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ABSTRACT
Sequence alignment is one of the most important applica-
tions in computational biology, and is used for such diverse
tasks as identifying homologous proteins, analyzing gene ex-
pression, mapping variations between individuals, or assem-
bling de novo the genome of organism. Except for triv-
ial cases involving just a small number of short sequences,
virtually all other sequence alignment tasks rely on a pre-
computed index of the sequence to accelerate the alignment.
Two of the most important index structures are the suffix ar-
ray, which consists of the lexicographically sorted list of suf-
fixes of a genome, and the closely related Burrows-Wheeler
Transform (BWT), which is a permutation of the genome
based on the suffix array. Constructing these structures on
large sequences, such as the human genome, requires sev-
eral hours of serial computation and must be performed for
each genome, or genome assembly, to be analyzed. Here we
present a novel parallel algorithm for constructing the suffix
array and the BWT of a sequence leveraging the unique fea-
tures of the MapReduce parallel programming model. We
demonstrate the performance of the algorithm by greatly
accelerating suffix array and BWT construction on five sig-
nificant genomes using as many as 120 cores leased from the
Amazon Elastic Compute Cloud (EC2), reducing the end-
to-end runtime from hours to mere minutes. The source
code is available under an open source GPL License at:
http://code.google.com/p/genome-indexing/

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and Genetics;
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Algorithms
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1. INTRODUCTION
DNA sequence alignment is an extremely common appli-

cation in computational biology, in which sequences of the
four different nucleotides (nt) are matched or arranged to
find regions of maximal similarity [5]. For example, sequence
alignment is used find conserved regions between genomes [9,
1], measure transcription [20], and to reconstruct the genome
de novo [19]. The genome of an organism varies in length
from a few million nucleotides for simple bacterial organ-
isms, three billion nucleotides for the human genome, to
hundreds of billions of nucleotides for the largest known
genomes. Given their length and complexity, the leading
methods for searching and analyzing genomes rely on an
auxiliary precomputed index structure that allow for rapidly
matching and querying without loss of sensitivity and with-
out exhaustively scanning every individual nucleotide.

Two of the most important index structures of biological
sequences are the suffix array (SA) [14] and the Burrows-
Wheeler Transform (BWT) [2]. A suffix is any substring
that extends to the last character in the string, including
the degenerate suffix starting at first character of the string
and extending to the last. A prefix is any substring that
includes the first character of the string. The suffix array
consists of the lexicographically sorted list of all suffixes of
the string. Because the suffixes are sorted, this simple index
allows for rapid binary search algorithms for matching query
sequences of any length, and more advanced algorithm even
allow differences between the reference and query sequences
during the suffix array matching. The closely related BWT
reduces the space requirements of the suffix array, which
requires > 12 GB for the human genome, by recording as
an index a (reversible) permutation of the string based on
the ordering of the suffix array. As a permutation, the size
of the index is the same size as the string itself, only 3 GB
for the human genome.

The suffix array can be naively constructed using a string-
comparison based sort of the suffixes, which requiresO(G lg G)
comparisons for a genome of length G using a QuickSort al-
gorithm, although each comparison may evaluateO(G) char-
acters raising the overall runtime to O(G2 lg G). Several
advanced methods have since been developed methods that
are able to construct the suffix array in linear time [17]. Nev-
ertheless, the leading methods for constructing the BWT or
suffix array require several hours of computation on a desk-



top workstation, especially if there is insufficient memory
to hold the entire suffix array in memory. Given the criti-
cal importance of suffix array construction, parallel methods
have also been developed to accelerate the computation over
potentially many computers. The leading parallel method,
called PDC3, has been developed for MPI-based systems
by recursively computing the suffix array of a carefully se-
lected 2/3’s of the genome, from which the suffix array of the
remaining 1/3 can be inferred in linear time [8]. The recur-
sive nature of the algorithm, however, requires substantial
low-latency and high-bandwidth interconnects that are not
generally available.

