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Shredded Book Reconstruction 

•! Dickens accidentally shreds the first printing of A Tale of Two Cities 

–! Text printed on 5 long spools 

•! How can he reconstruct the text? 

–! 5 copies x 138, 656 words / 5 words per fragment = 138k fragments 

–! The short fragments from every copy are mixed together 

–! Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 
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 The repeated sequence make the correct 
reconstruction ambiguous 

•! It was the best of times, it was the [worst/age] 

 Model sequence reconstruction as a graph problem. 



de Bruijn Graph Construction 

•! Dk = (V,E) 
•! V = All length-k subfragments (k < l) 
•! E = Directed edges between consecutive subfragments 

•! Nodes overlap by k-1 words 

•! Locally constructed graph reveals the global sequence structure 
•! Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 

Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 
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A unique Eulerian tour of 
the graph reconstructs the 

original text 

If a unique tour does not 
exist, try to simplify the 

graph as much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 
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the age of wisdom, it was the A unique Eulerian tour of 
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exist, try to simplify the 

graph as much as possible 



 Generally an exponential number of compatible sequences 

–! Value computed by application of the BEST theorem (Hutchinson, 1975) 

          L = n x n matrix with ru-auu along the diagonal and -auv in entry uv 

   ru = d+(u)+1 if u=t, or d+(u) otherwise 

   auv = multiplicity of edge from u to v 

Counting Eulerian Tours 

ARBRCRD 

or 

ARCRBRD 

A R D 

B 

C 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.  



Genomics and Evolution 

 Your genome influences (almost) all aspects of your life 

–! Anatomy & Physiology: 10 fingers & 10 toes, organs, neurons 

–! Diseases: Sickle Cell Anemia, Down Syndrome, Cancer 

–! Psychological: Intelligence, Personality, Bad Driving 

–! Genome as a recipe, not a blueprint 

 Like Dickens, we can only sequence small fragments of the genome 



DNA Sequencing 

ATCTGATAAGTCCCAGGACTTCAGT 

GCAAGGCAAACCCGAGCCCAGTTT 

TCCAGTTCTAGAGTTTCACATGATC 

GGAGTTAGTAAAAGTCCACATTGAG 

 Genome of an organism encodes the genetic information 
in long sequence of 4 DNA nucleotides: ACGT 

–! Bacteria: ~3 million bp 

–! Humans: ~3 billion bp 

 Current DNA sequencing machines can generate 1-2 
Gbp of sequence per day, in millions of short reads 

–! Per-base error rate estimated at 1-2% (Simpson et al, 2009) 

–! Sequences originate from random positions of the genome 

 Recent studies of entire human genomes analyzed 3.3B 
(Wang, et al., 2008) & 4.0B (Bentley, et al., 2008) 36bp 
reads 

–! ~100 GB of compressed sequence data 



The Evolution of DNA Sequencing 
Year Genome Technology Cost 

2001 Venter et al. Sanger (ABI) $300,000,000 

2007 Levy et al. Sanger (ABI) $10,000,000 

2008 Wheeler et al. Roche (454) $2,000,000 

2008 Ley et al. Illumina $1,000,000 

2008 Bentley et al. Illumina $250,000 

2009 Pushkarev et al. Helicos $48,000 

2009 Drmanac et al. Complete Genomics $4,400 

(Pushkarev et al., 2009)  

Critical Computational Challenges:  Alignment and Assembly of Huge Datasets 



Why HPC? 
•! Moore’s Law is valid in 2010 

–! But CPU speed is flat 

–! Vendors adopting parallel 
solutions instead 

•! Parallel Environments 

–! Many cores, including GPUs 

–! Many computers 

–! Many disks 

•! Why parallel 

–! Need results faster 

–! Doesn’t fit on one machine 

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software 
Herb Sutter, http://www.gotw.ca/publications/concurrency-ddj.htm 



Parallel Computing Spectrum 

Regularly  

Parallel 

MapReduce/DryadLINQ 

Genotyping 
K-mer Counting 

Embarrassingly Parallel + 
Parallel Communication 

Embarrassingly  

Parallel 

Batch Computing 

Alignment 
HMM Scoring 

Scheduling + 
Load Balance 

Deeply 

Parallel 

MPI/MapReduce/Pregel 

Graph Analysis 
Genome Assembly 

Regular Parallel + 
Parallel Algorithm Design 



Short Read Mapping 

•! Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read 

–! Find where the read most likely originated 

–! Fundamental computation for many assays 

•! Genotyping    RNA-Seq    Methyl-Seq 

•! Structural Variations   Chip-Seq    Hi-C-Seq 

•! Desperate need for scalable solutions 

–! Single human requires >1,000 CPU hours / genome 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 

GCGCCCTA 
GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

Identify variants 

Reference 

Subject 



MUMmerGPU 

High-throughput sequence alignment using Graphics Processing Units. 
Schatz, MC*, Trapnell, C*, Delcher, AL, Varshney, A. (2007) BMC Bioinformatics 8:474. 

