Design Patterns for Efficient Graph Algorithms in MapReduce

Jimmy Lin and Michael Schatz University of Maryland

Tuesday, June 29, 2010

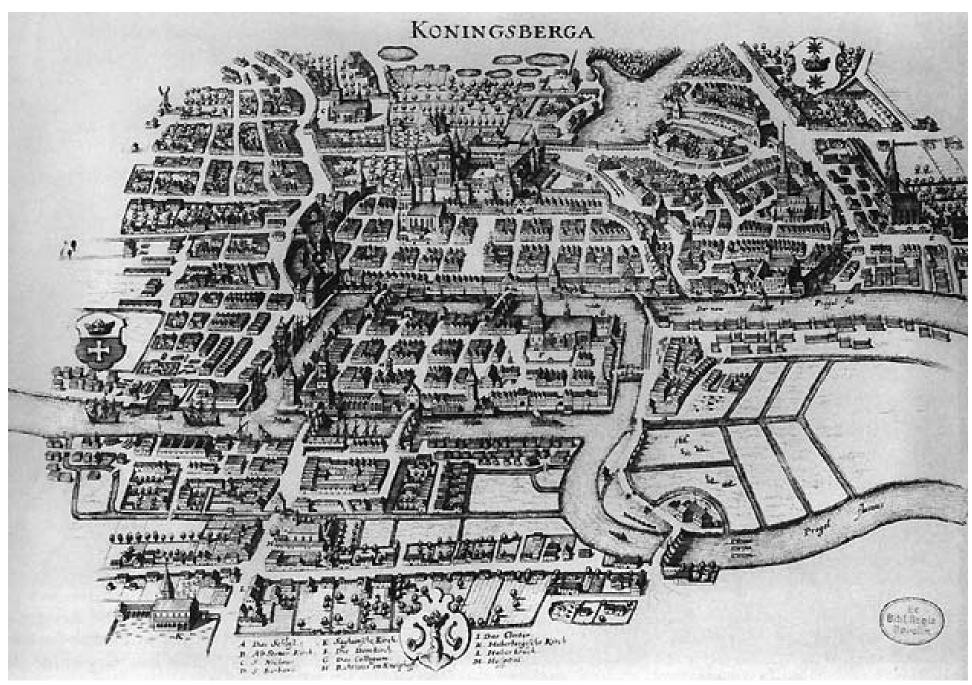
Talk Outline

- Graph algorithms
- Graph algorithms in MapReduce
- Making it efficient
- Experimental results

Punch line: per-iteration running time -69% on 1.4b link webgraph!

What's a graph?

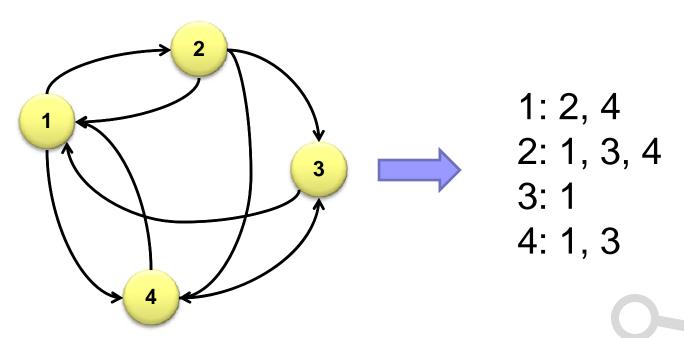
- \circ G = (V, E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information
- Graphs are everywhere:
 - E.g., hyperlink structure of the web, interstate highway system, social networks, etc.
- Graph problems are everywhere:
 - E.g., random walks, shortest paths, MST, max flow, bipartite matching, clustering, etc.



Source: Wikipedia (Königsberg)

Graph Representation

- \circ G = (V, E)
- Typically represented as adjacency lists:
 - Each node is associated with its neighbors (via outgoing edges)



"Message Passing" Graph Algorithms

- Large class of iterative algorithms on sparse, directed graphs
- At each iteration:
 - Computations at each vertex
 - Partial results ("messages") passed (usually) along directed edges
 - Computations at each vertex: messages aggregate to alter state
- Iterate until convergence

A Few Examples...

- Parallel breadth-first search (SSSP)
 - Messages are distances from source
 - Each node emits current distance + 1
 - Aggregation = MIN

Boring!

PageRank

- Messages are partial PageRank mass
- Each node evenly distributes mass to neighbors
- Aggregation = SUM

Still boring!

- DNA Sequence assembly
 - Michael Schatz's dissertation

PageRank in a nutshell....