Here we present the first MapReduce [3] parallel algo-
rithms for suffix array and BWT construction. The algo-
rithm uses the inherent data processing capabilities of Map-
Reduce to divide the suffix array construction into multi-
ple independent ranges that are then independently solved.
By carefully selecting and ordering the partition points, the
ranges are well-balanced across processing cores, and the fi-
nal output will form a total order to the array. Using our al-
gorithm in experiments with as many as 120-cores leveraging
the open-source Hadoop1 implementation of MapReduce, we
have reduced the time to index the human genome from
several hours to just a few minutes. By making the source
code open-source we expect genomics researchers around the
world to benefit from this advance. The remainder of the
paper is organized as follows: Section 2 provides additional
background material on DNA sequencing, suffix arrays and
the BWT, and a brief overview of MapReduce relevant to
our algorithm. Section 3 describes a basic MapReduce-based
algorithm for suffix array construction, which we refine in
Section 4 with several novel techniques that greatly enhance
its performance. Section 5 describes the evaluation of our
implementation on several important genomes over a variety
of cluster configurations. We will conclude in Section 6 with
a discussion of the advances made possible by our algorithm
and future research directions.

2. BACKGROUND

2.1 Suffix Arrays and the BWT
Sequence alignment is a ubiquitous task in computational

biology driven by a multitude of applications and the dra-
matic rise in DNA sequencing capabilities. Current DNA
sequencing machines are generating sequences at a tremen-
dous rate, exceeding 25 GB of sequence data per day per ma-
chine, in billions of short (50−500 nt) DNA sequences called
reads [15]. Depending on the application, those reads will
then be aligned or mapped to a reference genome, such as to
identify variations between people [10] or measure biological
activity in different cells [20], or they will be compared to
each other to reconstruct the full length genome in a task
called de novo assembly [19]. All of these sequence alignment
tasks, and many others, benefit from using an index: in the
case of read mapping, the index is used to quickly determine
where in the genome each read originated; in the case of de
novo assembly, an index is created on-the-fly from the inter-
mediate assembly to aid the computation. After assembly
an index will be computed to support any further analysis
of the newly sequenced genome. As such developing effi-
cient algorithms for indexing is essential. In particular, the

1http://hadoop.apache.org

Table 1: Suffix Array (left) and Burrows-Wheeler
Matrix (right) of GATTACA$. The SA field stores the
starting position of the lexicographically sorted suf-
fixes of the reference sequence. The BWM consists
of the lexicographically sorted list of all of the cyclic
rotations of the string. The BWT consists of the
last column of the BWM: ACTGA$TA.

index SA suffix
0 7 $
1 6 A$
2 4 ACA$
3 1 ATTACA$
4 5 CA$
5 0 GATTACA$
6 3 TACA$
7 2 TTACA$

index off sequence
0 7 $GATTACA
1 6 A$GATTAC
2 4 ACA$GATT
3 1 ATTACA$G
4 5 CA$GATTA
5 0 GATTACA£
6 3 TACA$GAT
7 2 TTACA$GA

recently announced Genome 10K project2 aims to sequence
and assemble the genomes of 10,000 vertebrate organisms,
each of which will need to be indexed prior to any analysis.

The suffix array is a deceptively simple index consisting
of the lexicographically sorted list of all suffixes in a genome
sequence. Despite its simplicity, the suffix array is extremely
powerful to accelerate sequence alignment computations, as
it enables fast, variable-length lookups for any substring in
the reference genome. Given a suffix array of a genome of
G nt, searching for the location of any query requires at most
O(lg(G)) probes to the array using a binary search (at most
32 probes for querying the human genome). In addition to
these exact matching methods, suffix arrays also support in-
exact alignment algorithms that allow for some differences
between the reference and query sequences. These applica-
tions commonly use a seed-and-extend technique that first
finds relatively short exact matches using the suffix array to
anchor the search for longer potentially in-exact matches.
For a full description of the suffix arrays and their applica-
tions see Gusfield’s classic text of sequence analysis[5].

Table 1 (left) shows the suffix array for the 7 nt string
GATTACA$. In the computation, we include a special ter-
minal ’$’ character to indicate the end of the string, and
consider it lexicographically less than any other character in
the string. The index field is the offset into the table, the SA
field records the starting position of each suffix in the orig-
inal string, and the suffix field shows the associated suffix.
Explicitly storing each suffix has an intractable O(G2) space
requirement, which is on the order of 1018 nt for the human
genome. Therefore, in practice the suffix array records just
the list of suffix offsets, and uses those offsets to lookup suf-
fixes from a single copy of the full reference sequence. Here
the SA ([7, 6, 4, 1, 5, 0, 3, 2]) records that the suffix starting
at position 7 is the lexicographically smallest suffix, followed
by the suffix starting at 6, and so forth. In this way, appli-
cations using suffix arrays require 15 GB for the human
genome using 3 billion 4 byte integers to store the offsets
and 3 GB to store the genome itself.