Optimizing data intensive GPGPU computations for DNA sequence alignment. 
Trapnell C*, Schatz MC*. (2009) Parallel Computing. 35(8-9):429-440. 

1 

2 3 

4 
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•! Map many reads simultaneously on a GPU 

•! Index reference using a suffix tree 

•! Find matches by walking the tree 

•! Find coordinates with depth first search 

•! Performance on nVidia GTX 8800 

•! Match kernel was ~10x faster than CPU 

•! Print kernel was ~4x faster than CPU 

•! End-to-end runtime ~4x faster than CPU 



Elementary School Dance 



•! MapReduce is the parallel distributed framework invented by 
Google for large data computations.  

–! Data and computations are spread over thousands of computers, processing 
petabytes of data each day (Dean and Ghemawat, 2004) 

–! Indexing the Internet, PageRank, Machine Learning, etc… 

–! Hadoop is the leading open source implementation 

Hadoop MapReduce 

•! Benefits 
–! Scalable, Efficient, Reliable 
–! Easy to Program 
–! Runs on commodity computers 

•! Challenges 
–! Redesigning / Retooling applications 

–! Not Condor, Not MPI 
–! Everything in MapReduce 
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(AAC:1)!

(ACA:1)!

(CAA:1)!

(AAC:1)!

(ACT:1)!

(CTT:1)!

(TTA:1)!

(TTT:1)!

(TTA:1)!

(TAG:1)!

(AGG:1)!

(GGC:1)!

(GCA:1)!

(CAA:1)!

(AAC:1)!

map reduce 

K-mer Counting 
•! Application developers focus on 2 (+1 internal) functions 

–! Map: input ! key:value pairs 

–! Shuffle: Group together pairs with same key 

–! Reduce: key, value-lists ! output 

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> 1!

ATG -> 1!

CAA -> 1,1!

GCA -> 1!

TGA -> 1!

TTA -> 1,1,1!

ACT -> 1!

AGG -> 1!

CCT -> 1!

GGC -> 1!

TTT -> 1!

AAC -> 1,1,1,1!

ACC -> 1!

CTT -> 1,1!

GAA -> 1,1!

TAG -> 1!

ACA:1!

ATG:1!

CAA:2!

GCA:1!

TGA:1!

TTA:3!

ACT:1!

AGG:1!

CCT:1!

GGC:1!

TTT:1!

AAC:4!

ACC:1!

CTT:1!

GAA:1!

TAG:1!

Map, Shuffle & Reduce 

All Run in Parallel 

shuffle 



Junior High Dance 



Slave 5 

Slave 4 

Slave 3 

 Hadoop Architecture 

Slave 2 

Slave 1 

Master Desktop 

•! Hadoop Distributed File System (HDFS) 

–! Data files partitioned into large chunks (64MB),  replicated on multiple nodes 

–! NameNode stores metadata information (block locations, directory structure) 

•! Master node (JobTracker) schedules and monitors work on slaves 

–! Computation moves to the data, rack-aware scheduling 

•! Hadoop MapReduce system won the 2009 GreySort Challenge 

–! Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks 



Hadoop on AWS 

AWS 

EC2 - 5 

EC2 - 4 

EC2 - 3 

EC2 - 2 

EC2 - 1 

EC2 -  

Master 

Desktop 
S3 

•! If you don’t have 1000s of machines, you can rent them from Amazon 
•! After machines spool up, ssh to master as if it was a local machine. 

•! Use S3 for persistent data storage, with very fast interconnect to EC2. 
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Read 1, Chromosome 1, 12345-12365!

Read 2, Chromosome 1, 12350-12370!

CloudBurst 

1.! Map: Catalog K-mers 
•! Emit k-mers in the genome and reads 
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 Evaluate mapping 7M reads to human chromosome 22 with at most 4 
mismatches on a local and 2 EC2 clusters. 
–! 24-core High-CPU Medium Instance EC2 cluster is faster than 24-core local cluster. 

