splitMEM:
graphical pan-genome analysis
with suffix skips

Shoshana Marcus
May 7,2014

Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis

Objective

Input

O 0O ® >

Several complete genomes
Available today for many
microbial species, near future
for higher eukaryotes
Pan-genome: analyze multiple
genomes of species together

Output

Compressed de Bruijn graph
* Graphical representation

depicts how population
variants relate to each other,
especially where they diverge
at branch points

How well conserved is a
sequence!

* What are network properties!?

de Bruijn graph
* Node for each distinct kmer

* Directed edge connects consecutive kmers

* Nodes overlap by k-1 bp

* Self-loops, multi-edges aga TIA
. . GAA GIT
AGAAGTCC = AAG - AGT
ATAAGTTA - -
L) ATA TCC

Reconstruct original sequence:

Eulerian path through graph, visit each edge once

Compressed de Bruijn graph

* Merge non-branching chains of nodes

* Min. number of nodes that preserve path labels

_ATAA GTCC

<Usually built from uncompressed graph
<>We build directly in O(n log n) time and space

Compresssed de Bruijn graph

9 strains of Bacillus anthracis k=25

Compresssed de Bruijn graph

9 strains of Bacillus anthracis k=1000

Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis

Suffix Tree

I

i [1
Rooted, directed ’ & s 15 Y
tree with leaf for -
each suffix. 32
Each internal node,
except the root, gy ,_'
has at least two N .) cuf.
children. sur, suf
Each edge is labeled with nonempty substring.
No two siblings begin with the same character.
Path from root to leaf i spells suffix S[i ...n].

Append special character $ to guarantee each suffix
ends at leaf.

/ Constructing Suffix Tree

Naive Algorithm S = banana$

o~
Q
N
Q
oY
1%

suf,

suf, banana$s

Constructing Suffix Tree

Naive Algorithm S = banana$

suf,
ananas

Constructing Suffix Tree

i

Naive Algorithm S = banana$

suf,
nanas

Constructing Suffix Tree

Naive Algorithm S = banana$

suf,
anas

Constructing Suffix Tree

Naive Algorithm S = banana$

suf,
anas

Constructing Suffix Tree

Naive Algorithm S = banana$

banana$s suf,

ananas suf,
nanas suf,
suf, anas suf,
. suf s naS SUfS
suf, suf, ’ asS SUfG
S suf,

Constructing Suffix Tree

O(n) time

Suffix Links

On-line Constructin of Suffix Trees, E. Ukkonen
Algorithmica (1995)

Suffix Tree Query

S = banana$

[Search for ban }

Suffix Tree Query

S = banana$

[Search for ban }

Suffix Tree Query

S = banana$

[Search for ban }

Suffix Tree Query

S = banana$

[Search for ban }

Found 1
occurrence

Suffix Tree Query

S = banana$

[Search for band}

Not found

Suffix Tree Query

S = banana$

[Search for an }

Found 2
occurrences

Suffix Tree

<>Many applications in computational biology

<>Linear time construction algorithms

Linear time solutions to
* Genome alignment
* Finding longest common substring
* All-pairs suffix-prefix matching
* Locating all maximal repetitions

* And many more...

MEMs

Maximal Exact Match (MEM)

Exact match within sequence that cannot be
extended left or right without introducing
mismatch.

I I

TGCACGCAA

We are interested
in MEMs length = k

MEMs
Maximal Exact Match (MEM)

Exact match within sequence that cannot be
extended left or right without introducing
mismatch.

MEMs are internal nodes in the suffix tree that
have left-diverse descendants.

(have descendant leaves that represent suffixes
with different characters preceding them)

<Linear-time suffix tree traversal to locate MEMs.

MEMs in Suffix Tree

Possible MEMs: a, ana, na

S = banana$
banana$ suf,

ananas suf,
nanas suf,
suf, anas suf,
. suf s naS SUfS
suf, suf, ’ asS SUf6
S suf,

MEMs are internal nodes in suffix
tree with left-diverse descendants

MEMs in Suffix Tree
MEMs: a, ana

S = banana$
banana$ suf,

nanas suf,

suf.

. suf
suf, suf, ’

MEMs are internal nodes in suffix
tree with left-diverse descendants

MEMs in Suffix Tree
MEMs: a, ana

S = banana$

ananas suf,
anas suf.

MEMs are internal nodes in suffix
tree with left-diverse descendants

Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis

Compresssed de Bruijn graph

Input:
AGAAGTCCSATAAGTTA

/

(&

L)
.