The closely related BWT index structure reduces the space
requirement by using a permutation of the sequence as an in-
dex. The space needed for the BWT is therefore the same as
the reference sequence itself, 3 GB for the human genome.
The order of the permutation is determined by the suffix
array. More precisely the BWT is the last column of the

2http://www.genome10k.org



Burrows-Wheeler Matrix (BWM), which is a lexicographi-
cally sorted matrix of all of the cyclic permutations of the
string. For example Table 1 (right) shows the BWM for
the string GATTACA$, and the resulting BWT is ACTGA$TA.
Note by construction, the first character of the BWT is al-
ways the last character of the string before the terminal ’$’
character. Furthermore, the i’th character of the BWT is
the character preceding the i’th suffix in the suffix array
(BWT [i] = ref [SA[i] − 1]), so that it is trivial to compute
the BWT given the suffix array. Incredibly the BWT is by
itself reversible using the Last-First property [2] which de-
scribes the implicit mapping between characters in the first
and last column of the BWM. Using this property, the BWT
is an implicit, space efficient encoding of the suffix array, and
as such, nearly all of the new sequence alignment algorithms
use the BWT as its index structure [11, 12] .

The leading algorithm for constructing the suffix array or
BWT is the linear time DC3 difference cover algorithm [7].
A difference cover D modulo v is a subset of [0,v-1] such
that for all i ∈ [0,v-1], there exists j,k ∈ D with i ≡ k-j(mod
v). The most useful property of a difference cover is that it
ensures a rank availability within length v. The basic idea
of the algorithm is to divide the input into two parts of size
two thirds and one third respectively. The larger part is
sorted recursively and the result is used to sort the smaller
third non-recursively in linear time. The two parts are then
merged to give the final suffix array.

2.2 MapReduce
MapReduce was developed by Google for their large data

analysis, especially for scanning trillions of webpages to com-
pute the most relevant pages for a search query. The power
of MapReduce is it can intelligently distribute computation
across a cluster with hundreds or thousands of computers,
each analyzing a portion of the dataset stored locally on the
compute node. After an initial round of independent par-
allel computation, the machines efficiently exchange inter-
mediate results, from which the final results are computed
in parallel. The scale of MapReduce is substantial, and it
has been reported that Google currently uses MapReduce to
analyze nearly 1 exabyte of data every month. The system
was originally developed for text and web processing and
only available at Google, but an open source implementation
called Hadoop is now available to install on any cluster for
any application domain. Hadoop/MapReduce has provided
researchers a powerful tool for tackling large-data problems
in areas of machine learning [16], text processing [4], and
bioinformatics [10, 18], to name just a few.

Parallel computation in MapReduce is structured into three
major phases called map, shuffle, and reduce (See Figure 1).
The map phase scans the input dataset and emits key-value
pairs representing some relevant information of the data
tagged by the key. These key value pairs are then distributed
and shuffled so that all values associated with a given key are
collected into a single list. Finally these key-value lists are
then processed by the reduce function to compute the final
results. The canonical MapReduce example is to count in
parallel the number of occurrences of each word in large text
corpus. In this example, the map function scans the input
text and emits key-value pairs using the words as the keys,
and the number 1 as the values. Then all values associated
with a given word are collected to a single list on a single

Figure 1: Illustration of MapReduce: mappers are
applied to input records, which generate interme-
diate key-value pairs. The partitioner determines
to which reducer the intermediate data are shuffled.
The reducer then performs the final computation.
Here the reducer sums the values for each key. (Fig-
ure derived from [13])

machine, so that the reduce function can sum the values to
compute the total count of occurrences of each word.

The shuffle phase in Hadoop/MapReduce is implemented
as a parallel distributed merge sort of the key-values pairs.
As such, the reduce function will process the keys in sorted
order and the final output from each reducer will naturally
be sorted based on the key values. The subset of keys pro-
cessed by a given reducer is determined by the partition
function that bins the key-value pairs emitted by the map
function. The default HashPartitioner function divides the
set of keys into batches arbitrarily by computing a hash value
of the key modulo the desired number of reducers. This is
generally quite effective for balancing the load between re-
ducers, but results in creating arbitrary subsets of keys for
each reducer to evaluate. The Hadoop/MapReduce API also
allows developers to override the default HashPartitioner,
and use a customized partition function instead.

