
Towards a de novo short read assembler for large genomes
using cloud computing

Michael C. Schatz (mschatz@umd.edu)
Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA

The massive volume of data and short read lengths from next generation DNA sequencing
machines has spurred development of a new class of short read genome assemblers. Several
of the new assemblers, such as Velvet and Euler-USR, model the assembly problem as
constructing, simplifying, and traversing the de Bruijn graph of the read sequences, where
nodes in the graph represent k-mers in the reads, with edges between nodes for consecutive
k-mers. This approach has many advantages for these data, such as efficient computation of
overlapping reads and robust handling of sequencing errors, and has demonstrated success
for assembling small to moderately sized genomes. However, this approach is
computationally challenging to scale to mammalian-sized genomes because it requires
constructing and manipulating a graph far larger than can fit into memory.

MapReduce was developed at Google™ for parallel computation on their extremely large
data sets, including their database of more than 1 trillion web pages. Computation in
MapReduce is structured into 2 main phases: the map phase and the reduce phase, which act
together to construct a large distributed hash table of key-value pairs in a map phase, and
then evaluate a function on each bucket of the hash table in the reduce phase. The power of
MapReduce is dozens or hundreds of map and reduce instances can execute in parallel,
enabling efficient computation even on terabyte and petabyte sized data sets.

Drawing on the success of CloudBurst, a MapReduce-based short read mapping algorithm
capable of mapping millions of reads to the human genome with high sensitivity, we have
developed a MapReduce-based short read assembler that shows tremendous potential for
enabling de novo assembly of mammalian-sized genomes. The deBruijn graph is constructed
with MapReduce by emitting and then grouping key-value pairs (ki,kj) between successive k-
mers in the read sequences. After construction, MapReduce is used again to remove spurious
nodes and edges from the graph caused by sequencing error in the reads, and to compress
simple chains of nodes into long sequence nodes representing the unambiguous regions of
the genome between repeat boundaries. The resulting graph is a small fraction of the size of
the original deBruijn graph, and is output in a format compatible with other short read
assemblers for additional analysis.

Cloud computing is an emerging model for remote large-scale computing, where compute
resources are accessed generically and rented as needed, especially to augment local
resources for time critical or large computations. Several companies, including Amazon,
Google, and Microsoft now offer tens of thousands of machines in their clouds. Machines are
rented for as little as 10¢ per hour per machine, making it an attractive platform for large
scale computation without the expense of purchasing or maintaining a large infrastructure.

Abstract

Cloud Computing and MapReduce

CloudBurst: Highly Sensitive Short Read Mapping Large Genome Assembly with MapReduce
CloudBurst is a read mapping algorithm optimized for mapping
next-generation sequence data to the human genome and other
reference genomes, for use in a variety of biological analyses
including SNP discovery, genotyping, and personal genomics. It
is modeled after the short read mapping program RMAP, and
reports either all alignments or the unambiguous best alignment
for each read with any number of mismatches or differences.

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

0  2  4  6  8 

Ru
n$

m
e 
(s
) 

Millions of Reads 

Running Time vs Number of Reads on Chr 1 

0 
1 
2 
3 
4 

0 

5 

10 

15 

20 

25 

30 

35 

0  1  2  3  4 

Sp
ee
du

p 

Number of Mismatches 

Speedup over serial RMAP 

chr1 

chr22 

0 

1000 

2000 

3000 

4000 

Local Cluster  Small Instance EC2 
Cluster 

High‐CPU Medium 
Instance EC2 Cluster 

Ru
nn

in
g 
$
m
e 
(s
) 

Running Time on Local vs EC2 Clusters 

0 

500 

1000 

1500 

2000 

24  48  72  96 

Ru
nn

in
g 
$
m
e 
(s
) 

Number of Cores 

Running Time on EC2  
High‐CPU Medium Instance Cluster  

CloudBurst's running time scales linearly with the number of reads mapped, and with near
linear speedup as the number of processors increases. In a 24-processor core configuration,
CloudBurst is up to 30 times faster than RMAP executing on a single core, while computing
an identical set of alignments.

CloudBurst uses well-known seed-and-extend algorithms to map reads to a reference
genome. It can map reads with any number of differences or mismatches using the
observation that for an r bp read to align to the reference with at most k differences, the
alignment must have a region of length s=r/k+1 called a seed that exactly matches the
reference. Given an exact seed, CloudBurst attempts to extend the alignment into an end-to-
end alignment with at most k mismatches or k differences by either counting mismatches
between the two sequences, or with a dynamic programming algorithm to allow for gaps.