\

Types of nodes:

repeatNodes

uniqueNodes

/

splitMEM

Nodes in compressed de Bruijn graph classified as
i. repeatNodes

ii. uniqueNodes

Algorithm:
| Construct set of repeatNodes
2 Sort start positions of repeatNodes

3 Create edges and uniqueNodes to link non-
contiguous repeatNodes

repeatNodes

| Construct set of repeatNodes
|. Build suffix tree of genome
2. Mark internal nodes that are MEMs, length = k

3. Preprocess suffix tree for LMA queries

«)

4. Compute repeatNodes in compressed de Bruijn
graph by decomposing MEMs and extracting
overlapping components, length = k

-)

1 MEM occurs twice

I—

I—

TGCAC..GGCAA <;3

GCA

W/

Overlapping MEMs

Tandem Repeat

—

—
AGGCTTGGCTTGGCTTGGCTA
AGGCTTIGGCTTGGCTTGGCTA ‘*i
AGGCTTGGCTTGGCTTGGCTA
AGGCTTGGCTTGGCTTGGCTA GGCT
AGGCTTGGCTTIGGCTTGGCTA /%%7\\

CTTGG -

repeatNodes

| Construct set of repeatNodes
|. Build suffix tree of genome
2. Mark internal nodes that are MEMs, length = k

3. Preprocess suffix tree for LMA queries

«)

4. Compute repeatNodes in compressed de Bruijn
graph by decomposing MEMs and extracting
overlapping components, length = k

-)

Split MEM to repeatNodes

 x KRG - y Xy - ulaly -

(o8 i: il
% L

Xyz‘q &
< K »/
/// o
- ﬁ
_____ ”/ 5 -

\‘—_—.“’

Split MEM to repeatNodes

oGy -

- Xyzoaf
v

Find MEM in suffix tree.

Split MEM to repeatNodes

oGy -

Xyzof

Traverse suffix link.
Look for MEM as ancestor.

Split MEM to repeatNodes

Xyzof

Traverse suffix link.
Look for MEM as ancestor.

Split MEM to repeatNodes

oGy -

Xyzof

Traverse suffix link.
Look for MEM as ancestor.

Split MEM to repeatNodes

iy -

Found MEM as ancestor. Decompose.
Remove embedded MEM (suffix links). Find next embedded MEM.

Suffix Skips

<> Reduce O(n?) time to O(n log n) time

Suffix link: quickly navigate to distant part of tree

o Pointer from internal node labeled xS to node S

o Trim 1 character in O(1) time

o Trim c characters in O(c) time

Suffix skip:

o Trim c characters in O(log c) time

Suffix Skips

Genome: babab

Suffix skips 0 | Suffix skips 1 | Suffix skips 2

(dist = 1; suffix links) (dist=2) (dist=4)

Additional Preprocessing:

pointer jumping to rapidly add additional links

splitMEM

* splitMEM software
o C++

o open source http://splitmem.sourceforge.net

* Input modes:
o single genome: fasta file

o pan-genome: multi-fasta file

e Multi k-mer

construct several compressed de Bruijn graphs
without rebuilding suffix tree

Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis

Pan-genome analysis

B.Anthracis and E. coli
Examine graph properties:
* Number nodes, edges, avg. degree
* Node length distribution ;,_\ |
* Genome sharing among nodes
* Distribution of node distances to
core genome
Other properties that can be studied:
* Girth, Diameter, Modularity, Network Motifs, etc.

* Functional enrichment of highly conserved or
genome specific genes.

Pan-genome analysis

S Soo Accr wxa
B antheacs AMCIS wd 15585 SIVERB CPo s
B astheacns AJ6R aadd03S3 SIKR Col974
B antheaces Al6 udd N3 SIWKE CProosho
B antheacss Ames 0581 and |1OTS4 SI7TEKE ARDITIN
K antheaces Ames ud V9 SI7EKB ARDIXT9
B astheacn CDC 683 ad3 1 39 SISTKB CPOI21S
K antheaces Clusd e MW SIATKE CPO01 746
B astheaces HOS0] wadd9361 SINVKE CPoooow|
K antheaces wr Sterme usd |0KTS SISOKE AEIT2)S
Ecoh 0127 B FoMR al und 2871 0I9KHE FMISes
K. cob 042 unddOnd? SI9OKR PNSStTee
E colt 536 ud 16238 A3 KE CPoon2s?
K. coli S5989 sadi Ml SIOTKE CU92814S
E. coli ABU 53972 md3572S8 SHIKE CPoolsT
E col APEC O] ud1671% S KB CPOOndss
E. coli APRC OTR ead | R455% 4750 KR Crooson
E coli BL21 DED w713 4516 KH CPO1Sm
K. coli BL21 DED aadlans ASI6 KR AMOIIS)

