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Unsolved Questions in Biology 
 

•  What is your genome sequence?  
•  How does your genome compare to my genome? 

•  Where are the genes and how active are they? 
•  How does gene activity change during development? 
•  How does splicing change during development? 

•  How does methylation change during development? 
•  How does chromatin change during development? 
•  How does is your genome folded in the cell? 
•  Where do proteins bind and regulate genes? 

•  What virus and microbes are living inside you? 
•  How do your mutations relate to disease? 
•  What drugs should we give you? 

•  Plus hundreds and hundreds more 
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Cost per Genome 

 
http://www.genome.gov/sequencingcosts/ 



Sequencing Centers 

Next Generation Genomics: World Map of High-throughput Sequencers 
http://omicsmaps.com 

Worldwide capacity exceeds 15 Pbp/year 
25 Pbp/year as of Jan 15 



 
How much is a petabyte? 

 Unit Size 
Byte 1 
Kilobyte 1,000 
Megabyte 1,000,000 
Gigabyte 1,000,000,000 
Terabyte 1,000,000,000,000 
Petabyte 1,000,000,000,000,000 

*Technically a kilobyte is 210 and a petabyte is 250 



How much is a petabyte? 

100 GB / Genome 
4.7GB / DVD 

~20 DVDs / Genome 
 
X 
 

10,000 Genomes 
 
= 
 
 

1PB Data 
200,000 DVDs 

787 feet of DVDs 
~1/6 of a mile tall 

500 2 TB drives 
$500k 



DNA Data Tsunami 

Current world-wide sequencing capacity is growing at ~3x per year! 
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DNA Data Tsunami 

Current world-wide sequencing capacity is growing at ~3x per year! 
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How much is a zettabyte? 

 
Unit Size 
Byte 1 
Kilobyte 1,000 
Megabyte 1,000,000 
Gigabyte 1,000,000,000 
Terabyte 1,000,000,000,000 
Petabyte 1,000,000,000,000,000 
Exabyte 1,000,000,000,000,000,000 
Zettabyte 1,000,000,000,000,000,000,000 



How much is a zettabyte? 

100 GB / Genome 
4.7GB / DVD 

~20 DVDs / Genome 
 
X 
 

10,000,000,000 Genomes 
 
= 
 
 

1ZB Data 
200,000,000,000 DVDs 

150,000 miles of DVDs 
~ ½ distance to moon 

Both currently ~100Pb 
But growing exponentially 



Sequencing Centers 

Next Generation Genomics: World Map of High-throughput Sequencers 
http://omicsmaps.com 



Sequencing Centers 

Next Generation Genomics: World Map of High-throughput Sequencers 
http://omicsmaps.com 



Biological Sensor Network 

The rise of a digital immune system 
Schatz, MC, Phillippy, AM (2012) GigaScience 1:4 

(@ewanbirney) (@latimes) 



Data Production & Collection 
Expect massive growth to sequencing and other 
biological sensor data over the next 10 years 
•  Exascale biology is certain, zettascale on the horizon 
•  Compression helps, but need to aggressively throw out data 
•  Requires careful consideration of the “preciousness” of the 

sample 
 
Major data producers concentrated in hospitals, 
universities, agricultural companies, research 
institutes 
•  Major efforts in human health and disease, agriculture, 

bioenergy 
 
But also widely distributed mobile sensors 
•  Schools, offices, sports arenas, transportations centers, farms & 

food distribution centers 
•  Monitoring and surveillance, as ubiquitous as weather stations 
•  The rise of a digital immune system? 
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Sequencing Centers 



Informatics Centers 

The cloud? 

The DNA Data Deluge	

Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013	




Informatics Centers 

The DNA Data Deluge	

Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013	




Parallel Algorithm Spectrum 
Embarrassingly Parallel 

Cluster Computing 
Each item is Independent 

Loosely Coupled 

MapReduce 
Independent-Sync-Independent 

Tightly Coupled 

Graphs & MD simulations 
Constant Sync 



MUMmerGPU 

High-throughput sequence alignment using Graphics Processing Units. 
Schatz, MC, Trapnell, C, Delcher, AL, Varshney, A. (2007) BMC Bioinformatics 8:474. 

1 

2 3 

4 

h"p://mummergpu.sourceforge.net	  

•  Index reference using a suffix tree 
•  Each suffix represented by path from root 
•  Reorder tree along space filling curve 

•  Map many reads simultaneously on GPU 
•  Find matches by walking the tree 
•  Find coordinates with depth first search 

•  Performance on nVidia GTX 8800 
•  Match kernel was ~10x faster than CPU 
•  Search kernel was ~4x faster than CPU 
•  End-to-end runtime ~4x faster than CPU 

•  Cores are only part 
of the solution.  

•  Need storage, fast IO 
•  Locality is king 



Crossbow 

•  Align billions of reads and find SNPs 
–  Reuse software components: Hadoop Streaming 
–  Mapping with Bowtie, SNP calling with SOAPsnp 

•  4 hour end-to-end runtime including upload 
–  Costs $85; Todays costs <$30 

h"p://bow5e-‐bio.sourceforge.net/crossbow	  

…
	   …
	  

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134  

•  Very compelling example of cloud 
computing in genomics 

•  Transfer takes time, but totally 
depends on institution 

•  Need more applications! 



Pan-Genome Alignment & Assembly 

Rapid pan genome analysis with augmented suffix trees 
Marcus, S, Schatz, MC (2014) In preparation 

Pan-genome colored de Bruijn graph	

•  Encodes all the sequence 

relationships between the genomes	

•  How well conserved is a given 

sequence?  	

•  What are the pan-genome 

network properties?	