This level of sensitivity could be prohibitively time consuming, but CloudBurst uses
Hadoop to parallelize execution across multiple compute nodes. In the map phase, the map
function emits all length-s k-mers from the reference sequences, and all non-overlapping
length-s kmers from the reads. In the shuffle phase, read and reference kmers are collected
together. In the reduce phase, the seeds are extended into end-to-end alignments. The power
of CloudBurst is the functions run in parallel over dozens or hundreds of computers.

In a large remote compute cloud with 96 cores at Amazon EC2, CloudBurst reduces the
running time from hours to mere minutes for typical jobs involving mapping of millions of
short reads to the human genome. CloudBurst is available open-source as a model for
parallelizing other bioinformatics algorithms with MapReduce.

Schatz, MC (2009) CloudBurst: Highly Sensitive Read Mapping with MapReduce.
Bioinformatics. http://cbcb.umd.edu/software/cloudburst

Programming multiple computers for very large data problems requires efficient methods to
distribute work, monitor and restart tasks, and collect results. As such, Google invented
MapReduce to automatically provide these common services within a very simple
programming model. Application developers focus on just 2 functions called map and
reduce, and the system efficiently scales them to large clusters. The map function emits key-
value pairs representing local partial results from each input. The key-value pairs are then
automatically shuffled so all values with the same key are collected into a single list. The
reduce function then executes on each list to provide the final result. Conceptually,
MapReduce constructs and analyzes a large distributed hash-table, and is thus applicable to
many problems, including distributed search and sort, machine learning, and many graph
algorithms. Hadoop is a leading open-source implementation of MapReduce, and is used on
large production compute clouds, analyzing petabytes of data.

Recent studies of individual human genomes analyzed 3 - 4 billion short reads stored in 110+
GB of compressed sequence data. Consequently, de novo assembly of these data on a single
machine with a short read assembler such as Velvet, EULER-USR, or ALLPATHS is not
feasible. However, MapReduce enables the de Bruijn graph assembly algorithms to scale to
these large datasets as outlined below.

1. De Bruijn Graph Construction and Compression
Construction of the de Bruijn graph is naturally implemented in MapReduce. The map
function emits key value pairs (ki, ki+1) for consecutive k-mers in the reads, which are then
globally shuffled and reduced to build an adjacency list for all k-mers in the reads. Regions
of the genome between repeat boundaries form non-branching simple paths of up to tens of
thousands of nodes in the human genome. Compression of these paths is necessary to
simplify the representation but adjacent nodes of the graph will be stored on physically
separate machines. Nevertheless, MapReduce can efficiently compress simple chains of
length S in O(log(S)) rounds using a parallel list ranking algorithm.

Reads

ACTG
ATCT
CTGA
CTGG
CTGC
GACT
GCTG
GGCT
TCTG
TGAC
TGCA
TGGC

De Bruijn Graph

ATC TCT CTG TGC GCA

TGA

GAC

ACT

TGG

GGC

GCT

ATCT

TGACT

TGGCT

TGCA

Compressed Graph

CTG

2. Error Correction

Errors in the reads distort the graph structure creating dead-ends (left) or bubbles (middle).
These graph structures are recognized and resolved in a single MapReduce cycle creating
additional simple paths (right). Bubbles with good support for both sequences are caused by
heterozygote positions in the genome, and are tracked in the nodes (B*).

BC

B’
A

B

B’
A C B* A C

m1

m2

k1

k2

…

kn

r1

r2

out1

out2

input

map shuffle reduce

Human chromosome 1 

Read 1 

Read 2 

map  shuffle 

… 

… 

reduce 

Read 1, Chromosome 1, 12345-12365

Read 2, Chromosome 1, 12350-12370

3. Graph contraction

Additional simplification techniques such as x-cut (left) and cycle tree compaction (right)
further simplify the graph structure, and create more opportunities for simple path
compression.

C

B A
r

D

G

C

B A r

D r

G

http://hadoop.apache.org

4. Scaffolding

Finally mate-pairs, if available, are analyzed to further resolve ambiguities. MapReduce is
used to identify the connected components of the assembly graph, which are then separately
but concurrently analyzed using the scaffolding component of an assembler such as Velvet or
the Celera Assembler. The final sequences resolves larger regions of the genome, revealing
new biology not accessible through purely comparative techniques.

A

C

D R

B
A C D R B R R

