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Outline 

1.! Genome assembly by analogy 

2.! DNA sequencing and assembly 

3.! MapReduce for genome assembly 

4.! Research plan and related work 



Shredded Book Reconstruction 

•! Dickens accidently shreds the original  A Tale of Two Cities 

–! Text printed on 5 long spools 

•! How can he reconstruct the text? 

–! 5 copies x 138, 656 words / 5 words per fragment = 138k fragments 

–! The short fragments from every copy are mixed together 

–! Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Overlaps 
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•! Generally prefer longer overlaps to shorter overlaps. 

•! In the presence of error, we might allow the 
overlapping fragments to differ by a small amount. 

–! It was the beast of times, … 



Greedy Assembly 
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•! The repeated sequence makes the correct 
reconstruction ambiguous 

•! It was the best of times, it was the [worst/age] 



Sequence Repeats 

•! Repeated sequences cause false overlaps between 
distant fragments 

•! Transition between repeated and unique sequences forks 
the reconstruction 

•! Our sequence reconstruction algorithm must 
correctly resolve repeats or risk mis-assembly 

–! It was the best of times, it was the age of wisdom, it was 
the age of foolishness, … 

•! Model the sequence structure and reconstruction 
problem as a graph problem. 



de Bruijn Graph Construction 

•! Dk = (V,E) 
•! V = All length-k subfragments (k < l) 
•! E = Directed edges between consecutive subfragments 

•! Nodes overlap by k-1 words 

•! Locally constructed graph reveals the global sequence structure 
•! Overlaps implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 

Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 
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Compressed de Bruijn Graph 

•! Unambiguous non-branching paths replaced by single nodes 

•! An Eulerian/Chinese traversal of the graph spells a compatible reconstruction 
of the original text. 

•! There may be many traversals of the graph 

•! Different sequences can have the same string graph 
•! It was the best of times, it was the worst of times, it was the worst of times, it was the age of 

wisdom, it was the age of foolishness, … 

 of times, it was the 

It was the best of times, it 

it was the age of 
the age of wisdom, it was the 

it was the worst of times, it 

the age of foolishness 



•! The number of compatible sequences increases exponentially with 
nested cycles. 

–! Value computed by application of the BEST theorem (Hutchinson, 75) 

–! Corrects for multiple edge orderings having the same node order 

 L = n x n matrix with ru-auu along the diagonal and -auv in entry uv 

 ru = d+(u)+1 if u=t, or d+(u) otherwise 

 auv = multiplicity of edge from u to v 

A 

B 

C 

D 
R 

ARBRCRD 

or 
ARCRBRD 

Counting Eulerian Paths 



DNA Sequencing 

ATCTGATAAGTCCCAGGACTTCAGT 

GCAAGGCAAACCCGAGCCCAGTTT 

TCCAGTTCTAGAGTTTCACATGATC 

GGAGTTAGTAAAAGTCCACATTGAG 

•! Genome of an organism encodes the genetic information in 
long sequence of 4 DNA nucleotides:  ACGT 

–! Bacteria: ~5 million bp 

–! Humans: ~3 billion bp 

•! Current DNA sequencing machines can generate 1-2 Gbp 
of sequence per day, in millions of short reads (25-300bp) 

–! Shorter reads, but much higher throughput 

–! Per-base error rate estimated at 1-2% (Simpson, et al, 2009) 

–! Ends of the reads tend to have worse quality, other sequence 
dependent biases 

•! Recent studies of entire human genomes have used 3.3 
(Wang, et al., 2008) & 4.0 (Bentley, et al., 2008) billion 36bp 
reads 

–! ~144 GB of compressed sequence data 



Sequencing Reads 

ATCTGATAAGTCCCAGGACTTCAGT 

•! Mate-pairs are pairs of reads separated by a 
known distance 

•! DNA is double stranded 

•! Nucleotides on one strand bond with complementary 
nucleotides of the other (A ! T, C ! G) 

•! Orientation of each read is unknown 

ACTGAAGTCCTGGGACTTATCAGAT 

1000bp 150bp 

50bp 50bp ~900bp 



Short Read Genome Assemblers 
•! Several new assemblers developed specifically for short read data 