One particularly relevant custom partitioner was devel-
oped for the Gray sorting challenge3. The challenge evalu-
ates the performance of various parallel systems sorting very
large quantities of data. In the winning Hadoop entry, the
map and reduce functions scan and emit the fixed length
numerical records without modification. The critical insight
was to use a custom TotalOrderPartitioner function that
divides the space of keys into non-overlapping ranges based
on distribution of a sample of the keys. This sampling is
essential for maintaining proper load balance in the face of
a non-uniform spread to the data. Once divided in this way,
the values are then sorted by the parallel merge sort in the
shuffle phase. Thus the final output will contain all of the
input values globally sorted, although split into multiple but
ordered files. Using such techniques, a Hadoop/MapReduce
system won the Gray Daytona sort challenge in 2010, by
sorting 1 trillion 100 byte records (100 TB) in 173 minutes
using 3452 nodes.

The incredible performance of the parallel sorting meth-
ods developed for the Gray Daytona sort challenge suggests
Hadoop could also be used to dramatically accelerate suf-

3http://sortbenchmark.org



fix array and BWT construction. The major difference is
while the Gray Daytona challenge sorted short binary val-
ues, suffix array/BWT construction requires sorting variable
length strings, up to the full length of the reference string.
Adapting their algorithm for suffix array/BWT construction
requires careful consideration, as a naive adaptation which
explicitly generates every suffix for sorting would require an
intractable amount of space for genome as long as the human
genome. Furthermore, two strings of length n may require
O(n) time to compare, while the short fixed length values
require O(1) time.

3. BASIC INDEX CONSTRUCTION
The basic technique for a MapReduce implementation of

suffix array and BWT construction is to use MapReduce to
partition the suffixes into non-overlapping batches with lex-
icographically similar values, and then sort the batches of
suffixes on different machines across the cluster. Much of
this computation is embarrassingly parallel: suffixes can be
independently assigned to partitions in parallel according to
their prefix, and once formed, batches of suffixes with lexi-
cographically similar values can be independently sorted. In
between the batch identification and batch sorting, the al-
gorithm needs to aggregate the suffixes into batches from all
machines in the cluster, but this can be accomplished using
the shuffle phase. As explained above, it is not tractable to
distribute or sort the suffixes explicitly, but the algorithm
can instead implicitly compare indexes after distributing the
reference string to all the machines. In this way, there is a
natural, if slow, implementation of suffix array construction
in the MapReduce programming model:

0. Input The algorithm prepares a file with every suffix in-
dex in the reference string, i.e. 1,2,...,G where G is the
length of the reference. The algorithm also distributes
the reference string to every worker machine.

1. Map The mappers iterate over this file and emit key-
value pairs with the prefix of the current suffix as the
key, and the suffix index as the value. The prefix length
is selected so that there are few suffixes assigned to a
given batch. For example, using length 10 prefixes
leads to 410 = 1 million possible batches, and each
will contain on average 3000 suffixes for the human
genome.

2. Shuffle The shuffle function aggregates all of the pairs
with the same key and thus aggregates suffixes that
begin with the same prefix.

3. Reduce The reducer sorts the suffixes within the batches
using a string sorting algorithm, and outputs the suffix
array or BWT.

This basic algorithm, while correct, requires considerable
transient storage, especially since the input file will be at
least 4G bytes and the mappers emit a total of (P + 4)G
bytes where P is the length of the prefix (commonly 8-15).
These issues can be immediately improved as outlined in
Figure 2. First, instead of creating a file with every suf-
fix offset, the algorithm trivially preprocesses the reference
string to determine it’s length, and creates a file with inde-
pendent ranges of suffixes for each mapper. This file contains
M ranges, each spanning G/M of the reference, where M

1: class Mapper
2: method Map(key)
3: (startIdx, endIdx) ← split(key, ’,’)
4: for all idx ∈ startIdx : endIdx do
5: Emit(idx)

1: class Partitioner
2: method GetPartition(idx, value, n)
3: substr ← dnaString.substr(idx, 15)
4: return mer(substr)/numReducers

1: class Reducer
2: method Reduce(id, valuex)
3: sortedSet.add(id)

4: method CleanUp(context)
5: for all idx m ∈ sortedSet do
6: Emit(idx)

Figure 2: Pseudocode for basic suffix array construc-
tion in MapReduce.

is the desired number of mappers. The algorithm uses the
NLineInputFormat so that each line of the file (each range of
positions) is considered a separate map task that can be ex-
ecuted in parallel. The second technique is to not explicitly
record the prefix in the key-value pair, but to instead use a
partitioner that can compute the partition value on-the-fly
from the suffix index and reference string. A straightfor-
ward partitioning function of this type considers the length
P substrings as a P digit number in base 5 and divides it
by the desired number of reducers. Base 5 is used to encode
the alphabet A=0, C=1, G=2, T=3, and also N=4 (meaning
an ambiguous nucleotide). For example, the numerical value
for the length 4 substring (also called a 4-mer) ACGT will be
calculated as:

mer = 0 ∗ 53 + 1 ∗ 52 + 2 ∗ 5 + 3 = 3810 (1)

