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Unsolved Questions in

What is your genome sequence!
How does your genome compare to my genome!

Where are the genes and how active are they!?
How does gene activity change during development?
How does splicing change during development!?

How does methylation change during development?
How does chromatin change during development?
How does is your genome folded in the cell?
Where do proteins bind and regulate genes!?

What virus and microbes are living inside you!?
How do your mutations relate to disease!?

What drugs should we give you!?

Plus hundreds and hundreds more




Quantitative Biology Technologies

Results
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Cost per Genome
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Sequencing Centers

Map | Satellite

* Worldwide capacity exceeds 15 Pbp/year

c
Oce

25 Pbpl/year as of Jan 15
Ze':?:;:i" E

Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com



How much is a petabyte?

Unit__ _ Size
Byte I

Kilobyte 1,000
Megabyte 1,000,000
Gigabyte 1,000,000,000
Terabyte 1,000,000,000,000
Petabyte 1,000,000,000,000,000

*Technically a kilobyte is 210 and a petabyte is 2°°



How much is a petabyte?
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100 GB / Genome
4.7GB / DVD

~20 DVDs / Genome
X
10,000 Genomes

500 2 TB drives

787 feet of DVDs
~1/6 of a mile tall

1PB Data
200,000 DVDs

$500k



DNA Data Tsunami

Current world-wide sequencing capacity is growing at ~3x per year!

1400 - ~1 exabyte |
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Petabytes per year



DNA Data Tsunami

Current world-wide sequencing capacity is growing at ~3x per year!

900 -

800 - ~1 zettabyte
700 - by 2024

600 -
500 -
400 -

300 © | ~1 exabyte |
200 - | by2018 =

100 - '

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Exabytes per year



How much is a zettabyte!

Unit | Size
Byte I
Kilobyte 1,000
Megabyte 1,000,000
Gigabyte 1,000,000,000
Terabyte 1,000,000,000,000
Petabyte 1,000,000,000,000,000
Exabyte 1,000,000,000,000,000,000

Zettabyte 1,000,000,000,000,000,000,000



How much is a zettabyte!

(1 Tube

100 GB / Genome
4.7GB / DVD
~20 DVDs / Genome

X

10,000,000,000 Genomes

1ZB Data 150,000 miles of DVDs Both currently ~100Pb
200,000,000,000 DVDs ~ Y2 distance to moon But growing exponentially



Sequencing Centers

Map | Satelite

Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com



Sequencing Centers
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Biological Sensor Network

(@ewanbirney) (@latimes)

The rise of a digital immune system
Schatz, MC, Phillippy,AM (2012) GigaScience |:4



Data Production & Collection

Expect massive growth to sequencing and other

biological sensor data over the next 10 years

* Exascale biology is certain, zettascale on the horizon

* Compression helps, but need to aggressively throw out data

* Requires careful consideration of the “preciousness” of the
sample

Major data producers concentrated in hospitals,

universities, agricultural companies, research

institutes

*  Major efforts in human health and disease, agriculture,
bioenergy

But also widely distributed mobile sensors
* Schools, offices, sports arenas, transportations centers, farms &

food distribution centers
* Monitoring and surveillance, as ubiquitous as weather stations

* The rise of a digital immune system?
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Sequencing Centers

Map = Satellite
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Informatics Centers
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The DNA Data Deluge
Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013



Informatics Centers
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The DNA Data Deluge
Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013



Parallel Algorithm Spectrum

Embarrassingly Parallel

Cluster Computing
Each item is Independent

}" v
p
/

Loosely Coupled

e,
W LN

MapReduce

Independent-Sync-Independent

Tightly Coupled

Graphs & MD simulations

Constant Sync




MUMmerGPU

http://mummergpu.sourceforge.net

* Index reference using a suffix tree
* Each suffix represented by path from root
* Reorder tree along space filling curve Q/D

* Map many reads simultaneously on GPU
* Find matches by walking the tree

* Find coordinates with depth first search

* Performance on nVidia GTX 8800

* Match kernel was ~10x faster than CPU « Cores are only part
e Search kernel was ~4x faster than CPU of the solution.
e End-to-end runtime ~4x faster than CPU * Need storage, fast 1O

* Locality is king

High-throughput sequence alignment using Graphics Processing Units.
Schatz, MC, Trapnell, C, Delcher, AL, Varshney, A. (2007) BMC Bioinformatics 8:474.



