Analysis of Structural Variants using 3rd generation Sequencing

Michael Schatz

January 12, 2016
Bioinformatics / PAG XXIV

@mike_schatz / #PAGXXIV
Analysis of Structural Variants using 3rd generation Sequencing

Michael Schatz

January 12, 2016
Bioinformatics / PAG XXIV

@mike_schatz / #PAGXXIV
The Resurgence of Reference Quality Genomes

Michael Schatz & Daniel Rokhsar
Tuesday, January 12, 2016 @ 4pm – 6pm
Town & Country - Pacific Salon 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00pm</td>
<td>The Resurgence of Reference Quality Genomes</td>
<td>Michael Schatz, CSHL + JHU</td>
</tr>
<tr>
<td>4:20pm</td>
<td>High Quality, Highly Contiguous Genome Assemblies Now</td>
<td>Richard Green, Dovetail Genomics</td>
</tr>
<tr>
<td>4:40pm</td>
<td>Scalable Parallel Algorithms for de novo Assembly of Complex Genomes</td>
<td>Aydin Buluc, Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>5:00pm</td>
<td>Using PacBio Long Reads to Generate a High Quality Reference for the Allotetraploid Coffea arabica and its Maternal Diploid Ancestor Coffea eugeniodes</td>
<td>Marcela Yepes, Cornell University</td>
</tr>
<tr>
<td>5:20pm</td>
<td>MaSuRCA Mega-Reads Assembly Technique for Haplotype Resolved Genome Assembly of Hybrid PacBio and Illumina Data</td>
<td>Aleksey Zimin, University of Maryland</td>
</tr>
<tr>
<td>5:40pm</td>
<td>How to Compare and Cluster Every Known Genome in about an Hour</td>
<td>Sergey Koren, NHGRI</td>
</tr>
</tbody>
</table>
Structural Variations

Any mutation >50bp

Profound impact on genome structure and function

Genome structural variation discovery and genotyping
Structural Variation Sequence Signatures

<table>
<thead>
<tr>
<th>SV classes</th>
<th>Read pair</th>
<th>Read depth</th>
<th>Split read</th>
<th>Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Novel sequence insertion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobile-element insertion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interspersed duplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tandem duplication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Structural Variation Sequence Signatures

<table>
<thead>
<tr>
<th>SV classes</th>
<th>Read pair</th>
<th>Read depth</th>
<th>Split read</th>
<th>Assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PacBio Sequel

- >10kbp Mean Read Lengths
- ~$15k / Mammalian-sized genome

Single Molecule Sequencing
- No amplification artifacts
- More uniform coverage
- Essentially no GC biases

Long read lengths
- Improved mappability
- More likely to span breakpoints
- More robust split read analysis
- More robust assemblies

Basepair resolution for 50bp through 50Mbp events
SK-BR-3

Most commonly used Her2-amplified breast cancer cell line

Highly-rearranged Mammalian genome
80 chromosomes instead of 46
Numerous chromosome fusions, rearrangements, other SVs

(Davidson et al, 2000)
PacBio Long-Read Sequencing

mean read length: 9 kb
max read length: 71 kb

72X overall coverage

Genome-wide coverage averages around 54X
Coverage per chromosome varies greatly as expected from previous karyotyping results
Genome structural analysis

Assembly-based

- Assembly with Falcon on DNAnexus
 - Alignment with MUMmer
 - Call variants between consecutive alignments with ABVC
 - Call variants within alignments with ABVC

~ 11,000 local variants
50 bp < size < 10 kbp

Alignment-based

- Alignment with BWA-MEM
 - Copy number analysis
 - SV-calling from split reads with Sniffles
 - Validations
 - SplitThreader
 - Detailed analysis of Her2 amplifications

661 long-range variants
(>10kb distance)
Genome structural analysis

Assembly-based

- Assembly with Falcon on DNAnexus
 - Alignment with MUMmer
 - Call variants between consecutive alignments with ABVC
 - Call variants within alignments with ABVC

~ 11,000 local variants
50 bp < size < 10 kbp

Alignment-based

- Alignment with BWA-MEM
 - Copy number analysis
 - SV-calling from split reads with Sniffles
 - Validations
 - SplitThreader
 - Detailed analysis of Her2 amplifications