This partitioning scheme uniformly divides prefix mer val-
ues into independent ranges. For example if the number of
reducers R is 10 and the mer length L is 5, the partitioner
will assign 312 = (4 ∗ 54 +4 ∗ 53 +4 ∗ 52 +4 ∗ 5+ 4)/10 mers
to each reducer. Thus mer values in the range 0-312 will be
assigned to reducer 0, 313-614 to reducer 1, and so on. The
reducer then collects all input indexes within a SortedSet,
which sorts the indexes by comparing their associated suf-
fixes using a copy of the reference string. The reducer then
outputs the suffix array using the cleanup function after it-
erating over all of the indexes. The BWT can optionally be
constructed instead by outputting the appropriate charac-
ters of the reference instead.

4. ADVANCED INDEX CONSTRUCTION
The above suffix array construction algorithm suffers two

major problems when used for indexing large genomes that
contain long repetitive sequences. First, the reference hu-
man genome sequence contains a region consisting of> 21 mil-
lion N’s, representing a large region of ambiguity in the
genome assembly. The above basic partitioner uniformly
divides the space of mers, but there is a non-uniform distri-
bution of mers in the genome: all 21 million of these suffixes
have the same prefix value consisting of P N’s, while most
prefix mers occur just a few thousand times. Secondly, these
repeats are very expensive to sort in the SortedSet, since
many millions of characters will be examined to find the first



difference between them. This causes the runtime per re-
ducer to approach O(n2 log n) for repetitive regions of length
n. In the following sections, we will describe our methods
for addressing these major challenges: (1) to improve load
balance among the reducers, we implemented a new parti-
tioner that samples the genome to select the boundaries of
the batches based on the true sequence distribution; and (2)
to improve the batch sorting performance, we implemented
an optimized recursive bucket sort that precomputes and
determines problematic repeats on-the-fly.

4.1 Sampling Partitioner
The sampling partitioner uses dynamic ranges to balance

the number of suffixes per batch, rather than the number of
mers per batch as in the basic algorithm. The boundaries
between batches are determined by R − 1 variable length
mers computed from a sorted list of suffixes uniformly sam-
pled from the reference string, where R is the desired num-
ber of reducers. The variable length boundary mers enables
long repetitive sequences, with correspondingly long iden-
tical prefixes, to be subdivided into separate batches. The
boundary mers are recorded using a runlength encoding so
that they contain at least 2 distinct characters. For example
if there is a repeat region of 100,000 N’s followed by G, the al-
gorithm may create boundary mers of the form N:5000,G:1
and N:100000,G:1. These boundary mers are stored in a
file and distributed to all of the partitioners at launch. Fur-
thermore, the partitioner quickly computes the partition for
each suffix by exploiting the relationship between consecu-
tive suffixes. For example if the suffix starting at position a
begins with a prefix of L N’s, the algorithm can immediately
compute the suffix starting at position a + 1 begins with a
prefix of L − 1 N’s, thus avoiding substantial unnecessary
comparisons. Finally, the partition represents each charac-
ter of the reference string with at most 3 bits, and reduces
the memory requirement for analyzing the human genome
from 3.0 GB to 1.2 GB.

4.2 Recursive Bucket Sorting
The reducers are responsible for the fine grained suffix

sorting within the partitions. A basic Quicksort algorithm
will approach O(n2 log n) time for n suffixes, because it can
O(n) time to compare two suffixes. Instead our algorithm
uses a recursive bucket sort (Figure 3). The algorithm first
orders the suffixes based on a plen length prefix (initially
plen = 15) using a version of Quicksort that only compares
the first plen characters of a suffix. It then scans the list,
and recursively sorts blocks of suffixes with the same prefix.
To limit the recursion depth, if the size of the current range
is less than MinBucketSize (default: 10% of the original
range), the algorithm reverts to a Quicksort over the entire
suffix length. In practice, the recursive bucket sort is very
effective for sorting most sets of suffixes because it restricts
how many suffixes will be compared over their full length.
However, it is not better than Quicksort for sets of suffixes
that have very long identical prefixes. In large genomes this
is especially problematic for two classes of repeats:

(1) Suffixes from long single character repeats
(2) Suffixes from long multiple character repeats

The following optimizations address these challenges and
greatly accelerate the recursive sort. Even with the opti-
mizations, the memory requirement for the reducers is pro-
portional to the number of suffixes assigned to each reducer.

