtbased on the property
of suffix trees summarized in the following lemma. Recall thauffix link is a directed
edge from the internal node at the end of the path labetedb another internal node at
the end of the path labeleg] wherex is an arbitrary character arfflis a possibly empty
substring. We can similarly define suffix links for leaveshie tree. The suffix link of the

leaf representing suffikpoints to the leaf representing suftix- 1.

Lemma 7.1.1.In any suffix tree, the number of nodes along the path labelsdat least

as large as the number of nodes along the path from the roefdal:«.

Proof. The proof is by contradiction. Supposaés path has fewer nodes tham’s. This

means that some suffix aty is not indexed by the suffix tree. This implies that the suffix

105

Algorithm 9 Skip-Count trick

repeat
curNode<« curNode.suffixLink
usedSkipCount true
textPos= curNodelndex+textindex
skipcount— curNode.length- curNodelndex
if skipcount> curNode.lengtlihen
if curNode.length= 0 then
usedSkipCount- false{branch at next iteration of outer loop, look for next text
char
curNodelndex— 0
skipcount— 0
else
if skipcount= curNode.lengtlthen
curNodelndex —
usedSkipCount- false{branch at next iteration of outer lopp
end if
skipcount— = curNode.length
curNode<« curNode.parent
end if
else
curNodelndex— curNode.length- skipcount
skipcount— 0
end if
until skipcount< 0
textindex= textPos— curNodelndex

106

Algorithm 10 Announcing Pattern Occurrence in CST

if getCharAtNodePos(curNode, curNodelndeXND_OF STRING. MARKER then
pos<— csa[lb(cur Node)] — 1
{l1b(v) returns the left bound of nodein the suffix array
{posis dictionary index immediately preceding this leaf’s astoe emanating from
root}
if pos< 0 then
occ+« true {beginning of first patterh
else
¢ + getCharAtPatternPos(pos)
if c = END_OF_ STRING.MARKER then
occ < true {beginning of some pattern after fifst
end if
end if
end if

tree is not fully constructed. Hence, a contradiction. n

Corollary 7.1.2. If the suffix link of the root points to itself, every node & sluffix tree has

a suffix link.

The skip-count trick that we use is fashioned after Ukkoseln his suffix tree con-
struction algorithm, he uses suffix links to navigate acesgbsthen skip down the appropri-
ate number of characters. We navigate across the tree amglthe up to the appropriate
position at which the mismatch occurred. We make this maatibo since it is more ef-
ficient to navigate up a tree than down. That is, every nodeatssgle parent but when
navigating to a child, several branches may have to be ceresid We are able to make
this improvement since our algorithm uses a fully consedauffix tree. The suffix link
of every node must already exist. On the partially consédictee, that Ukkonen uses,
this is not guaranteed. However, Ukkonen’s algorithm ubesfdct that the parent node
must already have a suffix link. When a suffix link is traversgd,know the number of

characters to skip going up the tree as this is the numberawcters that remain along the

107

edge after the position of mismatch. Yet, we do not know atWimode we will end up.
The shorter label may be split over more edges than the Idabgel spans. This is a result
of Lemma 7.1.1.

In addition to these implementation details, a key chakkeingmplementing dictionary
matching, as pointed out in [3], is when one pattern strirgpsoper substring of another.
In the straightforward traversal, these pattern occugsman be passed unnoticed in the
text. A solution to this problem is to augment each node ofsiliféix tree with an extra
field that points to its lowest ancestor that is a pattern metice. This information can be
obtained in linear time by performing a depth-first travecsdhe suffix tree.

The suffix tree is a versatile tool in string algorithms, asdiready needed in many
applications to facilitate other queries. Thus, in pragtmur dictionary matching program
requires very little additional space. This tool is itsel€@ntribution, allowing efficient
dictionary matching in small space, however, we improvésidpplication by using a com-
pressed suffix tree as the underlying data structure.

