
High Performance Computing for
DNA Sequence Alignment and Assembly

Michael C. Schatz

May 18, 2010
Stone Ridge Technology

Outline

1.! Sequence Analysis by Analogy

2.! DNA Sequencing and Genomics

3.! High Performance Sequence Analysis

1.! Read Mapping

2.! Mapping & Genotyping

3.! Genome Assembly

Shredded Book Reconstruction

•! Dickens accidentally shreds the first printing of A Tale of Two Cities

–! Text printed on 5 long spools

•! How can he reconstruct the text?

–! 5 copies x 138, 656 words / 5 words per fragment = 138k fragments

–! The short fragments from every copy are mixed together

–! Some fragments are identical

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

Greedy Reconstruction

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

of times, it was the

times, it was the age

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

it was the worst of

was the worst of times,

worst of times, it was

of times, it was the

times, it was the age

it was the age of

was the age of wisdom,

the age of wisdom, it

age of wisdom, it was

of wisdom, it was the

wisdom, it was the age

it was the age of

was the age of foolishness,

the worst of times, it

 The repeated sequence make the correct
reconstruction ambiguous

•! It was the best of times, it was the [worst/age]

 Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

•! Dk = (V,E)
•! V = All length-k subfragments (k < l)
•! E = Directed edges between consecutive subfragments

•! Nodes overlap by k-1 words

•! Locally constructed graph reveals the global sequence structure
•! Overlaps between sequences implicitly computed

It was the best was the best of It was the best of

Original Fragment Directed Edge

de Bruijn, 1946

Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

the age of foolishness

It was the best

best of times, it

was the best of

the best of times,

of times, it was

times, it was the

it was the worst

was the worst of

worst of times, it

the worst of times,

it was the age

was the age of

the age of wisdom,

age of wisdom, it

of wisdom, it was

wisdom, it was the

A unique Eulerian tour of
the graph reconstructs the

original text

If a unique tour does not
exist, try to simplify the

graph as much as possible

de Bruijn Graph Assembly

the age of foolishness

It was the best of times, it

 of times, it was the

it was the worst of times, it

it was the age of

the age of wisdom, it was the A unique Eulerian tour of
the graph reconstructs the

original text

If a unique tour does not
exist, try to simplify the

graph as much as possible

Shredded Book Mapping

•! Dickens searches for misprints in the shredded copies

–! Find the best match for each fragment

–! Has to account for random and systematic variations

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of of times, it was the times, it was the wurst age of wissdom, it was the age of folishness, …

It was the bist wurst of times, it was of tines, it was the the age of wisdom, it was the age of folishness,

It was the the wurst of times, it best of times, it was was the ige of wisdom, it was the age of folishness, …

It was was the wurst of times, the best of times, it it was the age of wisdom, it was the age of folishness, …

It it was the wurst of was the best of times, times, it was the age of wisdom, it was the age of folishness, …

Confirmed

Mismatch

Confirmed

Deletion

Genomics and Evolution

 Your genome influences (almost) all aspects of your life

–! Anatomy & Physiology: 10 fingers & 10 toes, organs, neurons

–! Diseases: Sickle Cell Anemia, Down Syndrome, Cancer

–! Psychological: Intelligence, Personality, Bad Driving

–! Genome as a recipe, not a blueprint

 Like Dickens, we can only sequence small fragments of the genome

DNA Sequencing

ATCTGATAAGTCCCAGGACTTCAGT

GCAAGGCAAACCCGAGCCCAGTTT

TCCAGTTCTAGAGTTTCACATGATC

GGAGTTAGTAAAAGTCCACATTGAG

 Genome of an organism encodes the genetic information
in long sequence of 4 DNA nucleotides: ACGT

–! Bacteria: ~3 million bp

–! Humans: ~3 billion bp

 Current DNA sequencing machines can generate 1-2
Gbp of sequence per day, in millions of short reads

–! Per-base error rate estimated at 1-2% (Simpson et al, 2009)

–! Sequences originate from random positions of the genome

–! Base calling transforms raw images into DNA sequences

 Recent studies of entire human genomes analyzed 3.3B
(Wang, et al., 2008) & 4.0B (Bentley, et al., 2008) 36bp
reads

–! ~100 GB of compressed sequence data

The Evolution of DNA Sequencing
Year Genome Technology Cost

2001 Venter et al. Sanger (ABI) $300,000,000

2007 Levy et al. Sanger (ABI) $10,000,000

2008 Wheeler et al. Roche (454) $2,000,000

2008 Ley et al. Illumina $1,000,000

2008 Bentley et al. Illumina $250,000

2009 Pushkarev et al. Helicos $48,000

2009 Drmanac et al. Complete Genomics $4,400

(Pushkarev et al., 2009)

Critical Computational Challenges: Alignment and Assembly of Huge Datasets

Why HPC?
•! Moore’s Law is valid in 2010

–! But CPU speed is flat

–! Vendors adopting parallel
solutions instead

•! Parallel Environments

–! Many cores, including GPUs

–! Many computers

–! Many disks

•! Why parallel

–! Need results faster

–! Doesn’t fit on one machine

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software
Herb Sutter, http://www.gotw.ca/publications/concurrency-ddj.htm

•! MapReduce is the parallel distributed framework invented by
Google for large data computations.

