splitMEM:
graphical pan-genome analysis
with suffix skips

Shoshana Marcus
May 7,2014




Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis



Objective

Input

O 0O ® >

Several complete genomes
Available today for many
microbial species, near future
for higher eukaryotes
Pan-genome: analyze multiple
genomes of species together

Output

Compressed de Bruijn graph
* Graphical representation

depicts how population
variants relate to each other,
especially where they diverge
at branch points

How well conserved is a
sequence!

* What are network properties!?



de Bruijn graph
* Node for each distinct kmer

* Directed edge connects consecutive kmers

* Nodes overlap by k-1 bp

* Self-loops, multi-edges aga TIA
. . GAA GIT
AGAAGTCC = AAG - AGT
ATAAGTTA - -
L ) ATA TCC

Reconstruct original sequence:

Eulerian path through graph, visit each edge once



Compressed de Bruijn graph

* Merge non-branching chains of nodes

* Min. number of nodes that preserve path labels

_ATAA GTCC

<Usually built from uncompressed graph
<>We build directly in O(n log n) time and space



Compresssed de Bruijn graph

9 strains of Bacillus anthracis k=25



Compresssed de Bruijn graph

9 strains of Bacillus anthracis k=1000
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Suffix Tree

I

i [ 1
Rooted, directed ’ & s 15 Y
tree with leaf for -
each suffix. 32
Each internal node,
except the root, gy ,_'
has at least two N . ) cuf.
children. sur,  suf
Each edge is labeled with nonempty substring.
No two siblings begin with the same character.
Path from root to leaf i spells suffix S[i ...n].

Append special character $ to guarantee each suffix
ends at leaf.



/ Constructing Suffix Tree

Naive Algorithm S = banana$
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suf,

suf, banana$s



Constructing Suffix Tree

Naive Algorithm S = banana$

suf,
ananas




Constructing Suffix Tree

i

Naive Algorithm S = banana$

suf,
nanas




Constructing Suffix Tree

Naive Algorithm S = banana$

suf,
anas




Constructing Suffix Tree

Naive Algorithm S = banana$

suf,
anas




Constructing Suffix Tree

Naive Algorithm S = banana$

banana$s suf,

ananas suf,
nanas suf,
suf, anas suf,
. suf s naS SUfS
suf,  suf, ’ asS SUfG
S suf,




Constructing Suffix Tree

O(n) time

Suffix Links

On-line Constructin of Suffix Trees, E. Ukkonen
Algorithmica (1995)



Suffix Tree Query

S = banana$

[ Search for ban }




Suffix Tree Query

S = banana$

[ Search for ban }




Suffix Tree Query

S = banana$

[ Search for ban }




Suffix Tree Query

S = banana$

[ Search for ban }

Found 1
occurrence



Suffix Tree Query

S = banana$

[Search for band}

Not found



Suffix Tree Query

S = banana$

[ Search for an }

Found 2
occurrences



Suffix Tree

<>Many applications in computational biology

<>Linear time construction algorithms

Linear time solutions to
* Genome alignment
* Finding longest common substring
* All-pairs suffix-prefix matching
* Locating all maximal repetitions

* And many more...



MEMs

Maximal Exact Match (MEM)

Exact match within sequence that cannot be
extended left or right without introducing
mismatch.

I I

TGCACGCAA

We are interested
in MEMs length = k




MEMs
Maximal Exact Match (MEM)

Exact match within sequence that cannot be
extended left or right without introducing
mismatch.

MEMs are internal nodes in the suffix tree that
have left-diverse descendants.

(have descendant leaves that represent suffixes
with different characters preceding them)

<Linear-time suffix tree traversal to locate MEMs.



MEMs in Suffix Tree

Possible MEMs: a, ana, na

S = banana$
banana$ suf,

ananas suf,
nanas suf,
suf, anas suf,
. suf s naS SUfS
suf,  suf, ’ asS SUf6
S suf,

MEMs are internal nodes in suffix
tree with left-diverse descendants



MEMs in Suffix Tree
MEMs: a, ana

S = banana$
banana$ suf,

nanas suf,

suf.

. suf
suf,  suf, ’

MEMs are internal nodes in suffix
tree with left-diverse descendants



MEMs in Suffix Tree
MEMs: a, ana

S = banana$

ananas suf,
anas suf.

MEMs are internal nodes in suffix
tree with left-diverse descendants
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Compresssed de Bruijn graph

Input:
AGAAGTCCSATAAGTTA

/

(&

L)
.

\

Types of nodes:

repeatNodes

uniqueNodes

/




splitMEM

Nodes in compressed de Bruijn graph classified as
i. repeatNodes

ii. uniqueNodes

Algorithm:
| Construct set of repeatNodes
2 Sort start positions of repeatNodes

3 Create edges and uniqueNodes to link non-
contiguous repeatNodes



repeatNodes

| Construct set of repeatNodes
|. Build suffix tree of genome
2. Mark internal nodes that are MEMs, length = k

3. Preprocess suffix tree for LMA queries

« )

4. Compute repeatNodes in compressed de Bruijn
graph by decomposing MEMs and extracting
overlapping components, length = k

- )




1 MEM occurs twice

I—

I—

TGCAC..GGCAA <;3

GCA

W/




Overlapping MEMs




Tandem Repeat

—

—
AGGCTTGGCTTGGCTTGGCTA
AGGCTTIGGCTTGGCTTGGCTA ‘*i
AGGCTTGGCTTGGCTTGGCTA
AGGCTTGGCTTGGCTTGGCTA GGCT
AGGCTTGGCTTIGGCTTGGCTA /%%7\\

CTTGG -




repeatNodes

| Construct set of repeatNodes
|. Build suffix tree of genome
2. Mark internal nodes that are MEMs, length = k

3. Preprocess suffix tree for LMA queries

« )

4. Compute repeatNodes in compressed de Bruijn
graph by decomposing MEMs and extracting
overlapping components, length = k

- )




Split MEM to repeatNodes
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Split MEM to repeatNodes

oGy -

- Xyzoaf
v

Find MEM in suffix tree.



