
Towards a de novo short read
assembler for large genomes using
cloud computing

Michael Schatz

April 21, 2009

AMSC664 Advanced Scientific Computing

Outline

1.! Genome assembly by analogy

2.! DNA sequencing and assembly

3.! MapReduce for genome assembly

4.! Research plan and related work

Shredded Book Reconstruction

•! Dickens accidently shreds the original A Tale of Two Cities

–! Text printed on 5 long spools

•! How can he reconstruct the text?

–! 5 copies x 138, 656 words / 5 words per fragment = 138k fragments

–! The short fragments from every copy are mixed together

–! Some fragments are identical

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

Overlaps
It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

it was the worst of

was the worst of times,

worst of times, it was

of times, it was the

times, it was the age

it was the age of

was the age of wisdom,

the age of wisdom, it

age of wisdom, it was

of wisdom, it was the

wisdom, it was the age

it was the age of

was the age of foolishness,

the worst of times, it

It was the best of

was the best of times,
4 word overlap

It was the best of

of times, it was the
1 word overlap

It was the best of

of wisdom, it was the
1 word overlap

•! Generally prefer longer overlaps to shorter overlaps.

•! In the presence of error, we might allow the
overlapping fragments to differ by a small amount.

–! It was the beast of times, …

Greedy Assembly

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

of times, it was the

times, it was the age

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

it was the worst of

was the worst of times,

worst of times, it was

of times, it was the

times, it was the age

it was the age of

was the age of wisdom,

the age of wisdom, it

age of wisdom, it was

of wisdom, it was the

wisdom, it was the age

it was the age of

was the age of foolishness,

the worst of times, it

•! The repeated sequence makes the correct
reconstruction ambiguous

•! It was the best of times, it was the [worst/age]

Sequence Repeats

•! Repeated sequences cause false overlaps between
distant fragments

•! Transition between repeated and unique sequences forks
the reconstruction

•! Our sequence reconstruction algorithm must
correctly resolve repeats or risk mis-assembly

–! It was the best of times, it was the age of wisdom, it was
the age of foolishness, …

•! Model the sequence structure and reconstruction
problem as a graph problem.

de Bruijn Graph Construction

•! Dk = (V,E)
•! V = All length-k subfragments (k < l)
•! E = Directed edges between consecutive subfragments

•! Nodes overlap by k-1 words

•! Locally constructed graph reveals the global sequence structure
•! Overlaps implicitly computed

It was the best was the best of It was the best of

Original Fragment Directed Edge

de Bruijn, 1946

Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

the age of foolishness

It was the best

best of times, it

was the best of

the best of times,

of times, it was

times, it was the

it was the worst

was the worst of

worst of times, it

the worst of times,

it was the age

was the age of

the age of wisdom,

age of wisdom, it

of wisdom, it was

wisdom, it was the

Compressed de Bruijn Graph

•! Unambiguous non-branching paths replaced by single nodes

•! An Eulerian/Chinese traversal of the graph spells a compatible reconstruction
of the original text.

•! There may be many traversals of the graph

•! Different sequences can have the same string graph
•! It was the best of times, it was the worst of times, it was the worst of times, it was the age of

wisdom, it was the age of foolishness, …

 of times, it was the

It was the best of times, it

it was the age of
the age of wisdom, it was the

it was the worst of times, it

the age of foolishness

•! The number of compatible sequences increases exponentially with
nested cycles.

–! Value computed by application of the BEST theorem (Hutchinson, 75)

–! Corrects for multiple edge orderings having the same node order

 L = n x n matrix with ru-auu along the diagonal and -auv in entry uv

 ru = d+(u)+1 if u=t, or d+(u) otherwise

 auv = multiplicity of edge from u to v

A

B

C

D
R

ARBRCRD

or
ARCRBRD

Counting Eulerian Paths

DNA Sequencing

ATCTGATAAGTCCCAGGACTTCAGT

GCAAGGCAAACCCGAGCCCAGTTT

TCCAGTTCTAGAGTTTCACATGATC

GGAGTTAGTAAAAGTCCACATTGAG

•! Genome of an organism encodes the genetic information in
long sequence of 4 DNA nucleotides: ACGT

