Analysis of Structural Variants using 3rd generation Sequencing

Michael Schatz

January 12, 2016
Bioinformatics / PAG XXIV

@mike_schatz / #PAGXXIV

Analysis of Structural Variants using 3rd generation Sequencing

Michael Schatz

January 12, 2016
Bioinformatics / PAG XXIV

@mike_schatz / #PAGXXIV

The Resurgence of Reference Quality Genomes

Michael Schatz & Daniel Rokhsar Tuesday, January 12, 2016 @ 4pm – 6pm Town & Country - Pacific Salon I

4:00pm	The Resurgence of Reference Quality Genomes Michael Schatz, CSHL + JHU
4:20pm	High Quality, Highly Contiguous Genome Assemblies Now Richard Green, Dovetail Genomics
4:40pm	Scalable Parallel Algorithms for de novo Assembly of Complex Genomes Aydin Buluc, Lawrence Berkeley National Laboratory
5:00pm	Using PacBio Long Reads to Generate a High Quality Reference for the Allotetraploid Coffea arabica and its Maternal Diploid Ancestor Coffea eugeniodes Marcela Yepes, Cornell University
5:20pm	MaSuRCA Mega-Reads Assembly Technique for Haplotype Resolved Genome Assembly of Hybrid PacBio and Illumina Data Aleksey Zimin, University of Maryland
5:40pm	How to Compare and Cluster Every Known Genome in about an Hour Sergey Koren, NHGRI

Structural Variations

Genome structural variation discovery and genotyping

Alkan, C, Coe, BP, Eichler, EE (2011) Nature Reviews Genetics. May; 12(5):363-76. doi: 10.1038/nrg2958.

Structural Variation Sequence Signatures

SV classes	Read pair	Read depth	Split read	Assembly
Deletion				Contig/ scaffold — Assemble
Novel sequence insertion		Not applicable		Contig/ scaffold ————————————————————————————————————
Mobile- element insertion	Annotated transposon	Not applicable	Annotated transposon MEI	Contig/ Align to scaffold Repbase
Inversion	RP1 RP2	Not applicable	Inversion	Contig/ Inversion scaffold Assemble
Interspersed duplication				Assemble Contig/ scaffold
Tandem duplication				Assemble Contig/ scaffold

Structural Variation Sequence Signatures

PacBio Sequel

>10kbp Mean Read Lengths ~\$15k / Mammalian-sized genome

Single Molecule Sequencing

- No amplification artifacts
- More uniform coverage
- Essentially no GC biases

Long read lengths

- Improved mappability
- More likely to span breakpoints
- More robust split read analysis
- More robust assemblies

Basepair resolution for 50bp through 50Mbp events

SK-BR-3

Most commonly used Her2-amplified breast cancer cell line

(Davidson et al, 2000)

Highly-rearranged Mammalian genome

80 chromosomes instead of 46 Numerous chromosome fusions, rearrangements, other SVs

PacBio Long-Read Sequencing

mean read length: 9 kb max read length: 71 kb

72X overall coverage

Genome-wide coverage averages around 54X Coverage per chromosome varies greatly as expected from previous karyotyping results

Genome structural analysis

Assembly-based

~ 11,000 local variants 50 bp < size < 10 kbp

Alignment-based

Genome structural analysis

Assembly-based

~ 11,000 local variants 50 bp < size < 10 kbp

Alignment-based

Assembly using PacBio yields far better contiguity

ABVC: Assembly-Based Variant-Caller

Insertion

Defined point

Deletion

Overlapping alignments suggest tandem repeat

contig

Tandem Contractions

Repeat Expansions

Gap where sequences do not align uniquely suggests a repeat

Repeat Contractions

Genome structural analysis

Assembly-based

~ 11,000 local variants 50 bp < size < 10 kbp

Alignment-based

Long Read Structural Variation Analysis

Split-read analysis greatly improved by long reads

- Improved chances of spanning event, including nested events
- However, many SVs lost due to poor alignments and poor PacBio support
 - LUMPY fails on reads that span more than I breakpoint, poor localization

New methods in development: NGM-LR + Sniffles

- NGM-LR: Improve mapping of noisy long reads
- Sniffles: Integrates SV evidence from split alignments, alignment fidelity (CIGAR string and MD tag)

Mapping a ~500bp deletion

Similar issues for insertions, inversions; or Nanopore sequencing Improved seeding, improved gap scoring: convex instead of affine

Long-range structural variants found by Sniffles

Long-range structural variants found by Sniffles

Long-range structural variants found by Sniffles

SplitThreader

Threading SV breakpoints to Infer the history of rearrangements in complex genomes

Summary & Acknowledgements

ABVC + SplitThreader by Maria Nattestad

- Assembly-based variant analysis is efficient and accurate
 - 10s of thousands variants present in mammalian-sized genomes
- SplitThreader infers the evolution to genome structure
 - Additional context as genes are moved next to new promoters and other regulatory elements

NGM-LR + Sniffles by Fritz Sedazeck

- Correct long read mapping is essential for SV analysis
 - Design the mapping strategy for the error model of the data
- Integrate all available information for robust SV calling
 - Currently extending to other long-range mapping technologies:
 Oxford Nanopore, BioNano, IOX Genomics

Special thanks to Dick McCombie (CSHL), John McPherson (OICR), PacBio Funding by NSF, NIH, DOE, Sloan Foundation

Thank you!

The Resurgence of Reference Quality Genomes

Michael Schatz & Daniel Rokhsar Tuesday January 12, 2016 @ 4pm – 6pm Town & Country - Pacific Salon I