–! Old assemblers incompatible for technical and algorithmic reasons 

–! Variations on compressed de Bruijn graphs 
•! Velvet (Zerbino & Birney, 2008) 

•! ALLPATHS (Butler et al, 2008) 

•! EULER-USR (Chaisson et al, 2009) 

•! ABySS (Simpson et al, 2009) 

•! Short Read Assembler Overview 

1.! Construct compressed de Bruijn Graph 

2.! Remove sequencing error from graph 

3.! Use mate-pairs to resolve ambiguities in the graph 

•! Successful for small to medium genomes 
–! 2Mbp bacteria – 39Mbp fungal assembly 



Large Genome Assembly 
•! Recent studies of the human genome primarily used comparative 

techniques to map individual reads to a reference genome 

–! In contrast, de novo assembly has power to reveal new biology  

–! Structural variations: Large Indels, Rearrangements, Copy Number 
Variations 

•! The new short read assemblers have been limited to small 
genomes, in part, because of the tremendous computational 
resources required 
–! Velvet on 48x coverage of 2 Mbp S. suis requires > 2GB of RAM 

–! ABySS on 42x coverage of human required ~4 days of parallel 
computation on ~200 CPUs 

•! If only there was a framework for large data sets… 



Hadoop MapReduce 
•! MapReduce is the parallel distributed framework 

invented by Google for their large data 
computations.  

–! Data and computations are spread over thousands of 
computers, processing petabytes of data each day 
(Dean and Ghemawat, 2004) 

•! Hadoop is the leading open source implementation 
of MapReduce 

–! Sponsored by Yahoo, Google, Amazon, and other 
major vendors 

–! Clusters with 10k nodes, petabytes of data 

–! 100k jobs per month 

•! Benefits 
–! Scalable, Efficient, Reliable 
–! Cloud Ready: Ready to run on remote resources 

•! As little as 10¢ per hour per machine 
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map shuffle reduce 

K-mer Counting with MapReduce 

•! Application developers focus on 2 (+1 internal) functions 

–! Map: input -> key, value pairs 

–! Shuffle: Group together pairs with same key 

–! Reduce: key, value-lists -> output 

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> 1!

ATG -> 1!

CAA -> 1,1!

GCA -> 1!

TGA -> 1!

TTA -> 1,1,1!

ACT -> 1!

AGG -> 1!

CCT -> 1!

GGC -> 1!

TTT -> 1!

AAC -> 1,1,1,1!

ACC -> 1!

CTT -> 1,1!

GAA -> 1,1!

TAG -> 1!

ACA:1!

ATG:1!

CAA:2!

GCA:1!

TGA:1!

TTA:3!

ACT:1!

AGG:1!

CCT:1!

GGC:1!

TTT:1!

AAC:4!

ACC:1!

CTT:2!

GAA:2!

TAG:1!



Genome Assembly with MapReduce 

•! Advantages 

–! Proven system for processing huge datasets 
•! PageRank: Significance in web graph of >1 trillion pages 

•! CloudBurst: Highly Sensitive Alignment of Short Reads 

–! Simple programming model 
•! Reliability, redundancy, scalability built-in 

•! Challenges 

–! How to efficiently implement assembly graph algorithms when 
adjacent nodes are stored on different machines? 

•! Restricted programming model (not Shared Memory, not MPI) 



de Bruijn Graph Construction 
•! Map: Scan reads and emit (ki,ki+1) for consecutive k-mers 

–! Also consider reverse complement k-mers, build bi-directed graph 

•! Reduce: Save adjacency representation of graph (n, (nodeinfo, ni)) 

A 

C 

D 

R 

B 



Mark Compressible Nodes 
•! Input: Graph stored as (n, (nodeinfo, ni)) 

•! Map:  

–! For all nodes, emit (n, (nodeinfo, ni)) 

–! If node n has unique predecessor p, emit (p, (unique-pred, n)) 

MapReduce Message Passing 

•! Reduce: 

–! If node n has unique successor s, and received (unique-pred, s), 

•! Mark node as compressible 

–! Save (n, nodeinfo) 

Compressible 

Not Compressible 



Linear Path Compression 
•! Iteratively identify and collapse the 

beginning of each chain 

•! Map:  

–! Emit messages to the neighbors of the 
head of each chain 

•! Reduce: 