–! Data and computations are spread over thousands of computers, processing
petabytes of data each day (Dean and Ghemawat, 2004)

–! Indexing the Internet, PageRank, Machine Learning, etc…

–! Hadoop is the leading open source implementation

Hadoop MapReduce

•! Benefits
–! Scalable, Efficient, Reliable
–! Easy to Program
–! Runs on commodity computers

•! Challenges
–! Redesigning / Retooling applications

–! Not Condor, Not MPI
–! Everything in MapReduce

(ATG:1)!

(TGA:1)!

(GAA:1)!

(AAC:1)!

(ACC:1)!

(CCT:1)!

(CTT:1)!

(TTA:1)!

(GAA:1)!

(AAC:1)!

(ACA:1)!

(CAA:1)!

(AAC:1)!

(ACT:1)!

(CTT:1)!

(TTA:1)!

(TTT:1)!

(TTA:1)!

(TAG:1)!

(AGG:1)!

(GGC:1)!

(GCA:1)!

(CAA:1)!

(AAC:1)!

map reduce

K-mer Counting
•! Application developers focus on 2 (+1 internal) functions

–! Map: input ! key:value pairs

–! Shuffle: Group together pairs with same key

–! Reduce: key, value-lists ! output

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> 1!

ATG -> 1!

CAA -> 1,1!

GCA -> 1!

TGA -> 1!

TTA -> 1,1,1!

ACT -> 1!

AGG -> 1!

CCT -> 1!

GGC -> 1!

TTT -> 1!

AAC -> 1,1,1,1!

ACC -> 1!

CTT -> 1,1!

GAA -> 1,1!

TAG -> 1!

ACA:1!

ATG:1!

CAA:2!

GCA:1!

TGA:1!

TTA:3!

ACT:1!

AGG:1!

CCT:1!

GGC:1!

TTT:1!

AAC:4!

ACC:1!

CTT:1!

GAA:1!

TAG:1!

Map, Shuffle & Reduce

All Run in Parallel

shuffle

Slave 5

Slave 4

Slave 3

 Hadoop Architecture

Slave 2

Slave 1

Master Desktop

•! Hadoop Distributed File System (HDFS)

–! Data files partitioned into large chunks (64MB), replicated on multiple nodes

–! NameNode stores metadata information (block locations, directory structure)

•! Master node (JobTracker) schedules and monitors work on slaves

–! Computation moves to the data, rack-aware scheduling

•! Hadoop MapReduce system won the 2009 GreySort Challenge

–! Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks

Short Read Mapping

•! Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read

–! Find where the read most likely originated

–! Fundamental computation for many assays

•! Genotyping RNA-Seq Methyl-Seq

•! Structural Variations Chip-Seq Hi-C-Seq

•! Desperate need for scalable solutions

–! Single human requires >1,000 CPU hours / genome

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…

GCGCCCTA
GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA
AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATATG
CTATATGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TATGCGCCC

GGTATAC…
CGGTATAC

Identify variants

Reference

Subject

Sequence Alignment with
Dynamic Programming

A-CACACTA!

AGCACAC-A!

 D(i,j) = min { D(i-1,j) + 1,

 D(i,j-1) + 1,

 D(i-1,j-1) + !(S(i),T(j)) }"

Seed and Extend

•! Highly similar alignments must have
significant exact seeds
–! Use exact alignments to seed search for longer

in-exact alignments
–! Pigeon hole principle: if a read matches

someplace with k differences, one of its k+1
chunks must match exactly

8 2

9

10bp read

1 difference

1

x |s|

7

9

8

7

6

6

5

5

9

8

7

6

5

4

3

10

5
•! BLAST (Altschul et al., 1990)

–! Catalog fixed length substrings (k-mers) as seeds
–! Use Smith-Waterman dynamic programming

algorithm to extend seeds into longer in-exact
alignments

–! Arguably the most widely used tool in
computational biology

•! 10s of thousands of citations

•! Genomes are too large for dynamic programming

–!Use an index to find candidate seeds to extend

Indexing

BLAST, MAQ, ZOOM,

RMAP, CloudBurst

Fixed length,

irregular access

Hash Table

(>15 GB)

MUMmer, MUMmerGPU

Variable length,
Pointer Jumping

Suffix Tree

 (>51 GB)

Vmatch, PacBio Aligner

Variable length,
Binary Search

Suffix Array

(>15 GB)

Burrows-Wheeler

(3 GB)

Bowtie, BWA

Variable length,
Range Queries

$BANANA

A$BANAN

ANA$BAN

ANANA$B

BANANA$

NA$BANA

NANA$BA

!"#$%%&'()*+),-./+0(1-(),&23(,42152.6

7)8956&!,(8(-(826:6

;29*6:6

;29*6<6

89#6 -!)=26

>6

>6

,2*)&26

Read 1, Chromosome 1, 12345-12365!