Random surfer model:

- User starts at a random Web page
- User randomly clicks on links, surfing from page to page
- With some probability, user randomly jumps around

PageRank...

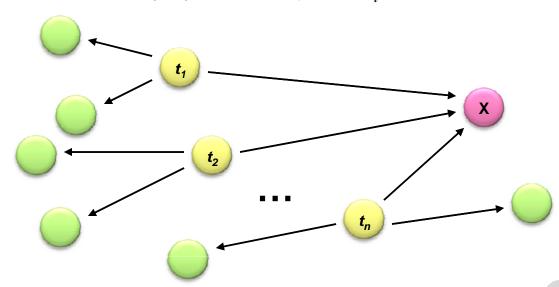
- Characterizes the amount of time spent on any given page
- Mathematically, a probability distribution over pages

PageRank: Defined

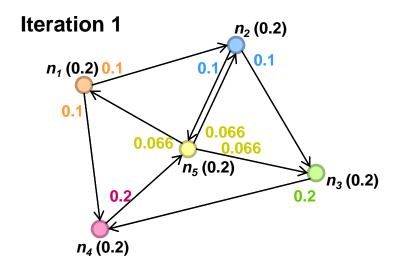
Given page x with inlinks $t_1 ... t_n$, where

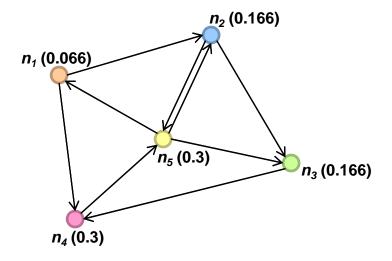
- *C*(*t*) is the out-degree of *t*
- α is probability of random jump
- N is the total number of nodes in the graph

$$PR(x) = \alpha \left(\frac{1}{N}\right) + (1 - \alpha) \sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

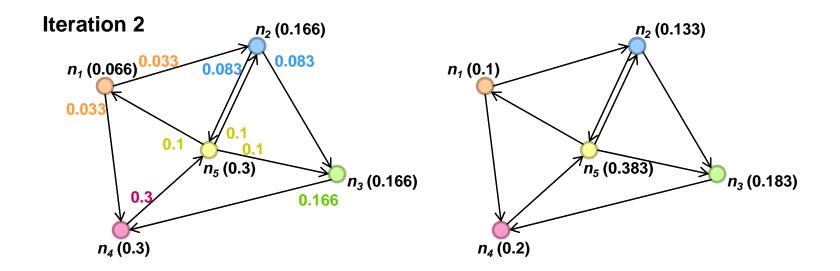


Sample PageRank Iteration (1)

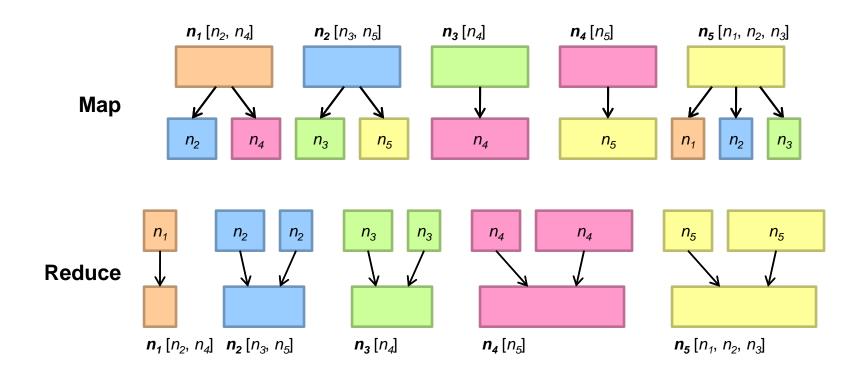




Sample PageRank Iteration (2)