Pan-genome analysis

Graphs of main chromosomes
e 9 strains of Bacillus anthracis
e Selection of 9 strains of Escherichia coli

B. anthracis 25 103926 | 38468 .33
B. anthracis 100 41343 54954 .32
B.anthracis 1000 6627 8659 .30
E. coli 25 494783 662081 .33
E. coli 100 230996 308256 .33

E. coli 1000 | 1900 15695 |.31

Pan-genome analysis

B.Anthracis and E. coli

Examine graph properties

* Node length distribution

* Genome sharing among nodes

 Distribution of node distances
to core genome

;“.'u.-."m Y

Pan-genome analysis

Node Length Histogram for B anthracis (k=100)
meanz=382 «+- 4501 max=451679

100000 130000

#0000

$0000

I

40

30 4900 609 8o

Noce » l\;".

Histogram of Node Lengths

Nede Length Histogram for E. coli (k=100)
mean=194 + 394 max=40333

100 200 200 400

Node lsngth

300

Freguency

Pan-genome analysis

Node Length Histogram for B anthf
mean=3482 + 4501 max=45 i { B -

(84

Histogram of Node Lengths

Spike at 2k:

SNPs

Pan-genome analysis

B.Anthracis and E. coli

Examine graph properties

* Node length distribution

* Genome sharing among nodes

 Distribution of node distances
to core genome

Pan-genome analysis

B k=25
0O k=100
B k=1000

J[I [L B. anthracis
in__. . . =
1 2 3 4 5 6 7 8 g

B k=25
0O k=100
B k=1000

WLl

Per Node Genome Sharing Level

J

|

|

1

Percentage of Nodes
00 01 02 03 04

J

1

E. coli

Percentage of Nodes

|

L

00 01 02 03 04

1

Fraction of nodes with each level of genome sharing

Pan-genome analysis

B.Anthracis and E. coli
Examine graph properties
* Node length distribution

« Genome sharing among nodes ¢

e Distribution of node distances
to core genome

Pan-genome analysis

Graph encodes sequence context of segments.

Core genome: subsequences that occur in at
least 70% of underlying genomes.

@ Branch and

Bound Search
° Y s
b “.’? 30|
v 6Q /,-‘Zf’.
»” 60
/,/""' E Nodes can be further
500 O 50 in terms of hops while
@ closer by base pairs.

o /

Frequorcy

N0 30000 40000

10090

Pan-genome analysis

Distance to Core Genome for B anthracis (k=100, core®e=l

means? + 35 max=1000 Distance to Core Genome for E. coli (k=100, core®e=70)

mean=389 + 435 max=1000

N0 0000 70000

10909

|
0

200 40 &0 eol 108 3 20 409 800 eod 1080

Distance 1 com gerons Distance 1 com gerons

Searched 1000-
Node distances to core genome hop radius

Summary

* Identify pan-genome relationships graphically.

* Topological relationship between suffix tree and
compressed de Bruijn graph.

* Direct construction of compressed de Bruijn
graph for single or pan-genome.

* Introduce suffix skips.

* Explore pan-genome graphs of B. anthracis, E. coli.

SplitMEM: Graphical pan-genome analysis with suffix skips.
Marcus, S, Lee, H, Schatz, MC (2014) BioRxiv
http://biorxiv.org/content/early/2014/04/06/003954

Future work

Improve splitMEM software:

* Reduce space using compressed full-text index instead
of suffix tree

* Approximate indexing of strains to form a pan-genome
graph
* Alignment of reads to pan-genome

Biological applications:

* Functional enrichment of core-genome and genome
specific segments

* Expand study to larger collection of microbes and
larger genomes

Acknowledgments

Michael Schatz IT department
Hayan Lee Todd Heywood

Giuseppe Narzisi

iPlant Collaborative
Schatz Lab Q)

Thank You!

Pan-genome analysis

Branch and bound search (like Dijkstra’s shortest path
algorithm) to compute bp distance from each non-core

node to core genome:

Traverse all distinct paths from source until
O a core node is reached @
. . %300 20|
o current node was visited % 0 b

w7

y* 50

o @
.4
Bounded search

once a core node is found, its distance bounds
maximum search distance along other paths

by a shorter path

