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Computer Science & Computational Biology 

"Computer science is no more about computers than astronomy is about telescopes." 
 Edsger Dijkstra 

•  Computer Science = Science of Computation 
•  Solving problems, designing & building systems 
•  Thinking recursively about data, across levels of abstraction 
•  Reasoning that your methods are fast & correct 

•  Computer Science >> Computer Programming 
•  Computers are very, very dumb, but we can instruct them 

•  Build complex systems out of simple components 
•  They will perfectly & repeatedly execute instructions forever 

•  CompBio = Thinking Computationally about Biology 
•  Processing: Make more powerful instruments, analyze results 
•  Designing & Understanding: protocols, procedures, systems 



Sequence Alignment Applications 
•  A very common problem in computational biology is to find 

occurrences of one sequence in another sequence 

–  Genome Assembly 
–  Gene Finding 
–  Comparative Genomics 
–  Functional analysis of proteins 
–  Motif discovery 
–  SNP analysis 
–  Phylogenetic analysis 
–  Primer Design 
–  Personal Genomics 
–  … 



Exact Matching Overview 
Where is GATTACA in the human genome? 

BLAST, MAQ, ZOOM, 
RMAP, CloudBurst 

Seed-and-extend 

Hash Table     
(>15 GB)  

MUMmer, MUMmerGPU 

Tree Searching 

Suffix Tree 
 (>51 GB)  

Vmatch, PacBio Aligner 

Binary Search 

Suffix Array    
(>15 GB) 

Brute Force 
(3 GB) 

Naive 

Slow & Easy 

BANANA!
BAN!!
 ANA!
  NAN!
   ANA!



Searching for GATTACA 
•  Where is GATTACA in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

No match at offset 1 

•  Strategy 1: Brute Force 
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Searching for GATTACA 
•  Where is GATTACA in the human genome? 

•  Strategy 1: Brute Force 
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G A T T A C A … 
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Searching for GATTACA 
•  Where is GATTACA in the human genome? 

•  Strategy 1: Brute Force 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

No match at offset 9 <-  Checking each possible position takes time 



Brute Force Analysis 

•  Brute Force: 
–  At every possible offset in the genome: 

•  Do all of the characters of the query match? 

•  Analysis 
–  Simple, easy to understand 
–  Genome length = n          [3B] 
–  Query length    = m              [7] 
–  Comparisons: (n-m+1) * m                   [21B] 

•  Overall runtime: O(nm)  
–  If we double genome or query size, takes twice as long 
–  If we double both, takes 4 times as long 



Expected Occurrences 
 The expected number of occurrences (e-value) of a given sequence in a 
genome depends on the length of the genome and inversely on the length 
of the sequence 

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT 
–  1 in 16,384 should be GATTACA 
–  E=(n-m+1)/(4m)                           [183,105 expected occurrences] 



Brute Force in Matlab 

query  = 'GATTACA';!
genome = 'TGATTACAGATTACC';!

nummatches=0;!

% At every possible offset!
for offset=1:length(genome)-length(query)+1!

!% Do all of the characters match?!
!if (genome(offset:offset+length(query)-1) == query)!
!! !disp(['Match at offset ', num2str(offset)])!
!! !nummatches = nummatches+1;!
!else!
!! !%Uncomment to see every non-match!
!! !%disp(['No match at offset ', num2str(offset)])!
!end!

end!

disp(['Found ', num2str(nummatches),' matches of ', query, ' in genome of length ', 
num2str(length(genome))])!

disp(['Expected number of occurrences: ', num2str((length(genome)-length(query)+1)/
(4^length(query)))])!



Brute Force Reflections 
 Why check every position? 

–  GATTACA can't start at position 15         [WHY?] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

–  Improve runtime to O(n + m)           [3B + 7] 
•  If we double both, it just takes twice as long 
•  Knuth-Morris-Pratt, 1977 
•  Boyer-Moyer, 1977, 1991 

–  For one-off scans, this is the best we can do (optimal performance) 
•  We have to read every character of the genome, and every character of the query 
•  For short queries, runtime is dominated by the length of the genome 



2. Suffix Arrays 
•  What if we need to check many queries? 

•  We don't need to check every page of the phone book to find 'Schatz' 
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book 

without any loss in accuracy 

•  Sorting the genome: Suffix Array (Manber & Myers, 1991) 
–  Sort every suffix of the genome 

Split into n suffixes Sort suffixes alphabetically 

[Challenge Question: How else could we split the genome?] 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; 

Lo 

Hi 
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Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 
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12 TACC… 12 
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•  Compare to the middle, refine as higher or lower 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

Hi 

Lo 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 
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Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 
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14 TTACAGATTACC… 4 
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•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 
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Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11;  

Lo 

Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
•  Middle = Suffix[10] = GATTACC 

Lo 

Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
•  Middle = Suffix[10] = GATTACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 9;  

Lo 
Hi 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
•  Middle = Suffix[10] = GATTACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9 
•  Middle = Suffix[9] = GATTACA… 

 => Match at position 2! 