Split MEM to repeatNodes

oGy -

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEM to repeatNodes

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEM to repeatNodes

oGy -

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEM to repeatNodes

iy -

Found MEM as ancestor. Decompose.
Remove embedded MEM (suffix links). Find next embedded MEM.



Suffix Skips

<> Reduce O(n?) time to O(n log n) time

Suffix link: quickly navigate to distant part of tree

o Pointer from internal node labeled xS to node S

o Trim 1 character in O(1) time

o Trim c characters in O(c) time

Suffix skip:

o Trim c characters in O(log c) time



Suffix Skips

Genome: babab

Suffix skips 0 | Suffix skips 1 | Suffix skips 2

(dist = 1; suffix links) (dist=2) (dist=4)

Additional Preprocessing:

pointer jumping to rapidly add additional links




splitMEM

* splitMEM software
o C++

o open source http://splitmem.sourceforge.net

* Input modes:
o single genome: fasta file

o pan-genome: multi-fasta file

e Multi k-mer

construct several compressed de Bruijn graphs
without rebuilding suffix tree
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Pan-genome analysis

B.Anthracis and E. coli
Examine graph properties:
* Number nodes, edges, avg. degree
* Node length distribution ;,_\ |
* Genome sharing among nodes
* Distribution of node distances to
core genome
Other properties that can be studied:
* Girth, Diameter, Modularity, Network Motifs, etc.

* Functional enrichment of highly conserved or
genome specific genes.



Pan-genome analysis

S Soo Accr wxa
B antheacs AMCIS wd 15585 SIVERB  CPo s
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Pan-genome analysis

Graphs of main chromosomes
e 9 strains of Bacillus anthracis
e Selection of 9 strains of Escherichia coli

B. anthracis 25 103926 | 38468 .33
B. anthracis 100 41343 54954 .32
B.anthracis 1000 6627 8659 .30
E. coli 25 494783 662081 .33
E. coli 100 230996 308256 .33

E. coli 1000 | 1900 15695 |.31



Pan-genome analysis

B.Anthracis and E. coli

Examine graph properties

* Node length distribution

* Genome sharing among nodes

 Distribution of node distances
to core genome
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Pan-genome analysis

Node Length Histogram for B anthracis (k=100)
meanz=382 «+- 4501 max=451679
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Histogram of Node Lengths

Nede Length Histogram for E. coli (k=100)
mean=194 + 394 max=40333
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Freguency

Pan-genome analysis

Node Length Histogram for B anthf
mean=3482 + 4501 max=45 i { B -

(84

Histogram of Node Lengths

Spike at 2k:

SNPs




Pan-genome analysis

B.Anthracis and E. coli

Examine graph properties

* Node length distribution

* Genome sharing among nodes

 Distribution of node distances
to core genome



Pan-genome analysis

B k=25
0O k=100
B k=1000

J[I [L B. anthracis
in__. . . =
1 2 3 4 5 6 7 8 g

B k=25
0O k=100
B k=1000
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Fraction of nodes with each level of genome sharing



Pan-genome analysis

B.Anthracis and E. coli
Examine graph properties
* Node length distribution

« Genome sharing among nodes ¢

e Distribution of node distances
to core genome



Pan-genome analysis

Graph encodes sequence context of segments.

Core genome: subsequences that occur in at
least 70% of underlying genomes.

@ Branch and

Bound Search
° Y s
b “.’? 30|
v 6Q /,-‘Zf’.
»” 60
/,/""' E Nodes can be further
500 O 50 in terms of hops while
@ closer by base pairs.

o /




Frequorcy
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Pan-genome analysis

Distance to Core Genome for B anthracis (k=100, core®e=l
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Summary

* Identify pan-genome relationships graphically.

* Topological relationship between suffix tree and
compressed de Bruijn graph.

* Direct construction of compressed de Bruijn
graph for single or pan-genome.

* Introduce suffix skips.

* Explore pan-genome graphs of B. anthracis, E. coli.

SplitMEM: Graphical pan-genome analysis with suffix skips.
Marcus, S, Lee, H, Schatz, MC (2014) BioRxiv
http://biorxiv.org/content/early/2014/04/06/003954



Future work

Improve splitMEM software:

* Reduce space using compressed full-text index instead
of suffix tree

* Approximate indexing of strains to form a pan-genome
graph
* Alignment of reads to pan-genome

Biological applications:

* Functional enrichment of core-genome and genome
specific segments

* Expand study to larger collection of microbes and
larger genomes
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Thank You!



Pan-genome analysis

Branch and bound search (like Dijkstra’s shortest path
algorithm) to compute bp distance from each non-core

node to core genome:

Traverse all distinct paths from source until
O a core node is reached @
. . %300 20|
o current node was visited % 0 b

w7

y* 50

o @
.4
Bounded search

once a core node is found, its distance bounds
maximum search distance along other paths

by a shorter path



