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Exact Matching Review 
Where is GATTACA in the human genome? 

E=183,105 

BLAST, MAQ, ZOOM, 
RMAP, CloudBurst 

Seed-and-extend 

Hash Table     
(>15 GB)  

MUMmer, MUMmerGPU 

Tree Searching 

Suffix Tree 
 (>51 GB)  

Vmatch, PacBio Aligner 

Binary Search 

Suffix Array    
(>15 GB) 

Brute Force 
(3 GB) 

Naive 

Slow & Easy 

BANANA!
BAN!!
 ANA!
  NAN!
   ANA!



Algorithms Summary 
•  Algorithms choreograph the dance of data inside the machine 

•  Algorithms add provable precision to your method 
•  A smarter algorithm can solve the same problem with much less work 

•  Techniques 
•  Binary search: Fast lookup in any sorted list 
•  Divide-and-conquer: Split a hard problem into an easier problem 
•  Recursion: Solve a problem using a function of itself 
•  Randomization: Avoid the demon 
•  Hashing: Storing sets across a huge range of values 
•  Indexing: Focus on the search on the important parts 

•  Different indexing schemes have different space/time features 

•  Data Structures 
•  Primitives: Integers, Numbers, Strings 
•  Lists / Arrays / Multi-dimensional arrays 
•  Trees 
•  Hash Table 



Nodes in a Tree 
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http://en.wikipedia.org/wiki/Geometric_series 



Nodes in an unbalanced Tree 
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In-exact alignment 
•  Where is GATTACA approximately in the human genome? 

–  And how do we efficiently find them? 

•  It depends… 
–  Define 'approximately' 

•  Hamming Distance, Edit distance, or Sequence Similarity 
•  Ungapped vs Gapped vs Affine Gaps 
•  Global vs Local 
•  All positions or the single 'best'? 

–  Efficiency depends on the data characteristics & goals 
•  Smith-Waterman: Exhaustive search for optimal alignments 
•  BLAST: Hash based homology searches 
•  MUMmer: Suffix Tree based whole genome alignment 
•  Bowtie: BWT alignment for short read mapping 



Searching for GATTACA 
•  Where is GATTACA approximately in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

Match Score: 1/7 



Searching for GATTACA 
•  Where is GATTACA approximately in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

Match Score: 7/7 



Searching for GATTACA 
•  Where is GATTACA approximately in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A … 

Match Score: 1/7 



Searching for GATTACA 
•  Where is GATTACA approximately in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

Match Score: 6/7 <- We may be very interested in these imperfect matches 
      Especially if there are no perfect end-to-end matches 



Hamming Distance 

•  Metric to compare sequences (DNA, AA, ASCII, binary, etc…) 
–  Non-negative, identity, symmetry, triangle equality 
–  How many characters are different between the 2 strings? 

•  Minimum number of substitutions required to change transform A into B 

•  Traditionally defined for end-to-end comparisons 
–  Here end-to-end (global) for query, partial (local) for reference 

    [When is Hamming Distance appropriate?] 

•  Find all occurrences of GATTACA with Hamming Distance ! 1

    [What is the running time of a brute force approach?] 



Theorem:  An alignment of a sequence of length m 
with at most k differences must contain 
an exact match at least s=m/(k+1) bp long 

(Baeza-Yates and Perleberg, 1996) 
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Proof: Pigeon hole principle 
K=2 pigeons (differences) can't fill all K+1 pigeon holes (seeds) 

–  Search Algorithm 
–  Use an index to rapidly find short exact  

 alignments to seed longer in-exact alignments 
–  RMAP, CloudBurst, … 

–  Specificity of the seed depends on length 
   => See Lecture 1 

–  Length s seeds can also seed some lower quality alignments 
–  Won't have perfect sensitivity, but avoids very short seeds 

Seed-and-Extend Alignment 



Hamming Distance Limitations 
•  Hamming distance measures the number of 

substitutions (SNPs) 
– Appropriate if that’s all we expect/want to find 

•  Illumina sequencing error model 
•  Other highly constrained sequences 

•  What about insertions and deletions? 
– At best the indel will only slightly lower the score 
– At worst highly similar sequences will fail to align 