–! 96-core cluster is 3.5x faster than the 24-core, and100x faster than serial RMAP. 
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Running Time on Local vs EC2 Clusters 
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Number of Cores 

Running Time on EC2  
High-CPU Medium Instance Cluster  

EC2 Evaluation 

CloudBurst: Highly Sensitive Read Mapping with MapReduce. 
Schatz MC (2009) Bioinformatics. 25:1363-1369  
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Crossbow 

•! Align billions of reads and find SNPs 

–! Reuse software components: Hadoop Streaming 

!"#$%%?-HK(D?@-+,-').(/-)*(+0(1%.)-,,?-H2

•! Map: Bowtie (Langmead et al., 2009) 

–! Find best alignment for each read 

–! Emit (chromosome region, alignment) 

•! Reduce: SOAPsnp (Li et al., 2009) 

–! Scan alignments for divergent columns 

–! Accounts for sequencing error, known SNPs 

•! Shuffle: Hadoop 

–! Group and sort alignments by region 

9
2

9
2



Performance in Amazon EC2 

Asian Individual Genome 

Data Loading 3.3 B reads 106.5 GB $10.65 

Data Transfer 1h :15m 40 cores $3.40 

Setup 0h : 15m 320 cores $13.94 

Alignment 1h : 30m 320 cores $41.82 

Variant Calling 1h : 00m 320 cores $27.88 

End-to-end 4h : 00m $97.69 

Analyze an entire human genome for ~$100 in an afternoon. 
Accuracy validated at >99% 

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology.  
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Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•! Genome assembly as finding an Eulerian tour of the de Bruijn graph 

–! Human genome: >3B nodes, >10B edges 

•! The new short read assemblers require tremendous computation 
–! Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 

–! ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 

–! SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



(ATG:1)!

(TGA:1)!
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map reduce 

K-mer Counting 
•! Application developers focus on 2 (+1 internal) functions 

–! Map: input ! key:value pairs 

–! Shuffle: Group together pairs with same key 

–! Reduce: key, value-lists ! output 

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> 1!

ATG -> 1!

CAA -> 1,1!

GCA -> 1!

TGA -> 1!

TTA -> 1,1,1!

ACT -> 1!

AGG -> 1!

CCT -> 1!

GGC -> 1!

TTT -> 1!

AAC -> 1,1,1,1!

ACC -> 1!

CTT -> 1,1!

GAA -> 1,1!

TAG -> 1!

ACA:1!

ATG:1!

CAA:2!

GCA:1!

TGA:1!

TTA:3!

ACT:1!

AGG:1!

CCT:1!

GGC:1!

TTT:1!

AAC:4!

ACC:1!

CTT:1!

GAA:1!

TAG:1!

Map, Shuffle & Reduce 

All Run in Parallel 

shuffle 



(ATG:A)!

(TGA:A)!

(GAA:C)!

(AAC:C)!

(ACC:T)!

(CCT:T)!

(CTT:A)!

(GAA:C)!

(AAC:A)!

(ACA:A)!

(CAA:C)!

(AAC:T)!

(ACT:T)!

(CTT:A)!

(TTT:A)!

(TTA:G)!

(TAG:G)!

(AGG:C)!

(GGC:A)!

(GCA:A)!

(CAA:C)!

map reduce 

Graph Construction 
•! Application developers focus on 2 (+1 internal) functions 

–! Map: input ! key:value pairs 

–! Shuffle: Group together pairs with same key 

–! Reduce: key, value-lists ! output 

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> A!

ATG -> A!

CAA -> C,C!

GCA -> A!

TGA -> A!

TTA -> G!

ACT -> T!

AGG -> C!

CCT -> T!

GGC -> A!

TTT -> A!

AAC -> C,A,T!

ACC -> T!

CTT -> A,A!

GAA -> C,C!

TAG -> G!

ACA:CAA!

ATG:TGA!

CAA:AAC!

GCA:CAG!

TGA:GAA!

TTA:TAG!

ACT:CTT!

AGG:GGC!

CCT:CTT!

GGC:GCA!

TTT:TTA!

AAC:ACC,ACA,ACT!

ACC:CCT!

CTT:TTA!

GAA:AAC!

TAG:AGG!