Crossbow

http://bowtie-bio.sourceforge.net/crossbow

* Align billions of reads and find SNPs

— Reuse software components: Hadoop Streaming — —

— Mapping with Bowtie, SNP calling with SOAPsnp l l'

* 4 hour end-to-end runtime including upload g’ upg”

— Costs $85;Todays costs <$30 m m m m

* Very compelling example of cloud
computing in genomics U

* Transfer takes time, but totally i i
depends on institution

* Need more applications! = SHE SN

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R 134



Pan-Genome Alignment & Assembly

A | - I
B
C | | I
D | I [
Time to start considering problems Pan-genome colored de Bruijn graph
for which N complete genomes is the * Encodes all the sequence
input to study the “pan-genome” relationships between the genomes
* Available today for many microbial * How well conserved is a given
species, near future for higher sequence!?
eukaryotes *  What are the pan-genome
network properties?

Rapid pan genome analysis with augmented suffix trees
Marcus, S, Schatz, MC (2014) In preparation



Compute & Algorithmic Challenges

Expect to see many dozens of major informatics 3 m
centers that consolidate regional / topical information
* Clouds for Cancer, Autism, Heart Disease, etc

* Plus many smaller warehouses down to individuals

* Move the code to the data

Parallel hardware and algorithms are required

* Expect to see >1000 cores in a single computer

 Compute & IO needs to be considered together

* Rewriting efficient parallel software is complex and
expensive

Applications will shift from individuals to populations
* Read mapping & assembly fade out

* Population analysis and time series analysis fade in

* Need for network analysis, probabilistic techniques
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Exome sequencing of the SSC

100 Last year saw 3 reports of >593 families from

the Simons Simplex Collection
* Parents plus one child with autism and one
non-autistic sibling

* All attempted to find “gene killing mutations”
specific to the autistic children to find genes
associated with the disease

Percent of the target

ZO-Q% —ijocijntgovlerage at 20X - ° |OSSifOV (343) and O’Roak (50) used GATK,

® ndividual coverage at . . . .
4 © Joint coverage at 40X (CS) Sanders (200) didn’t attempt to identify indels
o + Joint coverage at40)§ (WU)

1 343

Family Rank

De novo gene disruptions in children on the autism spectrum
lossifov et al. (2012) Neuron. 74:2 285-299

De novo mutations revealed by whole-exome sequencing are strongly associated with autism
Sanders et al. (2012) Nature. 485,237-241.

Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations
O’Roak et al. (2012) Nature. 485, 246-250.



Scalpel: Haplotype Microassembly

DNA sequence micro-assembly pipeline for accurate
detection and validation of de novo mutations (SNPs,
indels) within exome-capture data.

Features

I. Combine mapping and assembly

2. Exhaustive search of haplotypes V/VL/

3. De novo mutations

NRXN1 de novo SNP
(auSSC12501 chr2:50724605)

Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly
Narzisi, G, O’Rawe, J, lossifoy, |, Lee,Y,Wang, Z,Wu,Y, Lyon, G,Wigler, M, Schatz, MC (2014) Under review.