1: method BucketSort(indices, start, stop, plen)
2: if stop− start < 2 then
3: return
4: if stop− start < MinBucketSize then
5: QSort(indices, start, stop)
6: return
7: PrefixQSort(indices, start, stop, plen)
8: split = start
9: for i ∈ [start+ 1 : end] do
10: if PrefixCmp(i− 1, i, plen) > 0 then
11: BucketSort(indices, split, i− 1, plen+ 15)
12: split = i

13: BucketSort(indices, split, stop, plen+ 15)

Figure 3: Pseudocode for recursive BucketSort.

Hence increasing the number of reducers decreases the num-
ber of suffixes per reducer, decreases the peak memory us-
age, and improves the runtime.

4.2.1 Optimizing single character repeats
Single character repeats, including both biologically mean-

ingful mononucleotide repeats and also regions of ambiguity
marked by N, are very common in large genomes. Since they
can lead to quadratic behaviour while sorting, our algorithm
scans the suffixes, and precomputes the length of the single
character repeats in their prefixes. This computation is op-
timized using the fact that if suffix a begins with a single
character repeat of length L, then for all d < L suffix a+d be-
gins with a repeat of length L− d. The precomputed repeat
lengths are then used in the sort routines to skip directly
to the first non-repetitive characters to determine in O(1)
time which suffix from a given repeat is lexicographically
less. In this way, a set of consecutive suffixes from a repeat
can be sorted in linear rather than quadratic time. Our algo-
rithm also uses this same logic when comparing suffixes from
different repeats in the genome. For example, if the suffix
starting at position a begins with a repeat of length La is
compared to the suffix at position b that begins with a repeat
of the same character of length Lb, the algorithm compares
the lengths La to Lb, and then the characters starting at
a+La and a+Lb without needing to compare the repetitive
characters.

4.2.2 Optimizing multiple character repeats
Unlike single character repeats, it is considerably more

difficult to precompute multiple character repeats, since this
computation may need to consider all possible repeat lengths.
In practice, repeats of this type are rarer than single char-
acter repeats, but common enough to cause noticeable slow-
down for the reducers which sort them. To address this
problem, our algorithm uses two techniques to record on-
the-fly the length and composition of certain repeats as they
are discovered. First, the algorithm uses the ranks of the
previously sorted suffixes to accelerate further comparisons,
similar to the difference cover algorithm. For example, if
suffixes a and b were previously sorted, at most d characters
are compared to evaluate the suffixes at a − d and b − d.
The second optimization is to maintain the maximum re-
peat length encountered along with the corresponding index
pairs (even if the order of those index pairs has not yet been
fully determined). If the comparison of two suffixes reaches
those pairs, the algorithm skips the repetitive characters to
proceed to the next differing character positions.



5. RESULTS
We implemented the above parallel suffix array and BWT

construction algorithms for Hadoop 0.20.0. The mapper and
partitioner were implement in Java, while the reducer was
implemented in C++ (called via JNI) as this allowed more
control and performance over the critical recursive sort rou-
tines. The reducers use shared memory via the Unix func-
tion mmap() to load a single copy of the reference genome for
any number of reducers on the same machine. During the
evaluation we executed our code on Hadoop clusters with 30,
60, or 120 concurrent tasks, using machines leased from the
Amazon Elastic Compute Cloud (EC2) booting the virtual
machine image AMI-6AA34003. We performed the experi-
ments using High-Memory Double Extra Large (m2.2xlarge)
instances, which provide 4 hyperthreaded cores at 3.2 ”EC2
Compute Units” (roughly 3.2 GHz), 34.2 GB of RAM, and
850 GB of storage. For the 30 and 60 core evaluations, we
used 10 and 20 nodes with 3 tasks per node; for the 120 core
evaluation we used 20 nodes with 6 tasks per node. These
machine types were selected because they are the least ex-
pensive instance types with sufficient RAM for storing the
entire suffix array in memory as would be necessary for using
the suffix array after construction. At the time of the eval-
uation, these instances cost $1.00 per hour per node. Each
evaluation finished well within 1 hour, so each evaluation
cost at most $21 including the cost for the Hadoop master
node.

