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Abstract— Accurate and in-phase de novo assembly of
highly polymorphic diploid and polyploid plant genomes
remains a critical yet unsolved problem. “Out-of-the-box”
assemblies on such data can produce numerous small con-
tigs, at lower than expected coverage, which are hypothe-
sized to represent sequences that are not uniformly present
on all copies of a homologous set of chromosomes. Such
“heterotigs” are not routinely identified in current assem-
bly algorithms and could be used for haplotype phasing
and other assembly improvements for such genomes. We
introduce an algorithm which attempts to robustly identify
heterotigs present in the assembly of a highly polymorphic
diploid organism. The algorithm presented is for use with
the 454 platform and for diploid assembly, but is readily
adaptable to other sequencing platforms and to polyploid
assembly.
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1. Introduction
1.1 Background

Genome assembly is a relatively young field, but one
which has been the subject of intense research. Motivated
by a desire to reconstruct the human genome as rapidly as
possible, the Whole Genome Shotgun strategy for genome
assembly was introduced [1]. In this approach, genome
structure inference is left entirely to software which takes
as input a huge number of short DNA sequences (“reads”)
sampled from the entire genome. Although this approach
was initially met with skepticism, a seminal paper provided
the necessary proof of concept [2] and, due to its simplicity
and cost-effectiveness, this approach has dominated genome
projects since.

There are two primary classes of algorithms that are
applied today to the Whole Genome Shotgun assembly prob-
lem. The first approach is referred to as the “overlap-layout-
consensus” approach and the second approach is based on
De Bruijn graphs. See [3] for a comparison of the two. We

will focus on the overlap-layout-consensus approach, but the
ideas regarding identification of heterotigs are applicable to
both.

Overlap-layout-consensus assemblers often construct a
data structure known as a “contig graph”. A contig is simply
a contiguous sequence of nucleotides inferred, via alignment
of the input reads, to be present in the target genome.
For various reasons, but primarily because of repetitive
sequence, these contigs can essentially never be extended
to full chromosome length in reasonably complex genomes,
using current technologies. For this reason, the contig graph
must represent not only the contigs themselves but also all
of the possible adjacency relationships between contigs that
are supported by the alignments. A common approach to
representing this information, and the approach used in the
454 software, is to let the vertices of the graph represent
contigs and the edges represent adjacency relationships
between contigs. Because contigs have polarity (a 5’ and
a 3’ end) the edges do not directly connect contigs, per se,
rather, they connect specific ends of contigs. For example,
an edge may indicate that the 5’ end of contig 25 is adjacent
to the 3’ end of contig 1.

Critical to the upcoming discussion is a clear understand-
ing of why assembly algorithms tend to collapse repetitive
sequence into a single contig and the effect this has on
the contig graph. Consider the case where a sequence of
nucleotides (longer than the read length) occurs in the
genome 3 times. Reads which are sampled from entirely
within this repetitive sequence will align to each other with
near perfect identity and will likely be collapsed into a single
contig (in the absence of paired-end reads which align to
unique sequences bordering the repeat). We will assume for
demonstrative purposes that the sequences adjacent to each
of the 3 copies are themselves unique. In the contig graph,
the 5’ end of the repeat contig will be adjacent to 3 different
contigs, as will the 3’ end (see Figure 1).

Notice that in Figure 1, in order to extend the contig that
is currently represented as a collapsed 3-copy repeat any
farther than the repeat sequence itself, you must accurately
select a particular pair of contigs (one adjacent to the 5’
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Fig. 1: A 3-copy repeat (collapsed in the assembly into a
single contig) in a contig graph. Each circle is a vertex in the
contig graph representing a particular contig in the assembly.
Solid lines between contigs (more exactly between specific
ends of those contigs) suggest that the contigs are adjacent
to one another in the genome. Contigs 1-6 are single-copy
contigs, each of which is adjacent to one of the 3 copies
of the repeat. Each instance of the repeat is surrounded
by a pair of contigs (one from the set {1, 2, 3} and one
from the set {4, 5, 6}). The pair of contigs surrounding a
particular instance of the repeat constitute the “context” of
that instance. When an assembly algorithm is unable to
accurately determine the context around a particular copy of
the repeat, contig extension must end at the repeat boundary.
Worse, if the algorithm extends a contig through the repeat,
but with the incorrect context, the resulting contig will
contain sequence from 2 different locations in the genome.