Scalpel Pipeline

=3

clipped reads, and (3) anchored pairs 3

&

Decompose reads into overlapping
k-mers and construct de Bruijn graph
from the reads

<

Extract reads mapping within the exon A== 2\
including (1) well-mapped reads, (2) soft- >\ 2 < >\ >

<
spanning the region

Find end-to-end haplotype paths 4/&

A
. 7\ A4
Align assembled sequences to VA v

reference to detect mutations

deletion insertion




Experimental Analysis & Validation

Selected one deep coverage exome HapCaller _-<aiiiiiiing
for deep analysis ’
* Individual was diagnosed with

ADHD / =
* 80% of the target at >20x coverage (10.3%)
* Evaluated with Scalpel, SOAPindel,

and GATK Haplotype Caller \

SOAPindel

1000 indels selected for validation . (5% /
* 200 Scalpel S :

« 200 GATK Haplotype Caller \ 204
« 200 SOAPindel - '
* 200 within the intersection

* 200 long indels (>30bp) e g

Scalpel



Experimental Analysis & Validation

Selected one deep coverage exome HapCaller _.cciiiiiiine
for deep analysis ’
* Individual was diagnosed with

ADHD (See Gholson for details) 4
*  80% of the target at >20x coverage | |23% PPV
 Evaluated with Scalpel, SOAPindel, '.‘

and GATK Haplotype Caller \

SOAPindel

/

1000 indels selected for validation . 8%
* 200 Scalpel T '

* 200 GATK Haplotype Caller \
« 200 SOAPindel 77% PPV 2
« 200 within the intersection )

* 200 long indels (>30bp) e g

Scalpel



Frequency

Revised Analysis of the SSC

10000 —

] all
frame-shift —
intergenic

intron
1000 — no-frame-shift
] splice-site
UTR —
100
10 3 '
<AL "
1 T — T | T
-100 -80 -60 -40 -20 0 20 40 60 80

INDEL size

Constructed database of >|M transmitted and de novo indels
Many new gene candidates identified, population analysis underway

100



De novo mutation discovery and validation

Concept: Identify mutations not present
in parents. @

Challenge: Sequencing errors in the child

or low coverage in parents P S

lead to false positive de novos

Reference: .. TCAAATCCTTTTAATAAAGAAGAGCTGACA. ..

Father: .. . TCAAATCCTTTTAATAAAGAAGAGCTGACA. ..
Mother: .. . TCAAATCCTTTTAATAAAGAAGAGCTGACA. ..
Sibling: .+ .TCAAATCCTTTTAATAAAGAAGAGCTGACA. ..
Proband(1l): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Proband(2): ...TCAAATCCTTTTAAT****AAGAGCTGACA...

4bp heterozygous deletion at chr15:93524061 CHD?2



De novo Genetics of Autism

* In 593 family quads so far, we see significant enrichment in de novo
likely gene killers in the autistic kids

— Opverall rate basically I:1

— 2:1 enrichment in nonsense mutations
— 2:1 enrichment in frameshift indels

— 4:| enrichment in splice-site mutations

— Most de novo originate in the paternal line in an age-dependent
manner (56:18 of the mutations that we could determine)

* Observe strong overlap with the 842 genes known to be
associated with fragile X protein FMPR

— Related to neuron development and synaptic plasticity

— Also strong overlap with chromatin remodelers

Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly
Narzisi, G, O’Rawe, |, lossifov, |, Lee,Y,Wang, Z,WU,Y, Lyon, G,Wigler, M, Schatz, MC (2014) Under review.



The potential for big data?

nature

Vol 457|19 February 2009|doi:10.1038/nature07634

LETTERS

Detecting i
query data

Jeremy Ginsberg', Mat

Seasonal influenza epidemi
causing tens of millions of
500,000 deaths worldwide e{
enza, a new strain of influ
immunity exists and that

mission could result in a

Early detection of disease
response, can reduce the i
influenza®. One way to i
health-seeking behaviour i

2 T T L] T T

-

ILl percentage
O N A OO O O

2004 2005 2006 2007 2008
Year
Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against CDC-reported ILI percentages (red), including points over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region to which the model was fit, whereas a
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals. The region comprises New York, New

Jersey and Pennsylvania.