For the evaluation, we constructed the suffix array of five
important genomes ranging in size from 370 million to 3.1
billion nucleotides including 3 mammals, 1 bird, and 1 plant
genomes (Table 2). The rice genome OS1 was downloaded
from NCBI4 and the others were downloaded from UCSC5.
The human genome (HG19) is the largest genome available to
date, but as explained above, there are organisms with (sub-
stantially) larger genomes that have not yet been sequenced
for which our methods will be even more important. For
example, efforts are currently underway to sequence and as-
semble the 24 billion nt loblolly pine (Pinus taeda) genome.

Figure 4 shows the end-to-end runtime for constructing
the suffix arrays in the 3 cluster environments. The figure
shows the performance greatly improved for as many as 120
processing cores, although the large genomes demonstrate
better scaling to large numbers of cores. For example, the
suffix array construction for HG19 using 60 cores was 1.96x
faster than the 30 core cluster, and the 120 core cluster was
2.37x faster than the 30 core cluster. In OS1, the 60 core
cluster was 1.45x faster than the 30 core cluster and the 120
core cluster was only 1.53x faster.

We investigated the cause of non-linear speedup and con-
cluded our algorithm was substantially limited by the Hadoop
overhead. In particular, on the 120 core cluster for HG19,
120 s are spent writing the suffix array to the HDFS us-
ing the default 3-fold replication. Furthermore, it required
398 s for the 120 core cluster to processes HG19 using the de-
fault HashPartitioner and an Identity Reducer that simply
writes the unsorted suffix indexes to the HDFS. This suggest
approximately half of the runtime is spent in the overhead
of launching Hadoop, generating and shuffling the suffix in-
dexes, and then writing the (unsorted) suffixes to the HDFS.
Figure 5 shows the average runtime required just for the re-

4ftp://ftp.ncbi.nih.gov/genomes/
5ftp://hgdownload.cse.ucsc.edu/goldenPath/

Table 2: Genomes evaluated.

Name Genome Build Length (nt)
HG19 Human (Homo sapiens) 19 3,095,677,412
MM9 Mouse (Mus musculus) 9 2,654,895,218
BT4 Cow (Bos taurus) 4 2,634,413,324
GG3 Chicken (Gallus gallus) 3 1,031,883,471
OS1 Rice (Oryza sativa) 1 370,792,118
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Figure 4: End-to-End Suffix Array Construction
Runtime. All genomes show substantial improve-
ment in runtime between the 30 and the 60 core
cluster. The larger genomes continue to improve on
the 120 core cluster, while the smaller genomes are
limited by overhead at this level of parallelism.

ducers while executing the experiments in Figure 4. In this
experiment, a timer was started after the set of suffix indexes
was collected by the reducer and stopped after the sorted in-
dexes were written to the local disk. This shows the reducers
(in isolation) had better scaling properties than the overall
end-to-end runtime: in HG19, the 120 core cluster was 2.86x
faster than the 30 core cluster, and in OS1, the 120 core
cluster was 3.13x faster than the 30 core cluster.

Figure 6 plots the running time as a function of the genome
size for the 5 test genomes as 3 cluster environments. For a
given cluster size, there is an approximately linear relation-
ship between the genome size and the runtime, indicating
that our overall algorithm performs well in the presence of
complicated repeats. Note without the enhancements out-
lined in Section 4, the running time is non-linear, and HG19
requires more than over 1 hour for the 60 core cluster (data
not shown). As expected the slope of the relationship (sec-
onds/nt) decreases as the cluster size increases.

The final evaluation was to compare the results of our
new parallel algorithm against the leading serial and parallel
methods for suffix array and BWT construction. For the suf-
fix array construction, we evaluated against the widely used
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Figure 5: Average Reducer Runtime. The average
runtime of the reducers shows improved scaling per-
formance compared to the end-to-end runtime.

application Vmatch6 (version 2.0), which internally uses a
highly optimized multikey Quicksort algorithm similar to
our implementation. For BWT construction we evaluated
against the leading application Bowtie [11], which internally
uses the difference cover algorithm. We considered two sce-
narios in the evaluation: constructing the indexes using a
desktop workstation using 7GB of RAM (on an Opteron
250 running at 2.4GHz), and a massive server with 512GB
of RAM (on an Intel Xeon E7540 running at 2.0GHz). The
large memory server was considered in the evaluation be-
cause Vmatch requires 49.1GB of RAM for HG19 and is thus
out of reach for many users, whereas Bowtie can execute
on a regular desktop workstation at the expense of speed.
Table 3 shows the end-to-end speedup in the two environ-
ments. Bowtie computes the BWT of both the genome and
then the reverse of the genome without any option to com-
pute just one direction, so here we report half the running
time of Bowtie when computing the speedup.