–! Update links, node label 

•! Requires S MapReduce cycles, where S is the length of the longest simple path 

•! B. anthracis:   L=5.2Mbp  S=268,925 bp 

•! H. sapiens chr 22:  L=49.6Mbp  S=33,832 bp 

•! H. sapiens chr 1:  L=247.2Mbp  S=37,172 bp 



Parallel Path Compression 
•! List Ranking Problem 

–! General problem of parallel linked 
list operations 

•! Pointer Jumping (Wyllie, 1979) 

–! Add tail pointer to each node 

–! In each round, advance (double) 
the tail pointer 

–! Collect and concatenate all the 
nodes in a simple path  

–! O(log S) parallel cycles 
•! B. anthracis 268,925 -> 19+1 cycles 

•! Human:  37,172 ->16+1 cycles 



Error Correction 
•! Sequence error distorts idealized graph structure 

–! Errors at end of read 

•! Trim off ‘dead-end’ tips 

–! Errors in middle of read 

•! Pop Bubbles 

•! Record Hetrozygote sites 

–! Multiple errors throughout 

•! Small disconnected node 

BC 

B’ 

A 

B 

B’ 

A C 

BC A 

B* A C 



Graph Simplifications 

•! X-cut 

–! Individual reads span the repeat 

–! Especially for hybrid assemblies with 
short and long read 

–! (Pevzner, Tang, Waterman, 2001) 

•! Cycle tree compression 
–! There is a unique path through nodes 

with a tree structure (Pevzner, 1989) 

–! Recursive resolve those regions 

–! (Kingsford, Schatz, Pop, 2009*) 

•! Other simplifications possible   

C 

B A 

r 

D C 

B A r1 

D r2 

G G 



Scaffolding 
•! Use mate-pairs to resolve correct order 

through string graph 

–! Place sequence to satisfy the mate constraints 

–! Mates through repeat nodes are tangled 

•! Bambus (Pop, Kosack, Salzberg, 2004) 

–! Edge Bundling 

–! Contig Orientation & Ordering 
•! Iteratively join strongest connection 

•! Parallel Bambus 

–! Identify repeat nodes (A-stat) 

–! Identify (strongly) connected components 

–! Concurrently execute serial Bambus on 
different components  

A 

C 

D 

R 

B 

A C D R B R R 



Research Plan 
•! Design & Implement Parallel Assembler 

-! Trimming & Chimeric reads 

"! de Bruijn graph construction 

"! Path Compression 

"! Error correction 

–! Graph Simplifications 

–! Connected components 

–! Scaffolding: Bambus, Celera Assembler,  Velvet 

•! Evaluate performance  

–! Computational & Biological performance 

–! Bacteria / Velvet 

–! Human / ABySS 

•! Investigate MapReduce compatible algorithms 

–! Randomized List Ranking (Anderson & Miller, 1990) 

–! Priority Queues (Chaisson et al., 2009) 



Related Work : Methods 
Parallel Short Read Mapping 

•! CloudBurst (Schatz, 2009) 

•! MUMmerGPU 2 (Trapnell, Schatz, 2009*) 

•! MUMmerGPU (Schatz, Trapnell, Delcher, Varshney, 2008) 

Assembly Correctness 

•! Assembly Forensics (Phillippy, Schatz, Pop, 2008) 

•! Hawkeye (Schatz, Phillippy, Shneiderman, Salzberg, 2007) 

•! AutoEditor (Gajer, Schatz, Salzberg, 2004) 

Machine Learning on PPI Networks 

•! Graph Summarization (Navlakha, Schatz, Kingsford, 2008) 

* Submitted for publication 



Related Work : Results 
Genome Assembly & Analysis 

•! N. ceranae (Cornman et al, 2009*) 

•! B. taurus (Zimin et al, 2009*) 

•! G. indiensis (Desjardins et al, 2009) 

•! C. papaya (Ming et al, 2008),  

•! C. papaya (Suzuki et al, 2008) 

•! X. oryzae (Salzberg et al, 2008) 

•! T. vaginas (Carlton et al, 2007) 

•! Drosophila species (Drosophila 12 
genomes consortium, 2007) 

•! A. aegypti (Nene et al, 2007) 

•! B. malayi (Ghedin et al, 2007) 

•! G. indiensis (Desjardins et al, 2007) 

•! Campylobacter species (Fouts et al, 
2005) 

* Submitted for publication 



Grand Challenge of Biology 
 “NextGen sequencing has completely outrun 
the ability of good bioinformatics people to 

keep up with the data and use it well… We 
need a MASSIVE effort in the development of 

tools for “normal” biologists to make better 
use of massive sequence databases.” 