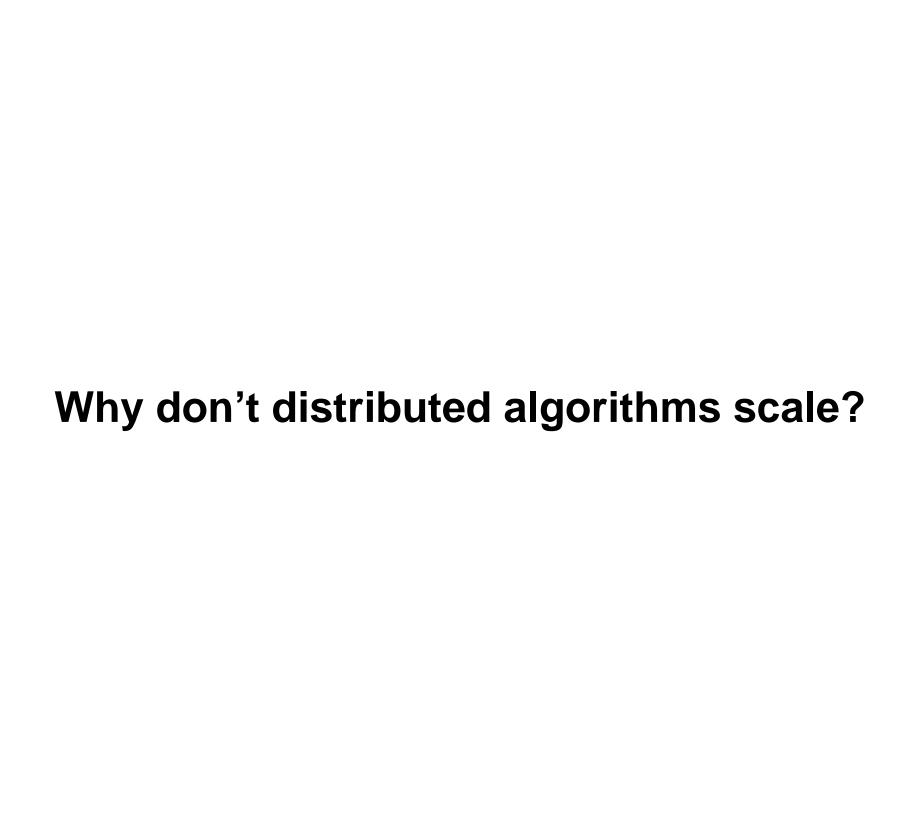
PageRank in MapReduce

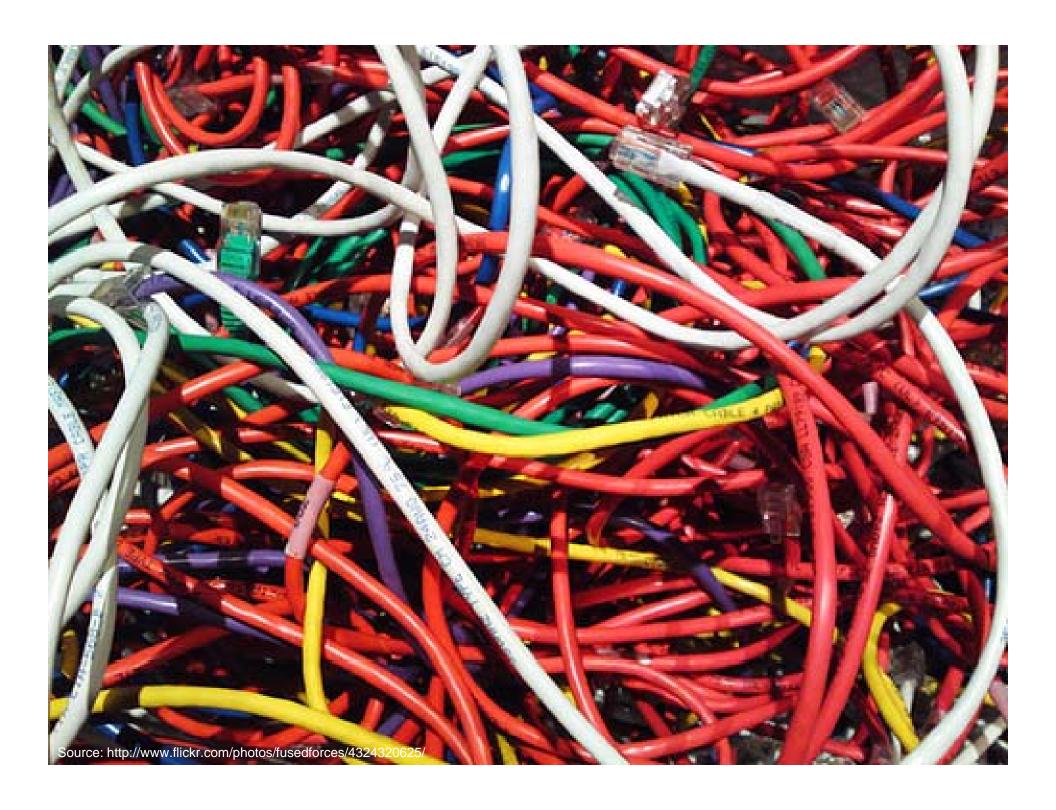


PageRank Pseudo-Code

```
1: class Mapper.
       method Map(nid n, node N)
          p \leftarrow N \operatorname{PageRank}/|N.\operatorname{AdjacencyList}|
3:
        Emit(nid n, N)
                                                            ▶ Pass along graph structure
4:
          for all modeld m \in N. Adjacency List do
              Emit(nid m, p)
                                                    ▶ Pass PageRank mass to neighbors
6:
1: class Reducer.
       method Reduce(nid m, [p_1, p_2, \ldots])
2:
          M \leftarrow \emptyset
3:
          for all p \in \text{counts}[p_1, p_2, \ldots] do
                                                              ▷ Recover graph structure
7:
                                              s \leftarrow s + p
8:
          M.PageRank \leftarrow s
9:
          Emit(nid m, node M)
10:
```

YAHOO! PRESENTS



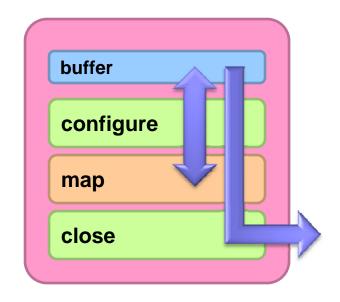


Three Design Patterns

- In-mapper combining: efficient local aggregation
- Smarter partitioning: create more opportunities
- Schimmy: avoid shuffling the graph

In-Mapper Combining

- Use combiners
 - Perform local aggregation on map output
 - Downside: intermediate data is still materialized
- Better: in-mapper combining
 - Preserve state across multiple map calls, aggregate messages in buffer, emit buffer contents at end