Brilliant’

s submitted
y counts for
hited States.
lery in each
tained. Each
h query in a
s submitted
rry fraction

te probabil-

engines, which are submitted by millions of users around the
world each day. Here we present a method of analysing large

numhere af Cancle ecearch aneriec tn track inflnenza lilkke illnece

ity that a random physician visit in a particular region is related to an
ILL this is equivalent to the percentage of ILI-related physician visits.

A cinole evnlanatarv variahle wac 11eed- the nrahahilitv that a randam




The fallacy of big data?

BIG DATA

The Parable of Google Flu:
Traps in Big Data Analysis

David Lazee,'** Ryan Keanedy,"** Gary King.’ Alessandro Vespigaani®*?

Trends (GFT) made keadlines

bext not for 2 reason that Google
executives or the creators of the flu
tracking system would have hoped.
Nature reported that GFT was pre-
dicting maore than double the pro-
portion of doctor visits for influ-
enzz-like iliness (ILI) than the Cen-
ters for Disease Contral and Preven-
tion (CDC), which bases its esti.
mates on surveillance repocts from
lzhomatocies across the United States
(4, 2). This happened despite the fact
that GFT was built to predict CDC
reports. Given that GFT is often keld
up as an exemplary use of big data
(3, ), what lessons can we draw
from this error?

The problems we identify are
not limited to GFT. Research on
whether search or social media can
predict x has become common-
place (5-7) and is often put in sharp contrast
with traditional metheds and hypotheses.
Although these studies have shown the
valoe of these data, we are far from a place
where they can supplant more traditional
methods or theeries (8). We explore two
issues that contributed to GFTS mistakes
big data hubris and algorithm dynamics
ard offer Jessons for moving forward in the
hig dats ape.

I: February 2013, Google Flu

' Big Data Hubris

| “Big datz hubris” is the often implicit
| assumption that big data are 2 substitute
} for, rather than 2 supplement to, traditional
| datz collection and analysis. Elsewhere, we
| have asserted that there are enormous scien-

tific possidilities in big data (9-11). How-
ever, quantity of cdata does not mean that
ane can ignore foundational issues of mea-

i surement and construct validity and reli-

ability and df perndencies among dz
The care chy denge is that most big ¢
have recen’é popular attention are
output of {astruments desigred to |
valid andreliable data amenable fo
tific ama psis.

The' initial version of GFT wa!
ticulally problematic marriage of
smali‘data. Essentially, the methd
was p find the best masches among
T;?s:arch terms to fit 1152 data
(/3 The odés of finding search ter
mai k the propensity of the flubutas
turg ly unrelated, and so do not pre
faty re, were quite high. GFT dewt
in £ ct, report weeding out seasona
terr s unrelated to the fu but strong]
late | to the CDC éata, such 25 those

Large erroes in flu prediction were largely
avoidable, which offers Lessons for the use
of big data

Big Data Hubris

“Big data hubris” is the often implicit
assumption that big data are a substitute
for, rather than a supplement to, traditional
data collection and analysis. Elsewhere, we
have asserted that there are enormous scien-
tific possibilities in big data (9—117). How-
ever, quantity of data does not mean that
one can ignore foundational issues of mea-
surement and construct validity and reli-

ingigh school basketball (L3
hav| been a warning 2 :
ove ftting the number of cases—a
stas dandifaniCern in data analysis. This ad

e e —
02115, LSA. "Harward Keasedy Schoad, Fanvas? Usivers'ty,
Corbricge, WA CZ 135, USA "lasttate for Quantitative Soctal
Science, Harwast Uriwensity, Careleicge, NA 02133, USA
Urteersty of Nosston, Mowston, TX 77204, USA, *Labasatory
for the Modelrg of Bolegical asd Secetedmical Syseess,
Northeastern Uriwessity L MA 2115, USA “rotute
for Schentiic Intercharge Fouscation, Turin, Italy. *Core