661 long-range variants
(>10kb distance)
Assembly using PacBio yields far better contiguity

Number of sequences: 13,532
Total sequence length: 2.97 Gb
Mean: 266 kb
Max: 19.9 Mb
N50: 2.46 Mb

Relative to a genome size of 3 Gb

Number of sequences: 748,955
Total sequence length: 2.07 Gb
Mean: 2.8 kb
Max: 61 kb
N50: 3.3 kb
ABVC: Assembly-Based Variant-Caller

Defined point

Overlapping alignments suggest tandem repeat

Gap where sequences do not align uniquely suggests a repeat

Insertion

Deletion

Tandem Expansions

Tandem Contractions

Repeat Expansions

Repeat Contractions
Assembly-based analysis highly effective for local SVs (<10kbp)

- ~11,000 SVs between 50bp and 10kbp in size, totaling >10Mbp of variation
- Essentially perfect positive predictive value

Alignment artifacts confound larger events (>10kbp)

- WGA alignments confused by large repetitive elements near SVs
- SV breakpoints may be poorly spanned by a contig
 - ~100bp on one side, 1Mbp on the other
Genome structural analysis

Assembly-based

- Assembly with Falcon on DNAnexus
- Alignment with MUMmer
 - Call variants between consecutive alignments with ABVC
 - Call variants within alignments with ABVC

~11,000 local variants
50 bp < size < 10 kbp

Alignment-based

- Alignment with BWA-MEM
 - Copy number analysis
 - SV-calling from split reads with Sniffles
 - Validations
 - SplitThreader
 - Detailed analysis of Her2 amplifications

661 long-range variants
(>10kb distance)
Long Read Structural Variation Analysis

Split-read analysis greatly improved by long reads
- Improved chances of spanning event, including nested events
- However, many SVs lost due to poor alignments and poor PacBio support
 - LUMPY fails on reads that span more than 1 breakpoint, poor localization

New methods in development: NGM-LR + Sniffles
- **NGM-LR**: Improve mapping of noisy long reads
- **Sniffles**: Integrates SV evidence from split alignments, alignment fidelity (CIGAR string and MD tag)
Mapping a ~500bp deletion

Similar issues for insertions, inversions; or Nanopore sequencing
Improved seeding, improved gap scoring: convex instead of affine
Long-range structural variants found by Sniffles

661 long-range variants (>10kb distance)
Long-range structural variants found by Sniffles
Long-range structural variants found by Sniffles
SplitThreader
Threading SV breakpoints to infer the history of rearrangements in complex genomes

CHR 1
ATCGCCTA

CHR 2
GTCCATAG

CHR 1
ATCG
CCGA
ATAG

CHR 2
GTCC
ATAG

20
80
100
1. Healthy chromosome 17 & 8
2. Translocation into chromosome 8
3. Translocation within chromosome 8
4. Complex variant and inverted duplication within chromosome 8
5. Translocation within chromosome 8
1. Healthy chromosome 17 & 8
2. Translocation into chromosome 8
3. Translocation within chromosome 8
4. Complex variant and inverted duplication within chromosome 8
5. Translocation within chromosome 8

Inferring the evolution of genome structure
Summary & Acknowledgements

ABVC + SplitThreader by Maria Nattestad
- Assembly-based variant analysis is efficient and accurate
 - 10s of thousands variants present in mammalian-sized genomes
- SplitThreader infers the evolution to genome structure
 - Additional context as genes are moved next to new promoters and other regulatory elements

NGM-LR + Sniffles by Fritz Sedazeck
- Correct long read mapping is essential for SV analysis
 - Design the mapping strategy for the error model of the data
- Integrate all available information for robust SV calling
 - Currently extending to other long-range mapping technologies: Oxford Nanopore, BioNano, 10X Genomics

Special thanks to Dick McCombie (CSHL), John McPherson (OICR), PacBio
Funding by NSF, NIH, DOE, Sloan Foundation
Thank you!

The Resurgence of Reference Quality Genomes

Michael Schatz & Daniel Rokhsar
Tuesday January 12, 2016 @ 4pm – 6pm
Town & Country - Pacific Salon 1