 - Downside: requires memory management



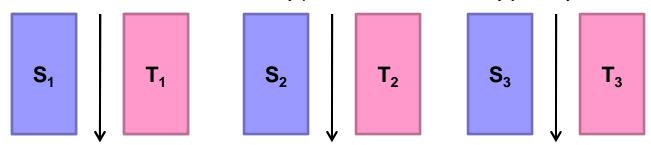
Better Partitioning

- Default: hash partitioning
 - Randomly assign nodes to partitions
- Observation: many graphs exhibit local structure
 - E.g., communities in social networks
 - Better partitioning creates more opportunities for local aggregation
- Unfortunately... partitioning is hard!
 - Sometimes, chick-and-egg
 - But in some domains (e.g., webgraphs) take advantage of cheap heuristics
 - For webgraphs: range partition on domain-sorted URLs

Schimmy Design Pattern

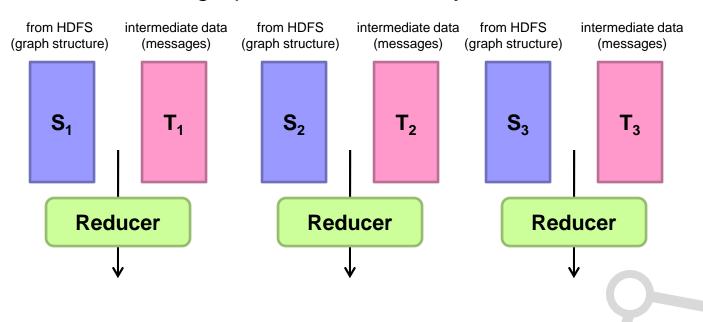
- Basic implementation contains two dataflows:
 - Messages (actual computations)
 - Graph structure ("bookkeeping")
- Schimmy: separate the two data flows, shuffle only the messages
 - Basic idea: merge join between graph structure and messages

both relations consistently partitioned and sorted by join key



Do the Schimmy!

- Schimmy = reduce side parallel merge join between graph structure and messages
 - Consistent partitioning between input and intermediate data
 - Mappers emit only messages (actual computation)
 - Reducers read graph structure directly from HDFS



Experiments

Cluster setup:

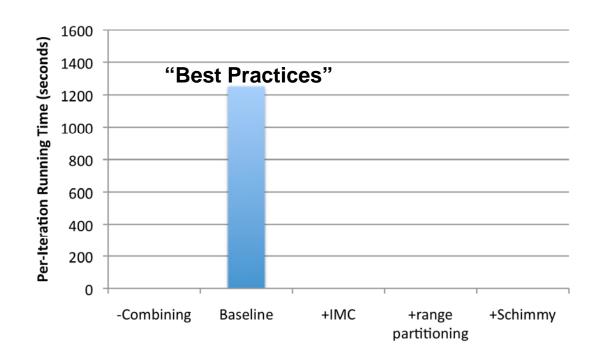
- 10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
- Hadoop 0.20.0 on RHELS 5.3