spoading auther. Eonal d Luer@oessdy

wawsciercemag.org SCIENCE VOL 343

hod of throwing out peculiar search
terms failed when GFT completely missed
the nonseasonal 2009 influenza A-HINI
pandemic (2, /4). In short, the initial ver-
sion of GFT was part flu detector, part
winter detector. GFT engineers updated
the zlgorithm in 2009, and this moedel has

bimiag GF1 with oiber near-real-time

health data (2, 20). For example, by com-
bining GFT and lagged CDC data, as well
as dynamically recalibrating GFT, we can
substantially improve on the performance
of GFT or the CDC zlone (see the chart).
This 3 no substitute for angoing evaluation
and improvement, but, by incorporating this
information, GFT could have Jargely bealed
itself and would have likely remained out of
the headlines.

14 MARCH 2014




The risks of big data?

Predicting Social Security numbers from public data

Alessandro Acquisti’ and Ralph Gross

Carnegie Mellon University, Pittsburgh, PA 15213

Communicated by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, May 5, 2009 (received for review January 18, 2009)

Information about an individual’s place and date of birth can be
exploited to predict his or her Social Security number (SSN). Using
only publicly available information, we observed a correlation
between individuals’ SSNs and their birth data and found that for

number (SN). The SSA openly provides information about the
process through which ANs, GNs, and SNs are issued (1). ANs
are currently assigned based on the zipcode of the mailing
address provided in the SSN application form [RM00201.030]

younger cohorts the correlation allows statistical inference of
private SSNs. The inferences are made possible by the public
availability of the Social Security Administration’s Death Master

(1). Low-population states and certain U.S. possessions are
allocated 1 AN each, whereas other states are allocated sets of
AN (for instance. an individual anplvine from a zincode within

File and the widespread accessibility of persond
multiple sources, such as data brokers or pro|
working sites. Our results highlight the unexy
sequences of the complex interactions am(
sources in modern information economies an|
risks associated with information revelation in|

identity theft | online social networks | privacy | stati

I n modern information economies, sensitive p
plain sight amid transactions that rely on their
their unhindered circulation. Such is the case V|
numbers in the United States: Created as iden
tracking individual earnings (1), they have tul
authentication devices (2), becoming one of thq
tion most often sought by identity thieves. 7|
Administration (SSA), which issues them, has
keep SSNs confidential (3), coordinating with
their public exposure (4).* After embarrassin
sector entities also have attempted to strengthg
their consumers’ and employees’ data (7)." How
have alreadv left the barn: We demonstrate tf

publish on social networking sites (10). Using this method, we
identified with a single attempt the first 5 digits for 44% of DMF
records of deceased individuals born in the U.S. from 1989 to
2003 and the complete SSNs with <1,000 attempts (making
SSNs akin to 3-digit financial PINs) for 8.5% of those records.
Extrapolating to the U.S. living population, this would imply the
potential identification of millions of SSNs for individuals whose
birth data were available. Such findings highlight the hidden
privacy costs of widespread information dissemination and the
complex interactions among multiple data sources in modern
information economies (11), underscoring the role of public
records as breeder documents (12) of more sensitive data.

[ | PRy gy




Learning and Translation

Tremendous power from data aggregation

* Observe the dynamics of biological systems

* Breakthroughs in medicine and biology of profound
significance

Be mindful of the risks

* The potential for over-fitting grows with the complexity of
the data, statistical significance is a statement about the
sample size

* Reproducible workflows, APls are a must

* Caution is prudent for personal data

The foundations of biology will continue to be

observation, experimentation, and interpretation

* Technology will continue to push the frontier

* Feedback loop from the results of one project into
experimental design for the next




Who is a Data Scientist!?

( Data ) ( Scientific 3
. Engineering = | Method

\ /)

)
. >

Data
Science

Hacker ) ( et )
( Mindset / \ | Statistics

( Domain
Expertise

i S Advanced
Visualization n
-~ Computing

http://en.wikipedia.org/wiki/Data_science
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