end of the repeat and the other adjacent to the 3’ end)
with which to extend the contig. If you are not careful you
might select contigs to use for the extension that are adjacent
to different copies of the repeat in the actual genome,
thereby constructing a contig that doesn’t actually exist in the
genome and whose 5’ and 3’ ends are in different locations
in the genome. For this reason, repeats longer than the
read length produce fragmentation of the contig graph and
consequently smaller contigs in the assembly. The correct
“context” for each copy of the repeat must be constructed
carefully, usually using paired-end reads at a known distance
and orientation with respect to each other.

1.2 Motivation
Highly polymorphic diploid and polyploid plant genomes

have proven to be particularly difficult to assemble. Plants
tolerate hybridization and polyploidization much more read-
ily than most organisms that have been assembled by the
Whole Genome Shotgun approach. These data present differ-
ent challenges to assembly algorithms than those presented
by highly homozygous diploid or monoploid organisms, for
which traditional genome assembly algorithms are primarily
designed. Notable examples of recent plant genome assem-
bly projects include the small Fragaria vesca genome [4], a

relatively heterozygous grapevine variety [5] and the large
and ultra-repetitive maize genome [6].

Rubus idaeus cultivar ‘Heritage’ is an important com-
mercial variety of raspberry which holds both biological
and economic interest. Heritage is resistant to many of the
most common raspberry diseases and has two raspberry
subspecies in its recent pedigree, namely, Rubus idaeus ssp.
strigosus and Rubus idaeus ssp. vulgatus. Such a scenario
is not unique to Heritage, and is very common in raspberry
breeding. Furthermore, hybridization, in general, is relatively
common among plants.

Despite being very similar in appearance, amenable to
hybridization, and prominent in the pedigrees of many
commercial varieties of raspberry, these two subspecies have
historically been geographically isolated with strigosus being
a North American variety, and vulgatus a Eurasian variety.
Furthermore, despite both varieties often being labeled as
subspecies of Rubus idaeus taxonomists currently favor
classifying these organisms as two different species, namely
Rubus strigosus and Rubus idaeus.

Until recently, and to a great extent even today, the
genomes of diploid and polyploid organisms have been
assembled and presented in a monoploid form. Such an
approach minimizes sequencing cost (greater depth is often
required by algorithms that attempt to perform true diploid
or polyploid assembly) and increases algorithmic simplicity
for such tasks as genome assembly, mapping reads to a
reference, and viewing a genome in a genome browser.
Despite these advantages, such an approach also has distinct
disadvantages. For example, diploid assemblies can provide
a more accurate depiction of sequence diversity within a pair
of homologous chromosomes than simple mapping back to a
monoploid reference can provide. This information can then
be used to improve numerous downstream analyses.

Genome assemblers that provide only a monoploid repre-
sentation of a diploid or polyploid organism often contain al-
gorithms that obscure sequence diversity or, worse, produce
sequence not actually present in the target genome. For ex-
ample, sequence diversity can be hidden when an algorithm
deals with polymorphic regions by simply selecting one of
the possible paths and ignoring all other possibilities. In the
context of a highly heterozygous genome, the monoploid
representation of the assembly can often “jump” between
different members of a homologous set of chromosomes.
Worse, an assembler may deal with polymorphic regions
by producing a single contig that is a composite of the
polymorphic paths in the contig graph, thereby producing
sequence that isn’t actually present on any chromosome.

With the advent of next-generation sequencing technolo-
gies, the field of genome assembly is aggressively pursu-
ing more accurate and comprehensive representations. The
Broad Institute’s ALLPATHS-LG [7] is a notable example
which represents the genome as the assembler actually sees
it, that is to say, as a graph, thereby maintaining important



information about sequence diversity that may otherwise
have been lost. Another fascinating approach, published very
recently, applies colored de Bruijn graphs to the genome
assembly problem in an attempt to assemble multiple eu-
karyotic genomes simultaneously [8] and to handle poly-
morphism in a more disciplined way.