–! Bacteria: ~5 million bp

–! Humans: ~3 billion bp

•! Current DNA sequencing machines can generate 1-2 Gbp
of sequence per day, in millions of short reads (25-300bp)

–! Shorter reads, but much higher throughput

–! Per-base error rate estimated at 1-2% (Simpson, et al, 2009)

–! Ends of the reads tend to have worse quality, other sequence
dependent biases

•! Recent studies of entire human genomes have used 3.3
(Wang, et al., 2008) & 4.0 (Bentley, et al., 2008) billion 36bp
reads

–! ~144 GB of compressed sequence data

Sequencing Reads

ATCTGATAAGTCCCAGGACTTCAGT

•! Mate-pairs are pairs of reads separated by a
known distance

•! DNA is double stranded

•! Nucleotides on one strand bond with complementary
nucleotides of the other (A ! T, C ! G)

•! Orientation of each read is unknown

ACTGAAGTCCTGGGACTTATCAGAT

1000bp 150bp

50bp 50bp ~900bp

Short Read Genome Assemblers
•! Several new assemblers developed specifically for short read data

–! Old assemblers incompatible for technical and algorithmic reasons

–! Variations on compressed de Bruijn graphs
•! Velvet (Zerbino & Birney, 2008)

•! ALLPATHS (Butler et al, 2008)

•! EULER-USR (Chaisson et al, 2009)

•! ABySS (Simpson et al, 2009)

•! Short Read Assembler Overview

1.! Construct compressed de Bruijn Graph

2.! Remove sequencing error from graph

3.! Use mate-pairs to resolve ambiguities in the graph

•! Successful for small to medium genomes
–! 2Mbp bacteria – 39Mbp fungal assembly

Large Genome Assembly
•! Recent studies of the human genome primarily used comparative

techniques to map individual reads to a reference genome

–! In contrast, de novo assembly has power to reveal new biology

–! Structural variations: Large Indels, Rearrangements, Copy Number
Variations

•! The new short read assemblers have been limited to small
genomes, in part, because of the tremendous computational
resources required
–! Velvet on 48x coverage of 2 Mbp S. suis requires > 2GB of RAM

–! ABySS on 42x coverage of human required ~4 days of parallel
computation on ~200 CPUs

•! If only there was a framework for large data sets…

Hadoop MapReduce
•! MapReduce is the parallel distributed framework

invented by Google for their large data
computations.

–! Data and computations are spread over thousands of
computers, processing petabytes of data each day
(Dean and Ghemawat, 2004)

•! Hadoop is the leading open source implementation
of MapReduce

–! Sponsored by Yahoo, Google, Amazon, and other
major vendors

–! Clusters with 10k nodes, petabytes of data

–! 100k jobs per month

•! Benefits
–! Scalable, Efficient, Reliable
–! Cloud Ready: Ready to run on remote resources

•! As little as 10¢ per hour per machine

ATG,1!

TGA,1!

GAA,1!

AAC,1!

ACC,1!

CCT,1!

CTT,1!

TTA,1!

GAA,1!

AAC,1!

ACA,1!

CAA,1!

AAC,1!

ACT,1!

CTT,1!

TTA,1!

TTT,1!

TTA,1!

TAG,1!

AGG,1!

GGC,1!

GCA,1!

CAA,1!

AAC,1!

map shuffle reduce

K-mer Counting with MapReduce

•! Application developers focus on 2 (+1 internal) functions

–! Map: input -> key, value pairs

–! Shuffle: Group together pairs with same key

–! Reduce: key, value-lists -> output

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> 1!

ATG -> 1!

CAA -> 1,1!

GCA -> 1!

TGA -> 1!

TTA -> 1,1,1!

ACT -> 1!

AGG -> 1!

CCT -> 1!

GGC -> 1!

TTT -> 1!

AAC -> 1,1,1,1!

ACC -> 1!

CTT -> 1,1!

GAA -> 1,1!

TAG -> 1!

ACA:1!

ATG:1!