We ported our dictionary matching code to run over a compuessffix tree. We would
have liked to create a dynamic dictionary matching progtaahruns in small space. How-
ever, neither of the dynamic compressed suffix tree reptasens have been implemented
yet. None of the existing compressed suffix suffix tree regregions have online con-
struction algorithms so we cannot build the compressedxsuéfe incrementally, one pat-
tern at a time. Instead, we concatenate the dictionary withique delimiter, the end of
string marker, between each pattern and index this singigstVe used the Succinct Data
Structures Library (SDSLE)since it provides a C++ implementation of several compressed

suffix tree representations.

http://www. uni - ul m de/ en/in/institute-of-theoretical - conputer-sci ence/
research/sdsl . htm

108

Although the ultimate capability of the compressed suffeetis modeled after the
functionality of its uncompressed counterpart, many dp@na that are straightforward in
the uncompressed suffix tree require creativity in the cesged suffix tree. Understanding
how the suffix tree components are represented in the cosgatesriation is a necessary
prerequisite to finding these workarounds to seeminglygsttiorward navigational tasks.
Furthermore, the compressed suffix tree is a self-index Bmdsaus to discard the original
set of patterns. Thus, we had to figure out which componerat skaticture to query in
order to randomly access a single pattern character. F@anics, announcing a pattern
occurrence (Algorithm 7, line 25) is not simply a questiorchécking whether traversal
has reached the end of a leaf representing the first suffix aftarp. A simplaf statement
is replaced by the segment of pseudocode delineated ini&kigofd0 and described in the
following paragraph.

Instead of anf statement that checks properties of a leaf, we perform thenfimg
computation, involving several function calls, to detarenif we have found a pattern in
the text. When traversing the compressed suffix tree acaptdirthe text, a mismatch
along an edge leading into a leaf may in fact be a pattern o=ece. Thus, we first check
if the mismatch is at an end of string marker, which mismagahery text character. Then,
we have to determine if this leaf represents the first suffixaohe pattern. This is done by
finding out which character precedes the beginning of tl@Edgath from the root. If the
path begins at the beginning of the dictionary, this leafespnts the first suffix of the first
pattern, and we announce a pattern occurrence. Otherfvike,character at that position
is a pattern delimiter, we know this suffix is an entire dinaoy pattern, and also announce

a pattern occurrence.

109

7.2 Evaluation

We plan to assess the effectiveness of our software aggiase sfficient 1D dictionary
matching software. Specifically, we will compare our applo#o that of Fredriksson
[26] who achieves dictionary matching in small space exgectedinear time using com-
pressed self-indexes and backward DAWG matching. The spexkhy his algorithm is
close to the information theoretic bounds of the patternewéVer, the algorithm is not
online in the sense that it cannot process a text as it arrives

Since we are primarily interested in large sets of data orchvtlictionary matching is
performed, we will use realistic sets of biological, setguand virus detection data. For
biological sequences, we obtained fly sequences from FlyBasd flu sequences from
the Influenza Virus Sequence DatabasBetwork intrusion detection system signatures

are readily available at ClamAyand virus signatures at Snort

2http://flybase. org/static_pages/ downl oads/ bul kdat a7. ht m

Sht t p: // www. ncbi . nl m ni h. gov/ genones/ FLU Dat abase/ nph- sel ect . cgi ?go=
dat abase

*http:// ww. cl amav. net

Shttp://ww. snort. org/

Chapter 8

Conclusion

This thesis has contributed several algorithms for effigfehsuccinct 2D dictionary match-
ing. We have developed the first linear-time small-spacei2iiothary matching algorithm.

We have extended our focus to the dynamic setting and dexelap algorithm whose
running time is linear, besides the slowdown to query the messed suffix tree of the
dictionary. Yet its extra working space is quite limited.

The algorithms developed in this thesis for 2D data are Sl@tfr rectangular patterns
that are all the same size in at least one dimension. We wikddd expand our focus
to consider dictionary matching for other kinds of 2D dictwies in the space-constrained
environment. Succinct 2D dictionary matching among squpartéerns of different sizes
has not yet been addressed and requires a different sehoiqees.