Read 2, Chromosome 1, 12350-12370!

CloudBurst

CloudBurst: Highly Sensitive Read Mapping with MapReduce.
Schatz MC (2009) Bioinformatics. 25:1363-1369

•! Leverage Hadoop to build a distributed inverted index of k-mers
and find end-to-end alignments

•! 100x speedup over RMAP with 96 cores at Amazon EC2

MUMmerGPU

High-throughput sequence alignment using Graphics Processing Units.
Schatz, MC*, Trapnell, C*, Delcher, AL, Varshney, A. (2007) BMC Bioinformatics 8:474.

Optimizing data intensive GPGPU computations for DNA sequence alignment.
Trapnell C*, Schatz MC*. (2009) Parallel Computing. 35(8-9):429-440.

1

2 3

4

!"#$%%8)882,4#)1-(),&23(,42152.6

•! Map many reads simultaneously on a GPU

•! Index reference using a suffix tree

•! Find matches by walking the tree

•! Find coordinates with depth first search

•! Performance on nVidia GTX 8800

•! Match kernel was ~10x faster than CPU

•! Print kernel was ~4x faster than CPU

•! End-to-end runtime ~4x faster than CPU

Burrows-Wheeler Transform

•! Reversible permutation of the characters in a text

•! BWT(T) is the index for T

Burrows-Wheeler

Matrix BWM(T)

BWT(T) T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Rank: 2

Rank: 2

LF Property

implicitly encodes
Suffix Array

Bowtie: Ultrafast Short Read Aligner

•! Quality-aware backtracking of BWT to rapidly find
the best alignment(s) for each read

•! BWT precomputed once, easy to distribute, and
analyze in RAM

–! 3 GB for whole human genome

•! Support for paired-end alignment, quality guarantees,
etc…
–! Langmead B, Trapnell C, Pop M, Salzberg SL. (2009) Ultrafast and

memory-efficient alignment of short DNA sequences to the human

genome. Genome Biology 10:R25.

Bowtie algorithm

Query:

A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:

A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:

A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:

A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:

A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:

A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:

A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:

A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:

A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Comparison to MAQ & SOAP

Performance and sensitivity of Bowtie v0.9.6, SOAP v1.10, Maq v0.6.6 when aligning 8.84M reads from the 1000 Genome
project [NCBI Short Read Archive:SRR001115] trimmed to 35 base pairs. The “soap.contig” version of the SOAP binary was

used. SOAP could not be run on the PC because SOAP’s memory footprint exceeds the PC’s physical memory. For the SOAP
comparison, Bowtie was invoked with “-v 2” to mimic SOAP’s default matching policy (which allows up to 2 mismatches in the

alignment and disregards quality values). For the Maq comparison Bowtie is run with its default policy, which mimics Maq’s
default policy of allowing up to 2 mismatches in the first 28 bases and enforcing an overall limit of 70 on the sum of the quality
values at all mismatched positions. To make Bowtie’s memory footprint more comparable to Maq’s, Bowtie is invoked with the

“-z” option in all experiments to ensure only the forward or mirror index is resident in memory at one time.

Crossbow

•! Align billions of reads and find SNPs

–! Reuse software components: Hadoop Streaming

!"#$%%+(?@2/+0(1-(),&23(,42152.%&,(--+(?6

•! Map: Bowtie (Langmead et al., 2009)

–! Find best alignment for each read

–! Emit (chromosome region, alignment)

•! Reduce: SOAPsnp (Li et al., 2009)

–! Scan alignments for divergent columns

–! Accounts for sequencing error, known SNPs

•! Shuffle: Hadoop

–! Group and sort alignments by region

>
6

>
6

Performance in Amazon EC2

Asian Individual Genome

Data Loading 3.3 B reads 106.5 GB $10.65

Data Transfer 1h :15m 40 cores $3.40

Setup 0h : 15m 320 cores $13.94

Alignment 1h : 30m 320 cores $41.82

Variant Calling 1h : 00m 320 cores $27.88

End-to-end 4h : 00m $97.69

Analyze an entire human genome for ~$100 in an afternoon.
Accuracy validated at >99%

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology.