Time to start considering problems 
for which N complete genomes is the 
input to study the “pan-genome”	

•  Available today for many microbial 

species, near future for higher 
eukaryotes	


A	  
B	  
C	  
D	  



Compute & Algorithmic Challenges 
Expect to see many dozens of major informatics 
centers that consolidate regional / topical information 
•  Clouds for Cancer,  Autism, Heart Disease, etc 
•  Plus many smaller warehouses down to individuals 
•  Move the code to the data  
 
Parallel hardware and algorithms are required 
•  Expect to see >1000 cores in a single computer 
•  Compute & IO needs to be considered together 
•  Rewriting efficient parallel software is complex and 

expensive 
 
Applications will shift from individuals to populations 
•  Read mapping & assembly fade out 
•  Population analysis and time series analysis fade in 
•  Need for network analysis, probabilistic techniques 



Sensors & Metadata 
 Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies 

IO Systems 
Hardrives, Networking, Databases, Compression, LIMS 

Compute Systems 
CPU, GPU, Distributed, Clouds, Workflows 

Scalable Algorithms 
Streaming, Sampling, Indexing, Parallel 

Machine Learning 
classification, modeling, 

visualization & data Integration 

Results 
Domain  

Knowledge 

Quantitative Biology Technologies 



Exome sequencing of the SSC 
Last year saw 3 reports of >593 families from 
the Simons Simplex Collection 
•  Parents plus one child with autism and one 

non-autistic sibling 
•  All attempted to find “gene killing mutations” 

specific to the autistic children to find genes 
associated with the disease 

•  Iossifov (343) and O’Roak (50) used GATK, 
Sanders (200) didn’t attempt to identify indels 

De novo gene disruptions in children on the autism spectrum 
Iossifov et al. (2012) Neuron. 74:2 285-299 
 
De novo mutations revealed by whole-exome sequencing are strongly associated with autism 
Sanders et al. (2012) Nature. 485, 237–241. 
 
Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations 
O’Roak et al. (2012) Nature. 485, 246–250. 



Scalpel: Haplotype Microassembly 
DNA sequence micro-assembly pipeline for accurate 
detection and validation of de novo mutations (SNPs, 
indels) within exome-capture data.  

Features 

1.  Combine mapping and assembly 

2.  Exhaustive search of haplotypes 

3.  De novo mutations 
NRXN1 de novo SNP  

(auSSC12501 chr2:50724605) 

Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly 
Narzisi, G, O’Rawe, J, Iossifov, I, Lee, Y, Wang, Z, Wu, Y, Lyon, G, Wigler, M, Schatz, MC (2014) Under review. 



Scalpel Pipeline 

deletion insertion 

Extract reads mapping within the exon 
including (1) well-mapped reads, (2) soft-
clipped reads, and (3) anchored pairs 

Decompose reads into overlapping    
k-mers and construct de Bruijn graph 
from the reads   

Find end-to-end haplotype paths 
spanning the region 

Align assembled sequences to 
reference to detect mutations 



Experimental Analysis & Validation 

Selected one deep coverage exome 
for deep analysis 
•  Individual was diagnosed with 

ADHD  
•  80% of the target at >20x coverage 
•  Evaluated with Scalpel, SOAPindel, 

and GATK Haplotype Caller 
 
 
1000 indels selected for validation 
•  200 Scalpel 
•  200 GATK Haplotype Caller 
•  200 SOAPindel 
•  200 within the intersection 
•  200 long indels (>30bp) 
 
 



Experimental Analysis & Validation 

Selected one deep coverage exome 
for deep analysis 
•  Individual was diagnosed with 

ADHD (See Gholson for details) 
•  80% of the target at >20x coverage 
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77% PPV 

50% PPV 23% PPV 

99% PPV 



Revised Analysis of the SSC 

Constructed database of >1M transmitted and de novo indels 
Many new gene candidates identified, population analysis underway 



De novo mutation discovery and validation 

Concept:  Identify mutations not present 
in parents. 

 
Challenge: Sequencing errors in the child 

or low coverage in parents 
lead to false positive de novos 

Reference:  ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
!

Father: ! !...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
Mother: ! !...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
Sibling:  !...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
Proband(1): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...!
Proband(2):!...TCAAATCCTTTTAAT****AAGAGCTGACA...!
!   4bp heterozygous deletion at chr15:93524061 CHD2 



•  In 593 family quads so far, we see significant enrichment in de novo 
likely gene killers in the autistic kids 
–  Overall rate basically 1:1 
–  2:1 enrichment in nonsense mutations 
–  2:1 enrichment in frameshift indels 
–  4:1 enrichment in splice-site mutations 
–  Most de novo originate in the paternal line in an age-dependent 

manner (56:18 of the mutations that we could determine) 

•  Observe strong overlap with the 842 genes known to be 
associated with fragile X protein FMPR 
–  Related to neuron development and synaptic plasticity 
–  Also strong overlap with chromatin remodelers 

De novo Genetics of Autism 

Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly 
Narzisi, G, O’Rawe, J, Iossifov, I, Lee, Y, Wang, Z, Wu, Y, Lyon, G, Wigler, M, Schatz, MC (2014) Under review. 



The potential for big data? 



The fallacy of big data? 



The risks of big data? 



Learning and Translation 
Tremendous power from data aggregation	

•  Observe the dynamics of biological systems	

•  Breakthroughs in medicine and biology of profound 

significance	


Be mindful of the risks	

•  The potential for over-fitting grows with the complexity of 

the data, statistical significance is a statement about the 
sample size	


•  Reproducible workflows, APIs are a must	

•  Caution is prudent for personal data	

	

The foundations of biology will continue to be 
observation, experimentation, and interpretation	

•  Technology will continue to push the frontier	

•  Feedback loop from the results of one project into 

experimental design for the next	




Who is a Data Scientist? 

http://en.wikipedia.org/wiki/Data_science 
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