Lo 
Hi 



Binary Search Analysis 
•  Binary Search 

 Initialize search range to entire list  
 mid = (hi+lo)/2; middle = suffix[mid] 
 if query matches middle: done 
 else if query < middle: pick low range 
 else if query > middle: pick hi range 

 Repeat until done or empty range         [WHEN?] 

•  Analysis 
•  More complicated method 
•  How many times do we repeat? 

•  How many times can it cut the range in half? 
•  Find smallest x such that: n/(2x) ≤ 1; x = lg2(n)        [32] 

•  Total Runtime: O(m lg n) 
•  More complicated, but much faster! 
•  Looking up a query loops 32 times instead of 3B 

   [How long does it take to search 6B nucleotides?] 



Binary Search in Matlab 
%% create our sorted list of 100 numbers!
seq=1:100;!

%% seq=sort(floor(rand(100)*100));!
query=33;!

%% initialize search range!
lo=1;!
hi=length(seq);!
steps=0;!

%% search!
while (lo<=hi)!
  steps = steps+1;!

  mid=floor((lo+hi)/2);!
  middle=seq(mid);!
  disp(['Step ', num2str(steps), ' checking seq[', num2str(mid), ']=', num2str(middle)])!

  if (query == middle)!
   disp(['Found at ', num2str(mid), ' in ', num2str(steps), ' steps'])!
   break!
  elseif (query < middle)!

    disp(['less than ', num2str(middle)])!
    hi=mid-1;!
  else!

    disp(['greater than ', num2str(middle)])!
    lo=mid+1;!
  end!
end!



Suffix Array Construction 
•  Searching the array is very fast, but it takes time to construct 

•  This time will be amortized over many, many searches 
•  Run it once "overnight" and save it away for all future queries  

•  How do we store the suffix array? 
•  Explicitly storing all n strings is not feasible 

For human genome S = 9 billion billion characters 

•  Instead use implicit representation 
•  Keep 1 copy of the genome, and a list of sorted offsets 
•  Storing 3 billion offsets requires a big server (12GB) 

•  Build a separate index for each chromosome 

Pos 

6 

13 

8 

3 

10 

15 

7 

14 

2 

9 

5 

12 

1 

4 

11 

TGATTACAGATTACC 



Sorting 
Sort these numbers into ascending order: 

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19 

[How do you do it?] 

6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19 
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61 
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 

http://en.wikipedia.org/wiki/Selection_sort 



Selection Sort Analysis 
•  Selection Sort (Input: list of n numbers) 

 for pos = 1 to n 
 // find the smallest element in [pos, n] 
 smallest = pos  
 for check = pos+1 to n 

 if (list[check] < list[smallest]): smallest = check 

 // move the smallest element to the front 
 tmp = list[smallest] 
 list[pos] = list[smallest] 
 list[smallest] = tmp 

•  Analysis 

•  Outer loop:  pos     = 1 to n 
•  Inner loop:   check = pos to n 
•  Running time:  Outer * Inner = O(n2)         [9 Billion Billion] 

[Challenge Questions:  Why is this slow? / Can we sort any faster?] 



Divide and Conquer 
•  Selection sort is slow because it rescans the entire list for each element 

•  How can we split up the unsorted list into independent ranges? 
•  Hint 1:  Binary search splits up the problem into 2 independent ranges (hi/lo) 
•  Hint 2:  Assume we know the median value of a list 

n 

[How many times can we split a list in half?] 

= < > 2 x n/2 

= < > = = < > 4 x n/4 

< = > = < = > = < = > = < = > 8 x n/8 

16 x n/16 

2i x n/2i 



QuickSort Analysis 
•  QuickSort(Input: list of n numbers) 

// see if we can quit 
if (length(list)) <= 1): return list 

// split list into lo & hi 
pivot = median(list) 
lo = {}; hi = {}; 
for (i = 1 to length(list)) 

if (list[i] < pivot): append(lo, list[i]) 
else:        append(hi, list[i]) 

// recurse on sublists 
return (append(QuickSort(lo), QuickSort(hi)) 

•  Analysis (Assume we can find the median in O(n)) 

                            [~94B] 

http://en.wikipedia.org/wiki/Quicksort 



Picking the Median 
•  What if we miss the median and do a 90/10 split instead? 

n 

[How many times can we cut 10% off a list?] 