Example Alignments 

          ACGTCTAG 
          ||*****^     
          ACTCTAG-  

•  Hamming distance=5 
– 2 matches, 5 mismatches, 1 not aligned 

Nathan Edwards 



Example Alignments 

          ACGTCTAG 
          ^**||||| 
          -ACTCTAG  

•  Hamming distance = 2 
– 5 matches, 2 mismatches, 1 not aligned 

Nathan Edwards 



Example Alignments 

          ACGTCTAG 
          ||^||||| 
          AC-TCTAG  

•  Edit Distance = 1 
– 7 matches, 0 mismatches, 1 not aligned 

Nathan Edwards 



Global Alignment problem 
•  Given two sequences, S (length n) and T (length m), find the 

best end-to-end alignment of S and T. 
      [When is this appropriate? ] 

•  Edit distance (Levenshtein distance) 
–  Minimum number of substitutions, insertions and deletions between 2 

sequences. 
–  Hamming distance is an upper bound on edit distance 

•  Definition 
–  Let D(i,j) be the edit distance of the alignment of S[1...i] and T[1...j]. 
–  Edit distance of S and T (end-to-end) is D(n,m). 



TGCATAT ! ATCCGAT in 5 steps 

TGCATAT   ! (delete last T) 
TGCATA     ! (delete last A) 
TGCAT       ! (insert A at front) 
ATGCAT     ! (substitute C for 3rd G) 
ATCCAT     ! (insert G before last A)  
ATCCGAT       (Done) 

    

Edit Distance Example 

bioalgorithms.info 



TGCATAT ! ATCCGAT in 5 steps 

TGCATAT   ! (delete last T) 
TGCATA     ! (delete last A) 
TGCAT       ! (insert A at front) 
ATGCAT     ! (substitute C for 3rd G) 
ATCCAT     ! (insert G before last A)  
ATCCGAT       (Done) 
What is the edit distance?  5? 

    

Edit Distance Example 

bioalgorithms.info 



TGCATAT ! ATCCGAT in 4 steps 

TGCATAT   ! (insert A at front) 
ATGCATAT ! (delete 6th T) 
ATGCATA   ! (substitute G for 5th A) 
ATGCGTA   ! (substitute C for 3rd G) 
ATCCGAT  (Done) 

Edit Distance Example 

bioalgorithms.info 



TGCATAT ! ATCCGAT in 4 steps 

TGCATAT   ! (insert A at front) 
ATGCATAT ! (delete 6th T) 
ATGCATA   ! (substitute G for 5th A) 
ATGCGTA   ! (substitute C for 3rd G) 
ATCCGAT  (Done) 

       Can it be done in 3 steps??? 

Edit Distance Example 

bioalgorithms.info 



Recurrence Relation for D 
•  Computation of D is a recursive process. 

–  At each step, we only allow matches, substitutions, and indels 
–  D(i,j) in terms of D(i’,j’) for i’ ! i and j’ ! j. 

•  For i > 0, j > 0: 

  D(i,j) = min {   
        D(i-1,j) + 1,          // align 0 chars from S, 1 from T 
         D(i,j-1) + 1,          // align 1 chars from S, 0 from T 
         D(i-1,j-1) + !(S(i),T(j)) // align 1+1 chars 
         } 

•  Base conditions: 

–  D(i,0) = i, for all i = 0,...,n 
–  D(0,j) = j, for all j = 0,...,m 

[Why do we want the min? / 
What does edit distance tell us  

  about the sequences] 



7,5 6,5 6,6 

+! 
+1i +1d 

6,5 5,5 5,6 

+! 
+1i +1d 

6,6 5,6 5,7 

+! 

+1i +1d 

Using the recurrence 
•  D(TGCATAT, ATCCGAT) =  

 min { D(TGCATAT, ATCCGA) + 1, 
           D(TGCATA, ATCCGAT) + 1, 
     D(TGCATA, ATCCGA) +!(T,T) }  

7,7 

7,6 6,6 6,7 

+! +1i +1d 

[What is the 
running time?] 



Dynamic Programming 

•  We could code this as a recursive function call... 
...with an exponential number of function evaluations 

•  There are only (n+1)x(m+1) pairs i and j 
– We are evaluating D(i,j) multiple times 

•  Compute D(i,j) bottom up. 
–  Start with smallest (i,j) = (1,1). 
–  Store the intermediate results in a table. 