We introduce an algorithm for identifying contigs present
in an assembly which represent sequences that are not
uniformly present on all members of a homologous set
of chromosomes. We have chosen to call such contigs
“heterotigs”, and their counterparts, which are present on
all members of the set, “homotigs”. The algorithm pre-
sented here leverages coverage statistics, adjacency patterns
between contigs in a contig graph, and paired end reads
to identify heterotigs present in the assembly of a highly
heterozygous diploid organism, and has been designed for
use with the 454 sequencing platform, but the concepts
are readily adaptable to polyploid assembly and to other
sequencing platforms. Robust identification of heterotigs
enables differential treatment of such sequences within an
assembly algorithm and presents opportunities for producing
more accurate and more complete assemblies of highly
polymorphic species.

2. Heterotig Identification
We are now in a position to more formally define the

problem with which this paper is primarily concerned. Let
R represent a whole-genome set of sequencing reads from
a highly polymorphic diploid species. Let C represent the
set of contigs produced by an assembly of R, parameterized
so as to separate “heterotigs” as cleanly as possible. Let
E represent the set of edges in the contig graph. Let
M represent the set of all meta-data available about the
assembly, for example, alignment depths for each contig,
contig lengths, etc. Let H represent the set of contigs whose
sequence is found on only one copy of a homologous pair
of chromosomes. Given C, E, and M is it possible to
determine H to within an acceptable degree of accuracy?
We will use a whole-genome sequencing data set from
the highly heterozygous diploid organism Rubus idaeus
‘Heritage’ throughout this section as an example data set.

2.1 Inference Based on Coverage Statistics
The first question that arises in the context of identifying

heterotigs is whether the depth of the read alignment from
which a particular contig is constructed can be reliably used
to infer the number of times the nucleotide sequence that
contig represents is likely to appear in the target genome.

Consider the idealized case where read sampling from the
genome is truly random and there are no other sources of
coverage bias, for example from PCR artifacts or cloning
bias. This idealized scenario is never realized in practice
but is instructive for the real-world case which we will
shortly turn to. Consider further that the organism being

sequenced is diploid and expected to have very high rates of
polymorphism. At every base in a particular contig there is
a multiple alignment depth. Take the average of these depths
across all bases in the contig and record this value as the
“contig alignment depth”.

What might the probability density function of contig
alignment depths in a highly polymorphic diploid assembly
look like? Let’s say for illustrative purposes that we have se-
quenced the genome to 60x coverage, which is now routinely
done with the advent of next generation sequencing. For a
diploid organism, genome coverage is typically calculated
in terms of the haploid genome size (total number of bases
/ haploid genome size), so this number is equivalent to the
coverage we should expect for a single-copy homotig. We
expect single-copy homotigs to be numerous and therefore
expect a mode at approximately 60 in the probability density
function. By this same logic, if heterotigs are indeed present
in the assembly in significant amounts a mode should also
be present at about half that coverage (30x). We expect there
to be some breadth to the distribution around each peak and
so high coverage will likely be necessary to determine if the
modes are indeed present. Some of the density will be at
much higher coverage (high-copy-number repeats) but we
probably have no reason to expect that a particular copy
number is more prevalent than another for high-copy-number
repeats, so we expect no significant modes above our single-
copy homotig mode.

Let’s now turn our attention to a real-world case. A
recent whole-genome shotgun assembly project collected
high-coverage sequence data from Rubus idaeus cultivar
‘Heritage’. The sequence was assembled using the 454
assembler and the resulting contigs were queried for their
contig alignment depths (see Figure 2).

Close examination of Figure 2 illuminates several inter-
esting properties of the contigs from this assembly. First,
and most obviously, modes corresponding to our theoret-
ical peaks (one peak composed primarily of single-copy
heterotigs and another peak composed primarily of single-
copy homotigs) are clearly discernible across contigs of all
lengths. If these peaks represent what we have hypothesized,
the homotig-mode to heterotig-mode ratio should be very
near 2, as is indeed the case, with the value ranging between
2.05 and 2.17 for the sets of contigs examined. Could
there be another explanation besides the heterotig-homotig
hypothesis we have presented for the strongly bimodal
distribution? If so, the alternate hypothesis must account for
why the lower mode (lower in terms of the coverage value,
not necessarily peak height) is at nearly exactly half the
coverage of the higher mode.