…+ 9in/10i 

n/10 + 9n/10  < = > 

... + 81n/100 < = > 

< =  … + 6561n/10000 > 

< = > ... + 729n/1000 

< = >  … + 59049n/100000 

< = >  … + 531441n/1000000 

< = >  … + 4782969n/10000000 



Randomized Quicksort 
•  90/10 split runtime analysis 

•  If we randomly pick a pivot, we will get at least a 
90/10 split with very high probability  
– Everything is okay as long as we always slice off a 

fraction of the list 

[Challenge Question: What happens if we slice 1 element] 

Find smallest x s.t. 



QuickSort in Matlab 

sort(seq) !

•  The goal of software engineering is to build libraries of 
correct reusable functions that implement higher level 
ideas 
–  Build complex software out of simple components 
–  Software tends to be 90% plumbing, 10% research 
–  You still need to know how they work 

•  Matlab requires an explicit representation of the strings 



Break 



Sorting in Linear Time 
•  Can we sort faster than O(n lg n)? 

•  No – Not if we have to compare elements to each other 
•  Yes – But we have to 'cheat' and know the structure of the data 

Sort these numbers into ascending order: 
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, 
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50, 
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75, 
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 
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Sorting in Linear Time 
•  Can we sort faster than O(n lg n)? 

•  No – Not if we have to compare elements to each other 
•  Yes – But we have to 'cheat' and know the structure of the data 

Sort these numbers into ascending order: 
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, 
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50, 
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75, 
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 

6,13,14,19,29,31,39,50,61,63,64,78 

for(i = 1 to 100) { range[i] = 0; } 
for(i = 1 to n) { range[list[i]] = 1; } 
for(i = 1 to l00) { if (range[i] == 1){print i}}          [3B instead of 94B] 



3. Suffix Trees 
# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

6 

13 

8 

3 

10 

15 

7 

14 

2 

9 

5 

12 

1 

4 

11 

A 

C 

AGATTACC… 

C… 
GATTACC… 

AGATTACC… 

C… 

C 

GATTAC 
T 

… 
AGATTACC… 

CC… 

AGATTACC… 

C… 

GATTACAGATTACC… 

AGATTACC… 

C… 

AGATTACC… 

C… 

•  Suffix Tree = Tree of suffixes (indexes all substrings of a sequence) 
•  1 Leaf ($) for each suffix, path-label to leaf spells the suffix 
•  Nodes have at least 2 and at most 5 children (A,C,G,T,$) 



Suffix Trees Searching 
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C… 
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AGATTACC… 

C… 

AGATTACC… 

C… 

•  Look up a query by "walking" along the edges of the tree 
•  GATTACA 



Suffix Trees Searching 
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AGATTACC… 

C… 

C 

GATTAC 
T 

… 
AGATTACC… 
CC… 

AGATTACC… 

C… 
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AGATTACC… 

C… 

AGATTACC… 

C… 

•  Look up a query by "walking" along the edges of the tree 
•  GATTACA 
•  Matches at position 2 

WalkTree 
 cur = ST.Root; qrypos = 0; 
 while (cur) 
   // check for partial matches   
   … 
   // walk the tree 
   edge = cur.getEdge(q[qrypos]); edgepos=0 
   dist = matchstrings(edge, edgepos, qry, qrypos) 
   if (qrypos+dist == length(qry)) 
       print "end-to-end match" 
   else if  (dist == length(edge))  
       cur=cur.getNode(edge[0]); qrypos+=dist 
   else 
    print "no match" 



Suffix Trees Searching 
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•  Look up a query by "walking" along the edges of the tree 
•  GACTACA 



Suffix Trees Searching 
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C… 

•  Look up a query by "walking" along the edges of the tree 
•  GACTACA 
•  Fell off tree – no match 



Suffix Trees Searching 
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Suffix Trees Searching 
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•  Look up a query by "walking" along the edges of the tree 
•  ATTAC 
•  Matches at 3 and 10 

•  Query Lookup in 2 phases: 
1.  Walk along edges to find matches 
2.  Walk subtree to find positions 

DepthFirstPrint(Node cur) 
if cur.isLeaf 

 print cur.pos 
else 

 foreach child in cur.children 
  DepthFirstPrint(child) 

[What is the running time of DFP 
      => How many nodes does the tree have?]   