•  Compute D(i,j) after D(i-1,j), D(i,j-1), and D(i-1,j-1)  



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

[What does the initialization mean?] 



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[A,A] = min{D[A,]+1, D[,A]+1, D[,]+!(A,A)}  



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[A,AC] = min{D[A,A]+1, D[,AC]+1, D[,A]+!(A,C)}  



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[A,ACA] = min{D[A,AC]+1, D[,ACA]+1, D[,AC]+!(A,A)}  



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 3 4 5 6 7 

G 2 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[A,ACACACTA] = 7 
-------A!
*******|!
ACACACTA !

[What about the other A?] 



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 3 4 5 6 7 

G 2 1 1 2 3 4 5 6 7 

C 3 

A 4 

C 5 

A 6 

C 7 

A 8 

D[AG,ACACACTA] = 7 
----AG--!
****|***!
ACACACTA !



Dynamic Programming Matrix 
A C A C A C T A 

0 1 2 3 4 5 6 7 8 

A 1 0 1 2 3 4 5 6 7 

G 2 1 1 2 3 4 5 6 7 

C 3 2 1 2 2 3 4 5 6 

A 4 3 2 1 2 2 3 4 5 

C 5 4 3 2 1 2 2 3 4 

A 6 5 4 3 2 1 2 3 3 

C 7 6 5 4 3 2 1 2 3 

A 8 7 6 5 4 3 2 2 2 

D[AGCACACA,ACACACTA] = 2 
AGCACAC-A!
|*|||||*|!
A-CACACTA !



Global Alignment Schematic 

T 

S 

(0,0) 

(n,m) 

•  A high quality alignment will stay close to the diagonal 
•  If we are only interested in high quality alignments, we can skip filling in 

cells that can't possibly lead to a high quality alignment 
•  Find the global alignment with at most edit distance d: O(2dn) 

Nathan Edwards 



Searching for GATTACA 

T 

P 

(0,0) 

(n,m) 

T’ 

Similarity P & T’ " ! 

•  Don’t “charge” for optimal alignment starting in cells (0,j) 
•  Base conds: D(0,j) = 0, D(i,0) = "k!i s(S(k),‘-’)  

•  Don’t “charge” for ending alignment at end of P (but not necc. T) 
•  Find cell (n,j) with edit distance ! ! 

Nathan Edwards 



Sequence Similarity 
•  Similarity score generalizes edit distance 

–  Certain mutations are much more likely than others 
•  Hydrophilic -> Hydrophillic much more likely than Hydrophillic -> Hydrophobic 

–  BLOSSUM62 
•  Empirically measure substitution rates among proteins that are 62% identical 
•  Positive score: more likely than chance, Negative score: less likely 



Edit Distance and Global Similarity 
  D(i,j) = min {   
        D(i-1,j) + 1,  
         D(i,j-1) + 1,  
         D(i-1,j-1) + !(S(i),T(j)) 
         } 

   s = 4x4 or 20x20 scoring matrix 

  S(i,j) = max { 
         S(i-1,j) + 1,  
         S(i,j-1) + 1,  
         S(i-1,j-1) + s(S(i),T(j)) 
         } 
   

[Why max?] 



Local vs. Global Alignment 
•  The Global Alignment Problem tries to find 

the best path between vertices (0,0) and (n,m) 
in the edit graph. 

•  The Local Alignment Problem tries to find the 
best path among paths between arbitrary 
vertices (i,j) and (i’, j’) in the edit graph. 

[How many (i,j) x (i',j') pairs are there?] 

bioalgorithms.info 



Local vs. Global Alignment (cont’d) 

•  Global Alignment 

•  Local Alignment—better alignment to find 
conserved segment 

    --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC 
      |  || |  ||  | | | |||    || | | |  | ||||   | 
    AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C 

                tccCAGTTATGTCAGgggacacgagcatgcagagac 
                     |||||||||||| 

aattgccgccgtcgttttcagCAGTTATGTCAGatc 

bioalgorithms.info 



Local Alignment: Example 

Global alignment 

Local alignment 

Compute a “mini” 
Global Alignment to 
get Local 

bioalgorithms.info 



The Local Alignment Recurrence 

•  The largest value of si,j over the whole edit 
graph is the score of the best local alignment. 