    Jonathan Eisen – JGI Users Meeting – 3/28/09 

•! Computational Biology 

–! Make the problem of assembly of large genomes 
from short reads feasible and accessible to 
individual researchers 

•! High Performance Computing 

–! Research Parallel Algorithms for MapReduce and 
Multicore systems 
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Short Reads and Mate-pairs 

•! Explore the relationship between read length and contig N50 size 

–! Perfect reads, lengths: 25, 35, 50, 100, 250, 500, 1000 

–! Long reads are limiting case for short mated reads, perfectly compute the 
insert sequence 

–! (Kingsford, Schatz, Pop, 2009*) 
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Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Xanthomonas campestris 
5.07Mbp 

Yersinia pestis         
4.70Mbp 



ABySS Results 

•! Assemble 42x 36bp 
reads 

•! Mate pairs double the 
size of the contigs 

–! Insert size 210bp 

•! Identify 100k insertions 
and deletions 

–! Pronounced deletion peak 
corresponds to Alu family 
of retrotransposons 



Bidirectional de Bruijn Graph 

•! Designate a representative mer 
for each mer/rc(mer) pair 

–! Use the lexigraphically smaller mer 

•! Bidirected edges record if 
connection is between forward 
or reverse mer 

•! In practice, keep separate 
adjacency lists for the forward 
and reverse mers 

AAG CTT 
AGG CCT 

ACT AGT 

AAGG [CCTT]:  AAG+ -> AGG+ 

ACTT  [AAGA]:  ACT+ -> AAG-   
GCTT [AAGC]:  AGC- -> AAG- 

                          AAG+ -> AGC+ 

AGC GCT 

(Medvedev et al, 2007) 



Amazon Elastic MapReduce 



EC2 Pricing 



1.! Map: Catalog K-mers 
•! Emit every k-mer in the genome and non-overlapping k-mers in the reads 
•! Non-overlapping k-mers sufficient to guarantee an alignment will be found 
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Read 1, Chromosome 1, 12345-12365!

Read 2, Chromosome 1, 12350-12370!

CloudBurst: Highly Sensitive Read Mapping with MapReduce 

(Schatz, 2009) 



CloudBurst Results on Local CBCB Cluster 
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Millions of Reads 

Running Time vs Number of Reads on Chr 22 

0 

1 

2 

3 

4 

•! Evaluation of CloudBurst running time 
while scaling the number of reads and 

the number of allowed mismatches 
while mapping to human chromosomes 

1 (top) and 22 (bottom) on the local 
cluster with 24 cores. 

•! Colored lines indicate timings allowing 
0 (fastest) through 4 (slowest) 

mismatches between a read and the 
reference.  

•! As the number of reads increases, the 

running time increases linearly.  

•! As the number of allowed mismatches 

increases, the running time increases 
super-linearly from the exponential 

increase in seed instances.  



Comparison to RMAP 

•! CloudBurst running time compared to RMAP for mapping 7M reads, showing the 
speedup of CloudBurst running on 24 cores compared to RMAP running on 1 
core.  

•! As the number of allowed mismatches increases, the relative overhead decreases 
allowing CloudBurst to meet and exceed 24x linear speedup.  

•! Produces identical results in a fraction of the time, especially for highly sensitive 
alignments. 
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Amazon EC2 Evaluation 

•! CloudBurst running times for mapping 7M reads to human chromosome 22 with 
at most 4 mismatches on the local and EC 2 clusters. 

•! The 24-core Amazon High-CPU Medium Instance EC2 cluster is faster than the 
24-core Small Instance EC2 cluster, and the 24-core local dedicated cluster. 

•! As the number of cores increase, the running time decreases with near linear 
speedup. The 96-core cluster is 3.5x faster than the 24-core, and 100x faster than 
a serial run of RMAP. 
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