More encouraging (for the purposes of heterotig identifica-
tion) than the mere presence of the peaks is the observation
that for many of the sets of contigs examined the density
between the peaks is very low, suggesting that, at least for
this data set, coverage can be used to make inference on copy
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Fig. 2: (a)-(g) Probability density functions (PDFs) of contig alignment depth calculated from the set of contigs produced in an
assembly of Rubus idaeus ‘Heritage’. Contig alignment depth is defined as the mean of the single-position alignment depths
calculated at each position in the contig. Each PDF analyzes contigs within a particular length class (CL = Contig Length).
Contigs with contig alignment depths outside of the interval [20, 90] are excluded. The largest contigs are predominantly at
“homotig” coverage while the smaller contigs are predominantly at “heterotig” coverage. (h) “Homotig” peak mode over
“heterotig” peak mode ratios for (a)-(g). The minimum value was 2.05 and the maximum value was 2.17

number. The bimodal nature of the distribution is consistent
across contigs of all sizes. In contrast, the relative density
under each peak differs dramatically for contigs in different
length classes. The longest contigs are predominantly single-
copy homotigs while the shorter contigs are predominantly
single-copy heterotigs. Furthermore, as the contig length gets
smaller the density between the peaks increases, although
never enough to make the peaks difficult to see.

2.2 Inference Based on Contig Graph Structure
If our hypothesis from the previous section is accurate,

namely, that the bimodal PDFs in the previous section
suggest an extremely heterozygous diploid genome where
many of the contigs are present on only a single chromosome
(as opposed to both chromosomes of a homologous pair),
then it is safe to assume that many of the heterotigs will be
broken at boundaries where they are adjacent to single-copy
homotigs. Consider a chromosome A and its homologous
pair B. Now consider a single-copy homotig C that is
present on both A and B. On chromosome A, C is adjacent
to a single-copy heterotig D. On chromosome B, by the
definition of heterotig, C must be adjacent to some sequence
other than D, and consequently, the extension of contig C
must be broken to account for these 2 different adjacencies.
Recalling that assemblers must break contigs whenever there

is a repeat longer than the read length (see Figure 1),
notice that in the context of such extreme heterozygosity,
single-copy homotigs can behave similarly to 2-copy repeats,
having one context in one homologous chromosome and
another context in the other, providing one explanation
for the extremely bimodal PDFs presented in the previous
section.

Assuming this explanation is correct, such data are not
likely to assemble well using traditional assembly algo-
rithms. First, the assembly is likely to be extremely frag-
mented, with thousands, if not hundreds of thousands, of
small contigs. There will be many more “ambiguous” ad-
jacency relationships between contigs than would be seen
in either homozygous diploid or monoploid assemblies.
Furthermore, the extent to which homotig order is consistent
in the two members of a homologous pair is critical to
the tractability of an algorithmic solution. If the order of
single-copy homotigs is strictly consistent the problem is
greatly simplified. Under that scenario, only a few different
signature patterns should occur in the contig graph, for
example, it is probably safe to assume that under such a
condition the graph should contain numerous “bubbles”,
locations where a single-copy homotig bifurcates to two
single-copy heterotigs which both immediately converge to
a second single-copy homotig.



Length Class Percentage
length >= 10000 78 %
8000 <= length <= 10000 76 %
6000 <= length <= 8000 78 %
(4000 <= length <= 6000 82 %
2000 <= length <= 4000 86 %
1000 <= length <= 2000 89 %
500 <= length <= 1000 90 %

(a)

Length Class Percentage
length >= 10000 2 %
8000 <= length <= 10000 2 %
6000 <= length <= 8000 6 %
4000 <= length <= 6000 8 %
2000 <= length <= 4000 18 %
1000 <= length <= 2000 31 %
500 <= length <= 1000 41 %

(b)

Fig. 3: (a) All contigs of alignment depth between 25 and 40 in various length classes were marked as “candidate heterotigs”.
The percentages given indicate the percentage of candidate heterotigs connected on either the 5’ or 3’ end to at least one
contig end which participated in exactly 2 edges (suggestive of a homotig-heterotig boundary possibly being the cause for
contig breakage). (b) The same as (a) except the percentage now reflects the percentage of candidate heterotigs that were
found in “perfect bubbles”. See Figure 4 for the precise way in which we have defined the term “perfect bubble”.