When the dictionary contains rectangular patterns of diffeheight, width and aspect
ratios, a method that labels text positions is not approgri@ury and Schaffer developed
both static and dynamic dictionary matching algorithmsdoch patterns [41]. They use
techniques for multidimensional range searching as wedeasral applications of the Bird

/ Baker algorithm, after splitting each pattern into ovepliayg pieces and handling these

110

111

segments in groups of uniform height. Idury and Schaffdger@hms require working
space proportional to the dictionary size. The static wersias anO(|D|log(d + o))
slowdown to preprocess a dictionafy of d patterns and at(log” | D|log(B + d + 7))
slowdown to scan the text, whefeis the largest size of any pattern. The dynamic version
has anD(log" | D|) slowdown to preprocess the dictionary, insert, or removatgem, and
anO(log* | D|log B) slowdown to scan the text, whefis the largest size of any pattern.
We see our succinct version of the Bird / Baker algorithm as tdiep towards addressing
the more general problem of succinct static and dynamic 2Dogiary matching among
all rectangular patterns.

Other interesting variations of small-space 2D dictiomagtching include the approx-
imate versions of the problem in which one or more changegragther in the patterns or
in the text. The approximate matches may accommodate ¢baratsmatches, insertions,
deletions, “don’t care” characters, or swaps. Beyond tieiotetical intrigue, these prob-
lems all have many practical applications. We hope to egplbese problems in future
research.

We have developed software for succinct 1D dictionary matchVe would like to de-
velop software fodynamicsuccinct dictionary matching, in which a pattern can beriese
to or removed from the dictionary without reprocessing thire dictionary. Our program
relies on the compressed suffix tree to index the dictionamyatural way of generalizing
this program to the dynamic setting would use a dynamic cesgad suffix tree as the
underlying index. However, the existing dynamic comprdsséfix tree representations
[14, 56] have not yet been implemented.

Our algorithms for succinct 2D dictionary matching emplegtiniques for succinct 1D

dictionary matching. Thus, we see our 1D dictionary matghprogram as a first step in

112

developing software for succinct 2D dictionary matchinge Wépe to expand our dictio-
nary matching software to employ our new techniques andrfoqe dictionary matching

among 2D data.

Bibliography

[1] A. V. Aho and M. J. Corasick. Efficient string matching: aid & bibliographic
search.Communications of the ACM8(6):333—-340, 1975.

[2] A. Amir, G. Benson, and M. Farach. An alphabet independgyroach to two-
dimensional pattern matchin@lAM Journal on Computin@3(2):313-323, 1994.

[3] A. Amir and M. Farach. Adaptive dictionary matching. IREE Symposium on
Foundations of Computer Science (FOQ&ges 760-766, 1991.

[4] A. Amir and M. Farach. Two-dimensional dictionary maitodp Information Process-
ing Letters 44(5):233-239, 1992.

[5] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. Dgmic dictionary match-
ing. Journal of Computer and System Sciendég2):208—-222, 1994.

[6] A. Amir, M. Farach, R. M. Idury, J. A. L. Poud, and A. A. Schffer. Improved
dynamic dictionary matchingnformation and Computatiqri19(2):258-282, 1995.

[7] A. Amir, G. M. Landau, and D. Sokol. Inplace 2d matchingcmmpressed images.
Journal of Algorithms49(2):240-261, 2003.

[8] T.J.Baker. Atechnique for extending rapid exact-matcimg matching to arrays of
more than one dimensio®IAM Journal on Computing7):533-541, 1978.

113

114

[9] D. Belazzougui. Succinct dictionary matching with novetown. InSymposium on
Combinatorial Pattern Matching (CPMpages 88-100, 2010.

[10] M. A. Bender and M. Farach-Colton. The Ica problem reeiit InLatin American
Theoretical Informatics Symposium (LAT]dages 88-94, 2000.

[11] R. S. Bird. Two dimensional pattern matchingnformation Processing Letters
6(5):168-170, 1977.

[12] R. S. Boyer and J. S. Moore. A fast string searching algoritCommununications
of the ACM 20(10):762-772, 1977.

[13] R. Canovas and G. Navarro. Practical compressed suffix treesSyrmposium on
Experimental Algorithms (SEApages 94-105, 2010.

[14] H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane. Comgpeglsindexes for dy-
namic text collectionsACM Trans. Algorithms3(2), 2007. Article 21.

