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The massive volume of data and short read lengths from next generation DNA sequencing 
machines has spurred development of a new class of short read genome assemblers. Several 
of the new assemblers, such as Velvet and Euler-USR, model the assembly problem as 
constructing, simplifying, and traversing the de Bruijn graph of the read sequences, where 
nodes in the graph represent k-mers in the reads, with edges between nodes for consecutive 
k-mers. This approach has many advantages for these data, such as efficient computation of 
overlapping reads and robust handling of sequencing errors, and has demonstrated success 
for assembling small to moderately sized genomes. However, this approach is 
computationally challenging to scale to mammalian-sized genomes because it requires 
constructing and manipulating a graph far larger than can fit into memory. 

MapReduce was developed at Google™ for parallel computation on their extremely large 
data sets, including their database of more than 1 trillion web pages. Computation in 
MapReduce is structured into 2 main phases: the map phase and the reduce phase, which act 
together to construct a large distributed hash table of key-value pairs in a map phase, and 
then evaluate a function on each bucket of the hash table in the reduce phase. The power of 
MapReduce is dozens or hundreds of map and reduce instances can execute in parallel, 
enabling efficient computation even on terabyte and petabyte sized data sets. 

Drawing on the success of CloudBurst, a MapReduce-based short read mapping algorithm 
capable of mapping millions of reads to the human genome with high sensitivity, we have 
developed a MapReduce-based short read assembler that shows tremendous potential for 
enabling de novo assembly of mammalian-sized genomes. The deBruijn graph is constructed 
with MapReduce by emitting and then grouping key-value pairs (ki,kj) between successive k-
mers in the read sequences. After construction, MapReduce is used again to remove spurious 
nodes and edges from the graph caused by sequencing error in the reads, and to compress 
simple chains of nodes into long sequence nodes representing the unambiguous regions of 
the genome between repeat boundaries. The resulting graph is a small fraction of the size of 
the original deBruijn graph, and is output in a format compatible with other short read 
assemblers for additional analysis.  

Cloud computing is an emerging model for remote large-scale computing, where compute 
resources are accessed generically and rented as needed, especially to augment local 
resources for time critical or large computations. Several companies, including Amazon, 
Google, and Microsoft now offer tens of thousands of machines in their clouds. Machines are 
rented for as little as 10¢ per hour per machine, making it an attractive platform for large 
scale computation without the expense of purchasing or maintaining a large infrastructure. 

Abstract 

Cloud Computing and MapReduce 

CloudBurst: Highly Sensitive Short Read Mapping Large Genome Assembly with MapReduce 
CloudBurst is a read mapping algorithm optimized for mapping 
next-generation sequence data to the human genome and other 
reference genomes, for use in a variety of biological analyses 
including SNP discovery, genotyping, and personal genomics. It 
is modeled after the short read mapping program RMAP, and 
reports either all alignments or the unambiguous best alignment 
for each read with any number of mismatches or differences.  
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CloudBurst's running time scales linearly with the number of reads mapped, and with near 
linear speedup as the number of processors increases. In a 24-processor core configuration, 
CloudBurst is up to 30 times faster than RMAP executing on a single core, while computing 
an identical set of alignments.  

CloudBurst uses well-known seed-and-extend algorithms to map reads to a reference 
genome. It can map reads with any number of differences or mismatches using the 
observation that for an r bp read to align to the reference with at most k differences, the 
alignment must have a region of length s=r/k+1 called a seed that exactly matches the 
reference. Given an exact seed, CloudBurst attempts to extend the alignment into an end-to-
end alignment with at most k mismatches or k differences by either counting mismatches 
between the two sequences, or with a dynamic programming algorithm to allow for gaps.  