!"#$%%+(?@2/+0(1-(),&23(,42152.%&,(--+(?6

Hardware Accelerated Mapping

Complexity Index Size Access Style

Dynamic
Programming

Very Simple N/A Regular Grid

Seed Hash Table Simple Moderate Random Access

Suffix Tree Moderate Large Pointer Jumping

Suffix Array Moderate Moderate Binary Search

BWT Difficult Small Range Queries

Short Read Assembly

AAGA
ACTT
ACTC
ACTG
AGAG
CCGA
CGAC
CTCC
CTGG
CTTT
…

de Bruijn Graph Potential Genomes

AAGACTCCGACTGGGACTTT

•! Genome assembly as finding an Eulerian tour of the de Bruijn graph

–! Human genome: >3B nodes, >10B edges

•! The new short read assemblers require tremendous computation
–! Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM

–! ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours

–! SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

Reads

AAGACTGGGACTCCGACTTT

Contrail

De Novo Assembly of the Human Genome

•! Genome: African male NA18507 (SRA000271, Bentley et al., 2008)

•! Input: 3.5B 36bp reads, 210bp insert (~40x coverage)

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

http://contrail-bio.sourceforge.net

Error Correction!Compressed!Initial!

N!
Max!
N50!

>7 B!
27 bp!
27 bp!

>1 B!
303 bp!

<100 bp!

4.2 M!
20,594 bp!

995 bp!

4.1 M!
20,594 bp!

1050 bp!

Resolve Repeats!

 “NextGen sequencing has completely outrun the
ability of good bioinformatics people to keep up

with the data and use it well… We need a
MASSIVE effort in the development of tools for

“normal” biologists to make better use of
massive sequence databases.”

 Jonathan Eisen – JGI Users Meeting – 3/28/09

•! Surviving the data deluge means computing in parallel

–! Good solutions for “easy” parallel problems, but
gets fundamentally more difficult as dependencies
get deeper

•! Emerging technologies are a great start, but we need
continued research integrating computational biology
with research in HPC

–! A word of caution: new technologies are new

Summary

Acknowledgements

Advisor

Steven Salzberg

UMD Faculty

Mihai Pop, Art Delcher, Amitabh Varshney,
Carl Kingsford, Ben Shneiderman,
 James Yorke, Jimmy Lin, Dan Sommer

CBCB Students

Adam Phillippy, Cole Trapnell,
 Saket Navlakha, Ben Langmead,
 James White, David Kelley

Thank You!

http://www.cbcb.umd.edu/~mschatz
@mike_schatz

Burrows-Wheeler Transform

•! Recreating T from BWT(T)

–!Start in the first row and apply LF repeatedly,
accumulating predecessors along the way

Original T

BWT/Bowtie slides from Ben Langmead

Exact Matching

•! LFc(r, c) does the same thing as LF(r) but it
ignores r’s actual final character and
“pretends” it’s c:

Rank: 2 Rank: 2

L

F

LFc(5, g) = 8

g

Exact Matching

•! Start with a range, (top, bot) encompassing all
rows and repeatedly apply LFc:

top = LFc(top, qc); bot = LFc(bot, qc)

qc = the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

Checkpointing in FM Index

•! LF(i, qc) must determine the rank of qc in row i

•! Naïve way: count occurrences of qc in all previous rows

–! Linear in length of text – too slow

Scanned by naïve

rank calculation

BWM(T)

Checkpointing in FM Index

•! Solution (due to F&M): pre-calculate
cumulative counts for A/C/G/T up to
periodic checkpoints in BWT

•! LF(i, qc) is now constant time

(if space between checkpoints is considered constant)

Rank: 309

Rank: 242

BWM(T)

Rows to Reference Positions

•! Once we know a row contains a legal alignment, how do
we determine its position in the reference?

Where am I?

Rows to Reference Positions

•! Naïve solution 1: Use UNPERMUTE to walk back to the
beginning of the text; number of steps = offset of hit

•! Linear in length of text – too slow

2 steps, so hit offset = 2

•! Naïve solution 2: Keep pre-calculated offsets (the suffix
array) in memory and do lookups

•! Suffix array is ~12 GB for human – too big

Rows to Reference Positions

hit offset = 2

•! Hybrid solution (due to F&M): Pre-calculate offsets for
some “marked” rows; use UNPERMUTE to walk from the
row of interest to next marked row to the left

•! Bowtie marks every 32nd row by default (configurable)

Rows to Reference Positions

1 step

offset = 1

Hit offset = 1 + 1 = 2

FM Index is Small

•! Entire FM Index on DNA reference consists of:

–! BWT (same size as T)

–! Checkpoints (~15% size of T)

–! SA sample (~50% size of T)

•! Total: ~1.65x the size of T

>45x >15x >15x ~1.65x

Assuming 2-bit-per-base encoding and
no compression, as in Bowtie

Assuming a 16-byte checkpoint every
448 characters, as in Bowtie

Assuming Bowtie defaults for suffix-
array sampling rate, etc