CAA:2!

GCA:1!

TGA:1!

TTA:3!

ACT:1!

AGG:1!

CCT:1!

GGC:1!

TTT:1!

AAC:4!

ACC:1!

CTT:2!

GAA:2!

TAG:1!

Genome Assembly with MapReduce

•! Advantages

–! Proven system for processing huge datasets
•! PageRank: Significance in web graph of >1 trillion pages

•! CloudBurst: Highly Sensitive Alignment of Short Reads

–! Simple programming model
•! Reliability, redundancy, scalability built-in

•! Challenges

–! How to efficiently implement assembly graph algorithms when
adjacent nodes are stored on different machines?

•! Restricted programming model (not Shared Memory, not MPI)

de Bruijn Graph Construction
•! Map: Scan reads and emit (ki,ki+1) for consecutive k-mers

–! Also consider reverse complement k-mers, build bi-directed graph

•! Reduce: Save adjacency representation of graph (n, (nodeinfo, ni))

A

C

D

R

B

Mark Compressible Nodes
•! Input: Graph stored as (n, (nodeinfo, ni))

•! Map:

–! For all nodes, emit (n, (nodeinfo, ni))

–! If node n has unique predecessor p, emit (p, (unique-pred, n))

MapReduce Message Passing

•! Reduce:

–! If node n has unique successor s, and received (unique-pred, s),

•! Mark node as compressible

–! Save (n, nodeinfo)

Compressible

Not Compressible

Linear Path Compression
•! Iteratively identify and collapse the

beginning of each chain

•! Map:

–! Emit messages to the neighbors of the
head of each chain

•! Reduce:

–! Update links, node label

•! Requires S MapReduce cycles, where S is the length of the longest simple path

•! B. anthracis: L=5.2Mbp S=268,925 bp

•! H. sapiens chr 22: L=49.6Mbp S=33,832 bp

•! H. sapiens chr 1: L=247.2Mbp S=37,172 bp

Parallel Path Compression
•! List Ranking Problem

–! General problem of parallel linked
list operations

•! Pointer Jumping (Wyllie, 1979)

–! Add tail pointer to each node

–! In each round, advance (double)
the tail pointer

–! Collect and concatenate all the
nodes in a simple path

–! O(log S) parallel cycles
•! B. anthracis 268,925 -> 19+1 cycles

•! Human: 37,172 ->16+1 cycles

Error Correction
•! Sequence error distorts idealized graph structure

–! Errors at end of read

•! Trim off ‘dead-end’ tips

–! Errors in middle of read

•! Pop Bubbles

•! Record Hetrozygote sites

–! Multiple errors throughout

•! Small disconnected node

BC

B’

A

B

B’

A C

BC A

B* A C

Graph Simplifications

•! X-cut

–! Individual reads span the repeat

–! Especially for hybrid assemblies with
short and long read

–! (Pevzner, Tang, Waterman, 2001)

•! Cycle tree compression
–! There is a unique path through nodes

with a tree structure (Pevzner, 1989)

–! Recursive resolve those regions

–! (Kingsford, Schatz, Pop, 2009*)

•! Other simplifications possible

C

B A

r

D C

B A r1

D r2

G G

Scaffolding
•! Use mate-pairs to resolve correct order

through string graph

–! Place sequence to satisfy the mate constraints

–! Mates through repeat nodes are tangled

•! Bambus (Pop, Kosack, Salzberg, 2004)

–! Edge Bundling

–! Contig Orientation & Ordering
•! Iteratively join strongest connection

•! Parallel Bambus

–! Identify repeat nodes (A-stat)

–! Identify (strongly) connected components

–! Concurrently execute serial Bambus on
different components

A

C

D

R

B

A C D R B R R

Research Plan
•! Design & Implement Parallel Assembler

-! Trimming & Chimeric reads

"! de Bruijn graph construction

"! Path Compression

"! Error correction

–! Graph Simplifications

–! Connected components

–! Scaffolding: Bambus, Celera Assembler, Velvet

•! Evaluate performance

–! Computational & Biological performance

–! Bacteria / Velvet

–! Human / ABySS

•! Investigate MapReduce compatible algorithms

–! Randomized List Ranking (Anderson & Miller, 1990)