[15] Y. Choi and T.-W. Lam. Two-dimensional dynamic dictiopanatching. Ininter-
national Symposium on Symbolic and Algebraic Computati®AAIC) pages 85-94,
1996.

[16] Y. Choi and T. W. Lam. Dynamic suffix tree and two-dimem&ibtexts management.
Information Processing Letter§1(4):213-220, 1997.

[17] R. Cole and R. Hariharan. Dynamic LCA queries on tre®sAM Journal on Com-
puting, 34(4):894-923, 2005.

[18] M. Crochemore, L. Gasieniec, R. Hariharan, S. Muthukizgsh and W. Rytter. A
constant time optimal parallel algorithm for two-dimenmsbpattern matchingSIAM
Journal on Computing?27(3):668-681, 1998.

115

[19] M. Crochemore, L. Gasieniec, W. Plandowski, and W. Ryffero-dimensional pat-
tern matching in linear time and small space.Symposium on Theoretical Aspects
of Computer Science (STACBages 181-192, 1995.

[20] M. Crochemore and D. Perrin. Two-way string-matchingournal of the ACM
38(3):650-674, 1991.

[21] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrighn Structuring labeled trees
for optimal succinctness, and beyond. IEEE Symposium on Foundations of Com-
puter Science (FOCSpages 184-196, 2005.

[22] P. Ferragina and G. Manzini. Indexing compressed tedturnal of the ACM
52(4):552-581, 2005.

[23] P. Ferragina and R. Venturini. A simple storage schemstfings achieving entropy
bounds.Theoretical Computer Sciencg&72(1):115-121, 2007.

[24] J. Fischer. Wee LCHnformation Processing Letterd10(8-9):317-320, 2010.

[25] J. Fischer, V. Mikinen, and G. Navarro. Faster entropy-bounded compresstxi
trees.Theoretical Computer Scienc#10(51):5354-5364, 2009.

[26] K. Fredriksson. Succinct backward-DAWG-matchidg-M Journal of Experimental
Algorithmics 13, 2009. Article 8.

[27] K. Fredriksson and F. Nikitin. Simple random access pmssion. Fundamenta
Informatica 92(1-2):63—-81, 2009.

[28] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling andtesl techniques for
geometry problems. IACM Symposium on Theory of Computing (STQ#2)ges
135-143, 1984.

[29] Z. Galil and J. Seiferas. Time-space-optimal stringahig (preliminary report). In
ACM Symposium on Theory of Computing (ST@@pes 106-113, 1981.

116

[30] L. Gasieniec and R. M. Kolpakov. Real-time string matchiim sublinear space. In
Symposium on Combinatorial Pattern Matching (CPpBges 117-129, 2004.

[31] R. Giancarlo. A generalization of the suffix tree to sguawatrices, with applications.
SIAM Journal on Computin@4(3):520-562, 1995.

[32] R. Giegerich and S. Kurtz. From ukkonen to mccreight aether: A unifying view
of linear-time suffix tree constructiorlgorithmicg 19(3):331-353, 1997.

[33] R. Grossi, A. Gupta, and J. S. Vitter. High-order entrgoynpressed text indexes. In
ACM-SIAM Symposium on Discrete Algorithms (SOpapes 841-850, 2003.

[34] R. Grossi and J. S. Vitter. Compressed suffix arrays arfckstges with applications
to text indexing and string matching. ARCM Symposium on Theory of Computing
(STOC) pages 397-406, 2000.

[35] D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computercecérd
Computational BiologyCambridge University Press, 1997.

[36] D. Harel and R. E. Tarjan. Fast algorithms for finding msarcommon ancestors.
SIAM Journal on Computind. 3(2):338—-355, 1984.

[37] W.-K. Hon, T.-H. Ku, R. Shah, S. V. Thankachan, and J. &eYi Faster compressed
dictionary matching. IiSymposium on String Processing and Information Retrieval
(SPIRE) pages 191-200, 2010.

[38] W.-K. Hon, T. W. Lam, R. Shah, S.-L. Tam, and J. S. Vitter.nfwessed index for
dictionary matching. Iibata Compression Conference (DG@ages 23—-32, 2008.