•  The recurrence: 

                      0      
si,j   = max     si-1,j-1 + ! (vi, wj) 
                     s i-1,j  + ! (vi, -) 
                     s i,j-1 + ! (-, wj) 

Power of ZERO: there is 
only this change from the 
original recurrence of a 
Global Alignment - since 
there is only one “free ride” 
edge entering into every 
vertex 

bioalgorithms.info 



Local Alignment Schematic 

T 

S 

(0,0) 

(n,m) 

Max score 

Nathan Edwards 



Affine Gap Penalties 
•  In nature, a series of k indels often come as a 

single event rather than a series of k single 
nucleotide events: 

Normal scoring would 
give the same score 
for both alignments 

This is more 
likely. 

This is less 
likely. 

bioalgorithms.info 



Accounting for Gaps 
•  Gaps- contiguous sequence of spaces in one of the rows 

•  Score for a gap of length x is:  -(! + "x) 
    where ! >0 is the gap opening penalty 
    ! will be large relative to gap extension penalty " 

–  Gap of length 1: -(! + ") = -6 
–  Gap of length 2: -(! + "2) = -7 
–  Gap of length 3: -(! + "3) = -8 

•  Smith-Waterman-Gotoh incorporates affine gap penalties 
without increasing the running time O(mn) 



Break 



•  Rapidly compare a sequence Q to a database to find all 
sequences in the database with an score above some 
cutoff S. 
–  Which protein is most similar to a newly sequenced one? 
–  Where does this sequence of DNA originate? 

•  Speed achieved by using a procedure that typically finds 
“most” matches with scores > S. 
–  Tradeoff between sensitivity and specificity/speed 

•  Sensitivity – ability to find all related sequences 
•  Specificity – ability to reject unrelated sequences 

Basic Local Alignment Search Tool 

(Altschul et al. 1990) 



Seed and Extend 
    FAKDFLAGGVAAAISKTAVAPIERVKLLLQVQHASKQITADKQYKGIIDCVVRIPKEQGV 
    F  D  +GG AAA+SKTAVAPIERVKLLLQVQ ASK I  DK+YKGI+D ++R+PKEQGV 
    FLIDLASGGTAAAVSKTAVAPIERVKLLLQVQDASKAIAVDKRYKGIMDVLIRVPKEQGV 

•  Homologous sequence are likely to contain a short high 
scoring word pair, a seed. 
–  Unlike Baeza-Yates, BLAST *doesn't* make explicit guarantees 

•  BLAST then tries to extend high scoring word pairs to 
compute maximal high scoring segment pairs (HSPs). 
–  Heuristic algorithm but evaluates the result statistically. 



BLAST  - Algorithm - 

•  Step 1: Preprocess Query 
    Compile the short-high scoring word list from query. 
     The length of query word, w, is 3 for protein scoring 
     Threshold T is 13 



BLAST  - Algorithm - 

•  Step 2: Construct Query Word Hash Table 

  Query: LAALLNKCKTPQGQRLVNQWIKQPLMD 

W
ord list 

Hash Table 



BLAST  - Algorithm - 

•  Step 3: Scanning DB 
     Identify all exact matches with DB sequences 

Query Word Neighborhood 
Word list 

Sequences in DB 

Step 1 Step 2 

Sequence 1 

Sequence 2 



BLAST  - Algorithm - 

•  Step 4 (Search optimal alignment) 
 For each hit-word, extend ungapped alignments in both directions. 
 Let S be a score of hit-word 

•  Step 5 (Evaluate the alignment statistically) 
  Stop extension when E-value (depending on score S) become less than 

threshold. The extended match is called High Scoring Segment Pair.  

   E-value = the number of HSPs having score S (or higher) expected to occur by chance. 
    ! Smaller E-value, more significant in statistics 
          Bigger E-value , by chance 

   E[# occurrences of a string of length m in reference of length L]  ~ L/4m 



BLAST  E-values 

The expected number of HSPs with the score at least S is : 

  E = K*n*m*e-#S   
   K, # is constant depending on model 

         n, m  are the length of query and sequence 

The probability of finding at least one such HSP is: 

  P = 1 - eE 

             ! If a word is hit by chance (E-value is bigger),  
        P become smaller.  