–! Priority Queues (Chaisson et al., 2009)

Related Work : Methods
Parallel Short Read Mapping

•! CloudBurst (Schatz, 2009)

•! MUMmerGPU 2 (Trapnell, Schatz, 2009*)

•! MUMmerGPU (Schatz, Trapnell, Delcher, Varshney, 2008)

Assembly Correctness

•! Assembly Forensics (Phillippy, Schatz, Pop, 2008)

•! Hawkeye (Schatz, Phillippy, Shneiderman, Salzberg, 2007)

•! AutoEditor (Gajer, Schatz, Salzberg, 2004)

Machine Learning on PPI Networks

•! Graph Summarization (Navlakha, Schatz, Kingsford, 2008)

* Submitted for publication

Related Work : Results
Genome Assembly & Analysis

•! N. ceranae (Cornman et al, 2009*)

•! B. taurus (Zimin et al, 2009*)

•! G. indiensis (Desjardins et al, 2009)

•! C. papaya (Ming et al, 2008),

•! C. papaya (Suzuki et al, 2008)

•! X. oryzae (Salzberg et al, 2008)

•! T. vaginas (Carlton et al, 2007)

•! Drosophila species (Drosophila 12
genomes consortium, 2007)

•! A. aegypti (Nene et al, 2007)

•! B. malayi (Ghedin et al, 2007)

•! G. indiensis (Desjardins et al, 2007)

•! Campylobacter species (Fouts et al,
2005)

* Submitted for publication

Grand Challenge of Biology
 “NextGen sequencing has completely outrun
the ability of good bioinformatics people to

keep up with the data and use it well… We
need a MASSIVE effort in the development of

tools for “normal” biologists to make better
use of massive sequence databases.”

 Jonathan Eisen – JGI Users Meeting – 3/28/09

•! Computational Biology

–! Make the problem of assembly of large genomes
from short reads feasible and accessible to
individual researchers

•! High Performance Computing

–! Research Parallel Algorithms for MapReduce and
Multicore systems

Acknowledgements

•! Committee:

–! Steven Salzberg, Mihai Pop, Amitabh Varshney

•! UMD Faculty

–! Art Delcher, Carl Kingsford, Ben Shneiderman,
James Yorke, Jimmy Lin, Aleksey Zimin, Michael
Roberts

•! CBCB Students

–! Adam Phillippy, Cole Trapnell, Saket Navlakha,
Ben Langmead, James White, Megan
Smedinghoff

Thank You!

Short Reads and Mate-pairs

•! Explore the relationship between read length and contig N50 size

–! Perfect reads, lengths: 25, 35, 50, 100, 250, 500, 1000

–! Long reads are limiting case for short mated reads, perfectly compute the
insert sequence

–! (Kingsford, Schatz, Pop, 2009*)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 250 500 750 1000

C
o

n
ti

g
 N

5
0
 S

iz
e
 (

M
b

p
)

Read Length

Bacillus anthracis
5.22Mbp

Colwellia psychrerythraea
5.37Mbp

Escherichia coli K12
4.64Mbp

Salmonella typhi
4.80Mbp

Xanthomonas campestris
5.07Mbp

Yersinia pestis
4.70Mbp

ABySS Results

•! Assemble 42x 36bp
reads

•! Mate pairs double the
size of the contigs

–! Insert size 210bp

•! Identify 100k insertions
and deletions

–! Pronounced deletion peak
corresponds to Alu family
of retrotransposons

Bidirectional de Bruijn Graph

•! Designate a representative mer
for each mer/rc(mer) pair

–! Use the lexigraphically smaller mer

•! Bidirected edges record if
connection is between forward
or reverse mer

•! In practice, keep separate
adjacency lists for the forward
and reverse mers

AAG CTT
AGG CCT

ACT AGT

AAGG [CCTT]: AAG+ -> AGG+

ACTT [AAGA]: ACT+ -> AAG-
GCTT [AAGC]: AGC- -> AAG-

 AAG+ -> AGC+

AGC GCT

(Medvedev et al, 2007)