[39] W.-K. Hon, T. W. Lam, R. Shah, S.-L. Tam, and J. S. Vitteruc&8nct index for
dynamic dictionary matching. limternational Symposium on Symbolic and Algebraic
Computation (ISAAC)pages 1034-1043, 20009.

117

[40] R. M. Idury and A. A. Schffer. Dynamic dictionary matching with failure functians
Theoretical Computer SciencE31(2):295-310, 1994.

[41] R. M. Idury and A. A. Schffer. Multiple matching of rectangular patternaforma-
tion and Computation117(1):78-90, 1995.

[42] J. Karkkainen and P. Sanders. Simple linear work sufffgayaconstruction. Irin-
ternational Colloquium on Automata, Languages and ProgramgnlICALP), pages
943-955, 2003.

[43] D.K.Kim, J.S. Sim, H. Park, , and K. Park. Linear-timenstruction of suffix arrays.
In Symposium on Combinatorial Pattern Matching (CRpBges 186-199, 2003.

[44] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern chatg in strings. SIAM
Journal on Computing6(2):323-350, 1977.

[45] P. Ko and S. Aluru. Space efficient linear time constiarctof suffix arrays. In
Symposium on Combinatorial Pattern Matching (CRpBges 200-210, 2003.

[46] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathersaind its
Applications) Cambridge University Press, New York, NY, USA, 2005.

[47] M. G. Main and R. J. Lorentz. An O(n log n) algorithm for find all repetitions in a
string. Journal of Algorithms5(3):422-432, 1984.

[48] U. Manber and G. Myers. Suffix arrays: A new method forliole-string searches.
SIAM Journal on Computin@2(5):935-948, 1993.

[49] G. Manzini. An analysis of the Burrows-Wheeler transfordournal of the ACM
48(3):407-430, 2001.

[50] E. M. McCreight. A space-economical suffix tree condiarcalgorithm. Journal of
the ACM 23(2):262-272, 1976.

118

[51] G. Navarro and V. Mkinen. Compressed full-text index@®€CM Computing Surveys
39(1), 2007. Article 2.

[52] S. Neuburger and D. Sokol. Succinct 2d dictionary miaigh Algorithmica pages
1-23. 10.1007/s00453-012-9615-9.

[53] S. Neuburger and D. Sokol. Small-space 2d compressgbary matching. In
Symposium on Combinatorial Pattern Matching (CRpBges 27-39, 2010.

[54] S. Neuburger and D. Sokol. Succinct 2d dictionary maighvith no slowdown. In
Algorithms and Data Structures Symposium (WAR&yes 619-630, 2011.

[55] E. Ohlebusch, J. Fischer, and S. Gog. CST++Symposium on String Processing
and Information Retrieval (SPIRE)ages 322-333, 2010.

[56] L. M. S. Russo, G. Navarro, and A. L. Oliveira. Fully corapsed suffix treesACM
Transactions on Algorithm§(4):53:1-53:34, 2011.

[57] W. Rytter. On maximal suffixes and constant-space Iutieae versions of kmp algo-
rithm. Theoretical Computer Scienc299(1-3):763—-774, 2003.

[58] K. Sadakane. New text indexing functionalities of tlenpressed suffix arraydour-
nal of Algorithms 48(2):294-313, 2003.

[59] K. Sadakane. Compressed suffix trees with full functiitjmaTheory of Computing
Systems41(4):589-607, 2007.

[60] S. C. Sahinalp and U. Vishkin. Efficient approximate agdamic matching of pat-
terns using a labeling paradigm. IBEE Symposium on Foundations of Computer
Science (FOCS$pages 320-328, 1996.

[61] E. Ukkonen. On-line construction of suffix treédgorithmica 14(3):249-260, 1995.

119

[62] N.Valimaki, V. Makinen, W. Gerlach, and K. Dixit. Engineering a compresskiiks

tree implementationACM Journal of Experimental Algorithmicg4, 2009. Article
2.

[63] P. Weiner. Linear pattern matching algorithm.IEEE Symposium on Switching and
Automata Theorypages 1-11, 1973.

[64] J. Zivand A. Lempel. Compression of individual sequesnga variable-rate coding.
IEEE Transactions on Information Theq34(5):530-536, 1978.