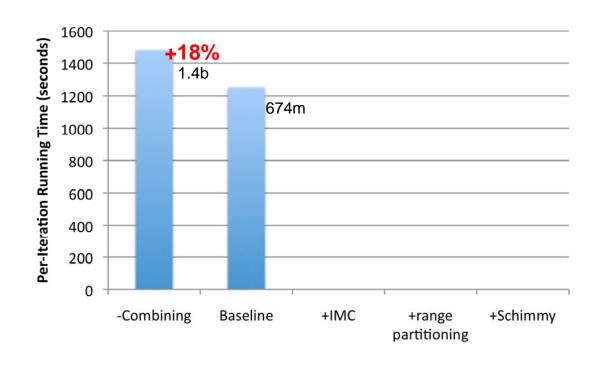
O Dataset:

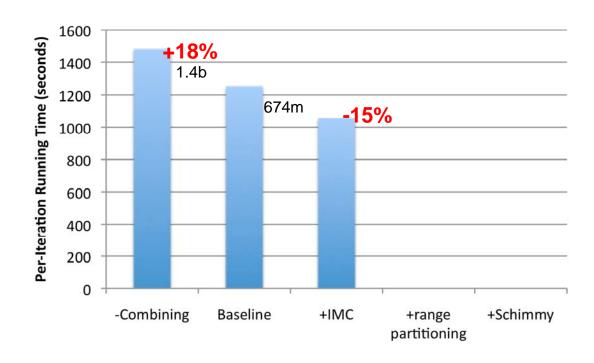
- First English segment of ClueWeb09 collection
- 50.2m web pages (1.53 TB uncompressed, 247 GB compressed)
- Extracted webgraph: 1.4 billion links, 7.0 GB
- Dataset arranged in crawl order

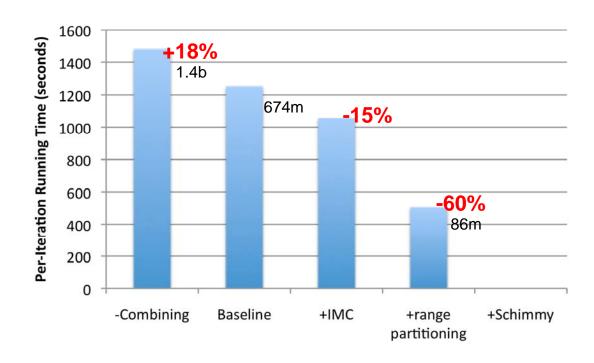
Setup:

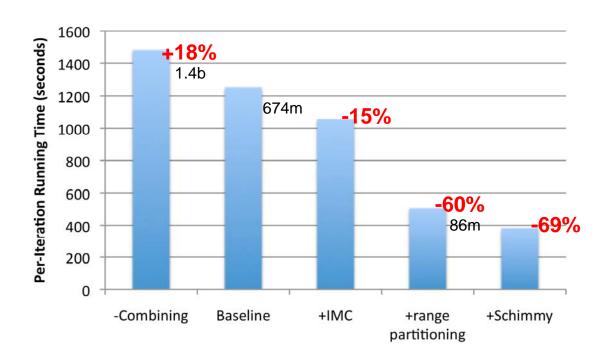
- Measured per-iteration running time (5 iterations)
- 100 partitions







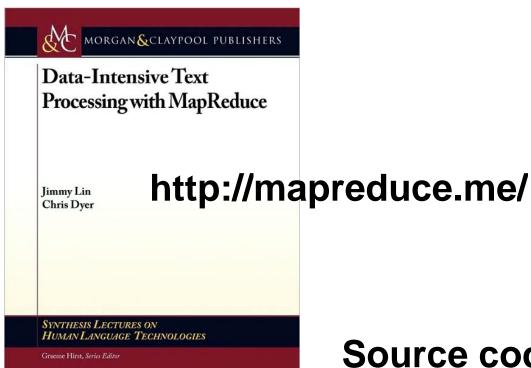




Take-Away Messages

- Lots of interesting graph problems!
 - Social network analysis
 - Bioinformatics
- Reducing intermediate data is key
 - Local aggregation
 - Better partitioning
 - Less bookkeeping

Complete details in Jimmy Lin and Michael Schatz. **Design Patterns for Efficient Graph Algorithms in MapReduce.** *Proceedings of the 2010 Workshop on Mining and Learning with Graphs Workshop (MLG-2010)*, July 2010, Washington, D.C.



Source code available in Cloud⁹ http://cloud9lib.org/