This level of sensitivity could be prohibitively time consuming, but CloudBurst uses 
Hadoop to parallelize execution across multiple compute nodes. In the map phase, the map 
function emits all length-s k-mers from the reference sequences, and all non-overlapping 
length-s kmers from the reads. In the shuffle phase, read and reference kmers are collected 
together. In the reduce phase, the seeds are extended into end-to-end alignments. The power 
of CloudBurst is the functions run in parallel over dozens or hundreds of computers.  

In a large remote compute cloud with 96 cores at Amazon EC2, CloudBurst reduces the 
running time from hours to mere minutes for typical jobs involving mapping of millions of 
short reads to the human genome. CloudBurst is available open-source as a model for 
parallelizing other bioinformatics algorithms with MapReduce.  

Schatz, MC (2009) CloudBurst: Highly Sensitive Read Mapping with MapReduce. 
Bioinformatics. http://cbcb.umd.edu/software/cloudburst 

Programming multiple computers for very large data problems requires efficient methods to 
distribute work, monitor and restart tasks, and collect results. As such, Google invented 
MapReduce to automatically provide these common services within a very simple 
programming model. Application developers focus on just 2 functions called map and 
reduce, and the system efficiently scales them to large clusters. The map function emits key-
value pairs representing local partial results from each input. The key-value pairs are then 
automatically shuffled so all values with the same key are collected into a single list. The 
reduce function then executes on each list to provide the final result. Conceptually, 
MapReduce constructs and analyzes a large distributed hash-table, and is thus applicable to 
many problems, including distributed search and sort, machine learning, and many graph 
algorithms. Hadoop is a leading open-source implementation of MapReduce, and is used on 
large production compute clouds, analyzing petabytes of data.  

Recent studies of individual human genomes analyzed 3 - 4 billion short reads stored in 110+ 
GB of compressed sequence data. Consequently, de novo assembly of these data on a single 
machine with a short read assembler such as Velvet, EULER-USR, or ALLPATHS is not 
feasible. However, MapReduce enables the de Bruijn graph assembly algorithms to scale to 
these large datasets as outlined below.  

1. De Bruijn Graph Construction and Compression 
Construction of the de Bruijn graph is naturally implemented in MapReduce. The map 
function emits key value pairs (ki, ki+1) for consecutive k-mers in the reads, which are then 
globally shuffled and reduced to build an adjacency list for all k-mers in the reads. Regions 
of the genome between repeat boundaries form non-branching simple paths of up to tens of 
thousands of nodes in the human genome. Compression of these paths is necessary to 
simplify the representation but adjacent nodes of the graph will be stored on physically 
separate machines. Nevertheless, MapReduce can efficiently compress simple chains of 
length S in O(log(S)) rounds using a parallel list ranking algorithm. 
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2. Error Correction 

Errors in the reads distort the graph structure creating dead-ends (left) or bubbles (middle). 
These graph structures are recognized and resolved in a single MapReduce cycle creating 
additional simple paths (right). Bubbles with good support for both sequences are caused by 
heterozygote positions in the genome, and are tracked in the nodes (B*). 

BC 

B’ 
A 

B 

B’ 
A C B* A C 

m1 

m2 

k1 

k2 

… 

kn 

r1 

r2 

out1 

out2 

input 

map shuffle reduce 

Human chromosome 1 

Read 1 

Read 2 

map  shuffle 

… 

… 

reduce 

Read 1, Chromosome 1, 12345-12365

Read 2, Chromosome 1, 12350-12370

3. Graph contraction 

Additional simplification techniques such as x-cut (left) and cycle tree compaction (right) 
further simplify the graph structure, and create more opportunities for simple path 
compression.  
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4. Scaffolding 

Finally mate-pairs, if available, are analyzed to further resolve ambiguities. MapReduce is 
used to identify the connected components of the assembly graph, which are then separately 
but concurrently analyzed using the scaffolding component of an assembler such as Velvet or 
the Celera Assembler. The final sequences resolves larger regions of the genome, revealing 
new biology not accessible through purely comparative techniques. 

A 

C

D R 

B
A C D R B R R 