If this scenario predominates, assembling two homolo-
gous chromosomes exhibiting extremely high heterozygosity
would, to a considerable extent, reduce to the problem of
identifying heterotigs, and subsequently treating heterotig-
to-heterotig paired-end data differently than homotig-to-
homotig paired-end data. Homotig-to-homotig paired-end
data would help lay out the structure shared between the
two members of the pair and heterotig-to-heterotig paired-
end data could help keep one chromosome separate from
the other, to as great a degree as possible, when building
contigs. Notice that the higher the rate of heterozygosity in
this scenario the better because it gives you more heterotig
anchors for keeping each chromosome “in phase”.

What about the case where the order and orientation of
the homotigs differs somewhat between homologs? This
would mean that in addition to assembly “bimodality” in
the sense of having significant populations of both heterotigs
and homotigs, there would also be assembly bimodality
in the relationships between homotigs (a certain set of
relationships prevailing on one homolog, and another set
of relationships prevailing on the other). For example, on
one chromosome, a pair of homotigs may occur at one
distance and orientation with respect to each other, yet on
the homolog, the same pair of homotigs may occur at a
different distance and/or orientation. Such a scenario would
obviously pose tremendous difficulties to traditional genome
assembly algorithms. How do you correctly estimate the
singular distance between two homotigs using paired end
data when there are, in fact, two distances? How do you
layout a genome when there are, in fact, two different
layouts? The problems posed in this scenario would require
the assembler itself to also be “bimodal”, that is to say, it
would have to deal differentially with each homolog. The
multiple “modes” could be represented using multiple graphs
or by having multiple passes through the same graph. In
either case, the assembler would need robust and accurate
identification of heterotigs throughout the process.

The current manuscript does not attempt to perform a
comprehensive analysis of the contig graph patterns observed
in the assembly of Rubus idaeus ‘Heritage’, however, Figure
3 provides a sense of what the contig graph looks like inter-
nally. In particular it examines what the contig graph looks
like immediately around “candidate heterotigs” (contigs that
appear to be heterotigs based on coverage alone). Notice that
for contigs in every length class examined, large majorities
of the candidate heterotigs are connected either on their 5’ or
3’ end to a contig end that participates in exactly two edges,
providing a measure of supporting evidence for a homotig-
heterotig boundary (a particular end of a single-copy ho-
motig, which is adjacent to a heterotig in one homolog,
would likely be adjacent to exactly one other sequence in
the other homolog, thereby participating in exactly 2 edges).
Furthermore, only a relatively small percentage of heterotigs
are found in “perfect bubble” patterns in the contig graph,
suggesting that algorithms which rely on simple graph pat-
terns to identify heterotigs may significantly underestimate
the true sequence diversity. It is also interesting that, as the
average length of a set of candidate heterotigs decreases,
the percentage of those candidate heterotigs found in perfect
bubbles increases (see Figure 3).

3. Algorithm
Definitions:
A = Alignment depth of a contig
Bhc = Boolean, true if Hmin ≤ A ≤ Hmax

Bper = Boolean, true if Hcand is in a perfect bubble
C = A contig (a node from G454)
Ce = A contig end (5’ or 3’)
Cnum = The total number of contigs in the assembly
G454 = a 454ContigGraph.txt file (from Newbler)
H = The true set of heterotigs
Hc = {C : C ∈ H} (with high confidence)
Hcand = Any C where Bhc holds
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Fig. 4: Graphical depiction of a perfect bubble in a contig
graph. Edges connecting contig ends are denoted with solid
lines. A, B, C, and D identify contigs. (5’) and (3’) each
identify a particular end of a contig. We say the structure is
a perfect bubble when the following hold: (1) A, B, C, and
D are 4 distinct contigs. (2) All 4 ends of the heterotigs (B
and C) participate in exactly one edge each. (3) The ends of
A and D that are connected to the heterotigs participate in
exactly 2 edges each.