The end-to-end speedup was modest compared to the num-
ber of cores used in the experiments, but nevertheless re-
duced the runtime from hours to minutes represents a signifi-
cant advance for researchers that regularly need to construct
these indices. Furthermore, the fastest published suffix ar-
ray construction of the human genome was computed using
the PDC3 [8] algorithm in 181 s using 128 2.0GHz Intel
Xeon processors. This is three times faster than our imple-
mentation using 120 cores, but their evaluation required a
specialized 800 Mbyte/s Quadrics QSNet II network with an
order of magnitude higher bandwidth than commodity Gi-
gabit Ethernet. Our code is likely to perform better using
such specialized network equipment as well. They also did
not consider the time to distribute the genome sequence to
the worker nodes in their evaluation.

6http://www.vmatch.de/
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Figure 6: Runtime versus Genome Size. For a given
number of cores, the end-to-end runtime is approx-
imately linear across the 5 genome sizes.

Table 3: Speedup compared to Vmatch and Bowtie
in server and desktop environments, respectively.

Speedup
Name Algorithm Time (s) 30C 60C 120C
HG19 Vmatch 4475 3.31x 6.50x 7.85x

Bowtie 7206 5.33x 10.47x 12.64x
MM9 Vmatch 4494 3.69x 7.23x 9.10x

Bowtie 6632 5.45x 10.66x 13.43x
BT4 Vmatch 4124 3.43x 6.46x 8.70x

Bowtie 7075 5.88x 11.09x 14.93x
GG3 Vmatch 1218 3.11x 5.67x 6.15x

Bowtie 1878 4.79x 8.73x 9.48x
OS1 Vmatch 421 2.96x 4.30x 4.53x

Bowtie 728 5.13x 7.43x 7.83x

6. DISCUSSION
Here we have presented a novel open-source parallel al-

gorithm for the important task of indexing a genome us-
ing a suffix array or the Burrows-Wheeler Transform. This
computation is essential for enabling almost all downstream
analyses of a genome, and is therefore computed for vir-
tually every sequenced organism, including for the 10,000
vertebrate genomes planned to be sequenced as part of the
Genome 10k project. Since it is often necessary to index the
intermediate genome assembly multiple times, this project
alone will spend >5 CPU years indexing genomes using the
current leading methods, and thus using our methods in-
stead will be a very significant improvement.

The essence of our algorithm is to use MapReduce to parti-
tion the suffixes into non-overlapping batches of lexicograph-
ically related sequences, and then independently sort each
batch across the cluster. This computation lends itself well
to the MapReduce programming model, but several signif-



icant algorithmic insights were necessary to make the algo-
rithm practical for analyzing the suffixes of large genomes.
Critical to the performance of our algorithm was to imple-
ment several techniques for exploiting the interdependencies
between repetitive suffixes. While these techniques do not
guarantee linear time performance for all sequence composi-
tions, in practice do exhibit nearly linear performance across
our collection of 5 very distantly related organisms.

In experiments with up to 120 cores, the algorithm lever-
ages the unique large-scale data processing capabilities of
Hadoop to reduce the runtime of this important computa-
tion from several hours on a desktop workstation to mere
minutes on the Amazon Elastic Compute Cloud (EC2). Fur-
thermore, since the experiments were performed on the Ama-
zon EC2, any researcher in the world can take advantage of
our advance. In contrast, the MPI-based PDC3 is able to
compute the suffix array of the human genome faster with
similar numbers of cores, but only when used with a special-
ity networking hardware not available to most researchers.

The end-to-end speedup was relatively modest compared
to the number of cores, and future work remains to further
refine the implementation. A significant fraction of the run-
time is for the Hadoop overhead, so improvements to the
core Hadoop subsystems will likely have the most impact on
end-to-end performance. Nevertheless, our algorithm im-
proves the wall clock performance from several hours to less
than 10 minutes for the mammalian genomes and thus rep-
resents a very significant advance. Other future work re-
mains to extend the algorithm to compute other sequence
analysis algorithms in parallel. For example, several new se-
quence error correction algorithms are based on constructing
and analyzing the suffix array of a large set of sequencing
reads [6]. Because of the scale of the data involved, these
methods have not yet been used For mammalian genomes,
but our methods suggest it may be possible to successfully
scale up these algorithms as well.
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