Suffix Tree Properties & Applications 
Properties 
•  Number of Nodes/Edges: O(n) 
•  Tree Size: O(n) 
•  Max Depth: O(n) 
•  Construction Time: O(n) 

•  Uses suffix links to jump between nodes without rechecking 
•  Tricky to implement, prove efficiency 

Applications 
•  Sorting all suffixes: O(n)      [HOW?] 
•  Check for query: O(m) 
•  Find all z occurrences of a query O(m + z) 
•  Find maximal exact matches O(m) 
•  Longest common substring O(m) 

•  Used for many string algorithms in linear time 
•  Many can be implemented on suffix arrays using a little extra work 



4. Hashing 
•  Where is GATTACA in the human genome? 

–  Build an inverted index (table) of every kmer in the genome 

AAAAAAA 

AAAAAAC 

AAAAAAG 

… 

GATTAAT 

GATTACA 

GATTACC 

… 

TTTTTTG 

TTTTTTT 

2 

5000 

32000000 

… 

… 

… 

… 

•  How do we access the table? 
–  We can only use numbers to index 

•  table[GATTACA] <- error, does not compute 

–  Encode sequences as numbers 
•  Easy:  A = 110, C = 210, G = 310, T = 410 

–  GATTACA = 314412110 

•  Smart: A = 002, C = 012, G = 102, T = 112  
–  GATTACA = 100011110001002 = 915610 

–  Running time 
•  Construction: O(n) 
•  Lookup: O(1) + O(z) 
•  Sorts the genome mers in linear time 



Hash Tables and Hash Functions 
•  Number of possible sequences of length k = 4k 

–  47 = 16,384 (easy to store) 
–  420 = 1,099,511,627,776 (impossible to directly store in RAM) 

•  There are only 3B 20-mers in the genome 
⇒  Even if we could build this table, 99.7% will be empty 
⇒  But we don't know which cells are empty until we try 

•  Hash Function: hash(n) -> h 
•  Maps a number n in [0,R] to h in [0,H] where H << R 

•  More than one n will have the same h 
•  A good hash function evenly distributes the values  

–  R/H have the same hash value 
•  A really good hash function also spreads out the values 

•  Pr(hash(n)==hash(m)) = 1/H 
•  A common (decent) choice is hash(n) = n mod H 



Hash Table Lookup 
•  By construction, multiple keys have the same hash value 

–  Store elements with the same key in a bucket chained together 
–  Looking up a value scans the entire bucket 

•  Slows down the search as a function of the hash table load  
•  Warning: This complexity is usually hidden in the hash table code  

http://en.wikipedia.org/wiki/Hash_table 



Variable Length Queries 
•  Where are GATTACA and GATTACCA in the human genome? 

•  s = min(length of all queries) 
•  Build an inverted index of all s-mers (seeds) in the genome 

•  GATTACA => 2, 5000, 32000000, … 
•  GATTACC => 5500, 10101, 1000000, … 

•  Seed-and-extend to find end-to-end exact matches 
•  Check every occurrence of the qry seed (first s characters) 

•  ~1 in 4 are GATTACCA, 1 in 4 are GATTACCC, etc 
•  The specificity of the seed depends on length(q) & s 

•  Works best if max(length) =~ min(length) 
•  Works best if e-value(m) is << 1 



Exact Matching Review 
•  E-value depends on length of genome and inversely on query length 

•  E = (n-m+1)/4m 

BLAST, MAQ, ZOOM, 
RMAP, CloudBurst 

Seed-and-extend 

Hash Table     
(>15 GB)  

MUMmer, MUMmerGPU 

Tree Walking & DFS 

Suffix Tree 
 (>51 GB)  

Vmatch, PacBio Aligner 

Binary Search 

Suffix Array    
(>15 GB) 

Brute Force 
(3 GB) 

Naive 

Slow & Easy 

BANANA!
BAN!!
 ANA!
  NAN!
   ANA!



Algorithms Summary 
•  Algorithms choreograph the dance of data inside the machine 

•  Algorithms add provable precision to your method 
•  A smarter algorithm can solve the same problem with much less work 

•  Techniques 
•  Binary search: Fast lookup in any sorted list 
•  Divide-and-conquer: Split a hard problem into an easier problem 
•  Recursion: Solve a problem using a function of itself 
•  Randomization: Avoid the demon 
•  Hashing: Storing sets across a huge range of values 
•  Indexing: Focus on the search on the important parts 

•  Different indexing schemes have different space/time features 

•  Data Structures 
•  Primitives: Integers, Numbers, Strings 
•  Lists / Arrays / Multi-dimensional arrays 
•  Trees 
•  Hash Table 



Algorithmic Complexity 

What is the runtime as a function of the input size? 



Next Time 
•  In-exact alignment 

–  Smith & Waterman (1981) Identification of Common Molecular Subsequences. J. of 
Molecular Biology. 147:195-197. 

•  Sequence Homology 
–  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment 

search tool. J of Molecular Biology. 215 (3): 403–410. 

•  Whole Genome Alignment 
–  A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg 

(1999) Alignment of Whole Genomes. Nucleic Acids Research (27):11 2369-2376. 

•  Short Read Mapping 
–  Langmead B, Trapnell C, Pop M, Salzberg SL. (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome 
Biology. 10:R25.  