Map, Shuffle & Reduce 

All Run in Parallel 

shuffle 



Graph Compression 

•! After construction, many edges are unambiguous 
–! Merge together compressible nodes 

–! Graph physically distributed over hundreds of computers 



High School Dance 



Warmup Exercise 

•! Who here was born closest to April 22? 

–!You can only compare to 1 other person at a time 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Initial Graph: 42 nodes 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 1: 26 nodes (38% savings) 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 15 nodes (64% savings) 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 8 nodes (81% savings) 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 3: 6 nodes (86% savings) 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

 Performance 
–! Compress all chains in log(S) rounds 

–! If <1024 nodes to compress then assign 
them all to the same reducer 

–! Save last 10 rounds 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 4: 5 nodes (88% savings) 



Node Types 

(Chaisson, 2009) 

 Isolated nodes (10%) 

 Tips (46%) 

 Bubbles/Non-branch (9%) 

 Dead Ends (.2%) 

 Half Branch (25%) 

 Full Branch (10%) 



Error Correction 

–! Errors at end of read 

•! Trim off ‘dead-end’ tips 

–! Errors in middle of read 

•! Pop Bubbles 

–! Chimeric Edges 

•! Clip short, low coverage nodes 

Parallel Network Motif Finding 

B* A C 

B 

B’ 

A C 

B A 

D 

B A 

B 

B’ 

A 

C 

B A 

D C 

x 



Repeat Analysis 

•! X-cut 

–! Annotate edges with spanning reads 

–! Separate fully spanned nodes 
•! (Pevzner et al., 2001) 

•! Scaffolding 
–! If mate pairs are available search for a 

path consistent with mate distance 

–! Use message passing to iteratively 
collect linked and neighboring nodes 

C 

B A 

R 

D C 

B A R 

D R 

C 

A D R 

B 

A C D R B R R 

Parallel Frontier Search 



Contrail 

Scalable Genome Assembly with MapReduce 

•! Genome: E. coli K12 MG1655, 4.6Mbp 

•! Input: 20.8M 36bp reads, 200bp insert (~150x coverage) 

•! Preprocessor: Quality-Aware Error Correction 

http://contrail-bio.sourceforge.net 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

Cloud Surfing Error Correction Compressed Initial 

N 

Max 
N50 

5.1 M 

27 bp 
27 bp 

245,131 

1,079 bp 
156 bp 

2,769 

70,725 bp 
15,023 bp 

1,909 

90,088 bp 
20,062 bp 

300 

149,006 bp 
54,807 bp 

Resolve Repeats 



E. coli Assembly Quality 

Assembler Contigs ! 100bp N50 (bp) Incorrect contigs  

Contrail PE 300 54,807 4 

Contrail SE 529 20,062 0 

SOAPdenovo PE 182 89,000 5 

ABySS PE 233 45,362 13 

Velvet PE 286 54,459 9 

EULER-SR PE 216 57,497 26 

SSAKE SE 931 11,450 38  

Edena SE 680 16,430 6 

Incorrect contigs:  Align at < 95% identity or < 95% of their length 

It was the best of times, it 

 of times, it was the 

it was the age of 

it was the worst of times, it 





Contrail 

De Novo Assembly of the Human Genome 

•! Genome: African male NA18507 (SRA000271, Bentley et al., 2008) 

•! Input: 3.5B 36bp reads, 210bp insert (~40x coverage) 

Chimeric Edges Compressed Initial 

N 

Max 
N50 

>7 B 

27 bp 
27 bp 

>1 B 

303 bp 
< 100 bp 

5.0 M 

14,007 bp 
650 bp 

4.2 M 

20,594 bp 
923 bp 

In progress 

Pop Bubbles 

B

B’ 

A

Clip Tips 

B

B’ 

A C 

BA

DC

x

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

http://contrail-bio.sourceforge.net 



 “NextGen sequencing has completely outrun the 
ability of good bioinformatics people to keep up 

with the data and use it well… We need a 
MASSIVE effort in the development of tools for 

“normal” biologists to make better use of 
massive sequence databases.” 

    Jonathan Eisen – JGI Users Meeting – 3/28/09 

•! Surviving the data deluge means computing in parallel 

–! Good solutions for “easy” parallel problems, but 
gets fundamentally more difficult as dependencies 
get deeper 

•! Emerging technologies are a great start, but we need 
continued research integrating computational biology 
with research in HPC 

–! A word of caution: new technologies are new 

Summary 
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