Hmax = Maximum A for a heterotig candidate
Hmin = Minimum A for a heterotig candidate
L = Length of a contig
P = The set of all “paired-end flows” reported in G454

Domain: {x : x = G454}
Range: {y : y = Hc}

function IDENTIFYHETEROTIGS(Hmin, Hmax)
Add to Hc all Hcand such that Bper holds
for all Hcand with L ≥ 2000 do

if Hcand connects to bifurcating Ce then
Add Hcand to Hc

end if
end for
while Hc grows with each iteration do

for all Hcand do
if P links Hcand with e ∈ Hc then

Add Hcand to Hc

end if
end for

end while
return Hc

end function

4. Discussion
We have presented evidence that complex plant genomes,

particularly highly heterozygous organisms arising through
hybridization or polyploidy, present unique and difficult
challenges to the Whole Genome Shotgun assembly problem
that are not encountered in either monoploid or homozygous

genome assembly.
When heterozygosity rates are sufficiently high, and

coverage sufficiently deep, it is possible to perform de
novo identification of “heterotigs” (sequences not uniformly
present on all copies of a homologous set of chromosomes)
via inference on a combination of coverage statistics, contig
graph patterns, and paired end reads (when available). These
heterotigs can then serve as guideposts in the assembly
process to improve assembly quality and completeness, as
well as to minimize how often the assembled scaffolds and
contigs “jump” from sequence in one homolog to sequence
in the other.

We have also given preliminary evidence suggesting that
algorithms that identify heterotigs via very simple graph
patterns, such as the perfect bubbles analyzed in section
2.2, are likely to underestimate true sequence diversity in
highly heterozygous species. Furthermore, we have sug-
gested several ways in which more robust identification
of heterotigs could lead to more accurate and complete
assemblies for such data. This scenario necessitates a more
rigorous treatment of “heterotigs” which we begin laying the
foundation for here.

We believe that robust identification of, and intelligent
treatment of, such sequences could dramatically improve
the state of the art with regards to the genome assembly
of highly polymorphic diploid and polyploid species.

References
[1] J. L. Weber and E. W. Myers, “Human whole-genome shotgun

sequencing,” Genome Research, vol. 7, no. 5, pp. 401–409, 1997.
[Online]. Available: http://genome.cshlp.org/content/7/5/401.short

[2] E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P.
Fasulo, M. J. Flanigan, S. A. Kravitz, C. M. Mobarry, K. H. J.
Reinert, K. A. Remington, E. L. Anson, R. A. Bolanos, H.-H.
Chou, C. M. Jordan, A. L. Halpern, S. Lonardi, E. M. Beasley,
R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R.
Nusskern, M. Zhan, Q. Zhang, X. Zheng, G. M. Rubin, M. D.
Adams, and J. C. Venter, “A whole-genome assembly of drosophila,”
Science, vol. 287, no. 5461, pp. 2196–2204, 2000. [Online]. Available:
http://www.sciencemag.org/content/287/5461/2196.abstract

[3] Z. Li, Y. Chen, D. Mu, J. Yuan, Y. Shi, H. Zhang, J. Gan, N. Li, X. Hu,
B. Liu, B. Yang, and W. Fan, “Comparison of the two major classes
of assembly algorithms: overlap-layout-consensus and de-bruijn-
graph,” Briefings in Functional Genomics, 2011. [Online]. Available:
http://bfg.oxfordjournals.org/content/early/2011/12/18/bfgp.elr035.abstract

[4] V. Shulaev, D. Sargent, R. Crowhurst, T. Mockler, O. Folkerts,
A. Delcher, P. Jaiswal, K. Mockaitis, A. Liston, S. Mane, et al., “The
genome of woodland strawberry (fragaria vesca),” Nature genetics,
vol. 43, no. 2, pp. 109–116, 2010.

[5] R. Velasco, A. Zharkikh, M. Troggio, D. Cartwright, A. Cestaro,
D. Pruss, M. Pindo, L. FitzGerald, S. Vezzulli, J. Reid, et al., “A
high quality draft consensus sequence of the genome of a heterozygous
grapevine variety,” PLoS One, vol. 2, no. 12, p. e1326, 2007.