Amazon Elastic MapReduce

EC2 Pricing

1.! Map: Catalog K-mers
•! Emit every k-mer in the genome and non-overlapping k-mers in the reads
•! Non-overlapping k-mers sufficient to guarantee an alignment will be found

!"#$%&'()*#*+*#,&-&

.,$/&-&

.,$/&0&

#$1&

02 &3("4,5&6*$7,+',&3,,/+&
8! !$/**1&9%:,)%$7&+("4,&;)*"1+&:*;,:(,)&<=#,)+&+($),/&>?&:(,&),$/+&$%/&:(,&),@,),%',&

8! 6*%',1:"$77?&>"97/&$&($+(&:$>7,&*@&<=#,)+&$%/&:(,9)&*''")),%',+&

+("4,&

A&

A&

B2 &.,/"',5&C%/=:*=,%/&$79;%#,%:&
8! D*'$77?&,E:,%/&$79;%#,%:&>,?*%/&+,,/+&>?&'*"%F%;	+#$:'(,+G&*)&H9:(&

D$%/$"=I9+(<9%&<=/9J,),%',&$7;*)9:(#&:*&$77*H&@*)&9%/,7+2&

8! K@&),$/&$79;%+&,%/=:*=,%/G&),'*)/&:(,&$79;%#,%:&

),/"',&

Read 1, Chromosome 1, 12345-12365!

Read 2, Chromosome 1, 12350-12370!

CloudBurst: Highly Sensitive Read Mapping with MapReduce

(Schatz, 2009)

CloudBurst Results on Local CBCB Cluster

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2 4 6 8

R
u

n
ti

m
e
 (

s)

Millions of Reads

Running Time vs Number of Reads on Chr 1

0
1
2
3
4

0

500

1000

1500

2000

2500

3000

0 2 4 6 8

R
u

n
ti

m
e
 (

s)

Millions of Reads

Running Time vs Number of Reads on Chr 22

0

1

2

3

4

•! Evaluation of CloudBurst running time
while scaling the number of reads and

the number of allowed mismatches
while mapping to human chromosomes

1 (top) and 22 (bottom) on the local
cluster with 24 cores.

•! Colored lines indicate timings allowing
0 (fastest) through 4 (slowest)

mismatches between a read and the
reference.

•! As the number of reads increases, the

running time increases linearly.

•! As the number of allowed mismatches

increases, the running time increases
super-linearly from the exponential

increase in seed instances.

Comparison to RMAP

•! CloudBurst running time compared to RMAP for mapping 7M reads, showing the
speedup of CloudBurst running on 24 cores compared to RMAP running on 1
core.

•! As the number of allowed mismatches increases, the relative overhead decreases
allowing CloudBurst to meet and exceed 24x linear speedup.

•! Produces identical results in a fraction of the time, especially for highly sensitive
alignments.

0

5

10

15

20

25

30

35

40

0 1 2 3 4

S
p

e
e
d

u
p

Number of Mismatches

Speedup over serial RMAP

chr1

chr22

Amazon EC2 Evaluation

•! CloudBurst running times for mapping 7M reads to human chromosome 22 with
at most 4 mismatches on the local and EC 2 clusters.

•! The 24-core Amazon High-CPU Medium Instance EC2 cluster is faster than the
24-core Small Instance EC2 cluster, and the 24-core local dedicated cluster.

•! As the number of cores increase, the running time decreases with near linear
speedup. The 96-core cluster is 3.5x faster than the 24-core, and 100x faster than
a serial run of RMAP.

0

1000

2000

3000

4000

Local Cluster Small Instance EC2
Cluster

High-CPU Medium
Instance EC2

Cluster

R
u

n
n

in
g
 t

im
e
 (

s)

Running Time on Local vs EC2 Clusters

0

500

1000

1500

2000

24 48 72 96

R
u

n
n

in
g
 t

im
e
 (

s)

Number of Cores

Running Time on EC2
High-CPU Medium Instance Cluster