[6] P. S. Schnable, D. Ware, R. S. Fulton, J. C. Stein, F. Wei,
S. Pasternak, C. Liang, J. Zhang, L. Fulton, T. A. Graves,
P. Minx, A. D. Reily, L. Courtney, S. S. Kruchowski, C. Tomlinson,
C. Strong, K. Delehaunty, C. Fronick, B. Courtney, S. M. Rock,
E. Belter, F. Du, K. Kim, R. M. Abbott, M. Cotton, A. Levy,
P. Marchetto, K. Ochoa, S. M. Jackson, B. Gillam, W. Chen,
L. Yan, J. Higginbotham, M. Cardenas, J. Waligorski, E. Applebaum,
L. Phelps, J. Falcone, K. Kanchi, T. Thane, A. Scimone, N. Thane,
J. Henke, T. Wang, J. Ruppert, N. Shah, K. Rotter, J. Hodges,



E. Ingenthron, M. Cordes, S. Kohlberg, J. Sgro, B. Delgado, K. Mead,
A. Chinwalla, S. Leonard, K. Crouse, K. Collura, D. Kudrna,
J. Currie, R. He, A. Angelova, S. Rajasekar, T. Mueller, R. Lomeli,
G. Scara, A. Ko, K. Delaney, M. Wissotski, G. Lopez, D. Campos,
M. Braidotti, E. Ashley, W. Golser, H. Kim, S. Lee, J. Lin, Z. Dujmic,
W. Kim, J. Talag, A. Zuccolo, C. Fan, A. Sebastian, M. Kramer,
L. Spiegel, L. Nascimento, T. Zutavern, B. Miller, C. Ambroise,
S. Muller, W. Spooner, A. Narechania, L. Ren, S. Wei, S. Kumari,
B. Faga, M. J. Levy, L. McMahan, P. Van Buren, M. W. Vaughn,
K. Ying, C.-T. Yeh, S. J. Emrich, Y. Jia, A. Kalyanaraman, A.-P.
Hsia, W. B. Barbazuk, R. S. Baucom, T. P. Brutnell, N. C. Carpita,
C. Chaparro, J.-M. Chia, J.-M. Deragon, J. C. Estill, Y. Fu, J. A.
Jeddeloh, Y. Han, H. Lee, P. Li, D. R. Lisch, S. Liu, Z. Liu, D. H.
Nagel, M. C. McCann, P. SanMiguel, A. M. Myers, D. Nettleton,
J. Nguyen, B. W. Penning, L. Ponnala, K. L. Schneider, D. C.
Schwartz, A. Sharma, C. Soderlund, N. M. Springer, Q. Sun, H. Wang,
M. Waterman, R. Westerman, T. K. Wolfgruber, L. Yang, Y. Yu,
L. Zhang, S. Zhou, Q. Zhu, J. L. Bennetzen, R. K. Dawe, J. Jiang,
N. Jiang, G. G. Presting, S. R. Wessler, S. Aluru, R. A. Martienssen,
S. W. Clifton, W. R. McCombie, R. A. Wing, and R. K. Wilson,
“The b73 maize genome: Complexity, diversity, and dynamics,”
Science, vol. 326, no. 5956, pp. 1112–1115, 2009. [Online]. Available:
http://www.sciencemag.org/content/326/5956/1112.abstract

[7] S. Gnerre, I. MacCallum, D. Przybylski, F. J. Ribeiro, J. N. Burton,
B. J. Walker, T. Sharpe, G. Hall, T. P. Shea, S. Sykes, A. M.
Berlin, D. Aird, M. Costello, R. Daza, L. Williams, R. Nicol,
A. Gnirke, C. Nusbaum, E. S. Lander, and D. B. Jaffe, “High-
quality draft assemblies of mammalian genomes from massively
parallel sequence data,” Proceedings of the National Academy of
Sciences, vol. 108, no. 4, pp. 1513–1518, 2011. [Online]. Available:
http://www.pnas.org/content/108/4/1513.abstract

[8] Z. Iqbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean, “De novo
assembly and genotyping of variants using colored de bruijn graphs,”
Nature Genetics, 2012.