The distribution of Smith-Waterman local alignment scores between two 
random sequences follows the Gumbel extreme value distribution 



Parameters 

•  Larger values of w increases the number of 
neighborhood words, but decreases the number of 
chance matches in the database.   
–  Increasing w decreases sensitivity. 

•  Larger values of T decrease the overall execution 
time, but increase the chance of missing a MSP having 
score " S.   
–  Increases T decreases the sensitivity 

•  Larger values of S increase the specificity.  The value 
of S is affected by changes in the expectation value 
parameter. 



Very Similar Sequences 

Query: HBA_HUMAN Hemoglobin alpha subunit 
Sbjct: HBB_HUMAN Hemoglobin beta subunit 

Score =  114 bits (285),  Expect = 1e-26 
Identities = 61/145 (42%), Positives = 86/145 (59%), Gaps = 8/145 (5%) 

Query  2   LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV 55 
           L+P +K+ V A WGKV  +  E G EAL R+ + +P T+ +F  F      D   G+ +V 
Sbjct  3   LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60 

Query  56  KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115 
           K HGKKV  A ++ +AH+D++    + LS+LH  KL VDP NF+LL + L+  LA H    
Sbjct  61  KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120 

Query  116 EFTPAVHASLDKFLASVSTVLTSKY 140 
           EFTP V A+  K +A V+  L  KY 
Sbjct  121 EFTPPVQAAYQKVVAGVANALAHKY 145 



Quite Similar Sequences 

Query: HBA_HUMAN Hemoglobin alpha subunit 
Sbjct: MYG_HUMAN Myoglobin 

Score = 51.2 bits (121), Expect = 1e-07,  
Identities = 38/146 (26%), Positives = 58/146 (39%), Gaps = 6/146 (4%) 

Query  2  LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV  55 
          LS  +   V   WGKV A    +G E L R+F   P T   F  F      D    S  + 
Sbjct  3  LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL  62 

Query  56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA  115 
          K HG  V  AL   +         +  L+  HA K ++     + +S C++  L +  P  
Sbjct  63 KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG  122 

Query  116 EFTPAVHASLDKFLASVSTVLTSKYR  141 
           +F      +++K L      + S Y+ 
Sbjct  123 DFGADAQGAMNKALELFRKDMASNYK  148 



Not similar sequences 

Query: HBA_HUMAN Hemoglobin alpha subunit 
Sbjct: SPAC869.02c [Schizosaccharomyces pombe] 

 Score = 33.1 bits (74),  Expect = 0.24 
 Identities = 27/95 (28%), Positives = 50/95 (52%), Gaps = 10/95 (10%) 

Query  30  ERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAH  89 
           ++M  ++P      P+F+ +H  +      + +A AL N   ++DD+  +LSA  D     
Sbjct  59  QKMLGNYPEV---LPYFNKAHQISL--SQPRILAFALLNYAKNIDDL-TSLSAFMDQIVV 112 

Query  90  K---LRVDPVNFKLLSHCLLVTLAAHLPAEF-TPA  120 
           K   L++   ++ ++ HCLL T+   LP++  TPA 
Sbjct  113 KHVGLQIKAEHYPIVGHCLLSTMQELLPSDVATPA  147 



Blast Versions 

Program! Database! Query!

BLASTN" Nucleotide" Nucleotide"
BLASTP" Protein" Protein"

BLASTX" Protein" Nucleotide translated in
to protein"

TBLASTN" Nucleotide translated in
to protein" Protein"

TBLASTX" Nucleotide translated in
to protein"

Nucleotide translated in
to protein"



NCBI Blast 
•  Nucleotide Databases 

–  nr: All Genbank 
–  refseq: Reference 

organisms 
–  wgs: All reads 

•  Protein Databases 
–  nr: All non-redundant 

sequences 
–  Refseq: Reference 

proteins  



BLAST Exercise 
>whoami 
taaactttctcgatcattattcagagtttctagttgctctagtgttaattttaactccga 
ttctagataatactctcgaaaaacaatggttccttctccttgttcaagtatgctccaaaa 
catatcattatggttcacaaaaccatttcctataacatctaatagtatttttgtggataa 
aagatactcctgattttctagattaattggaaacggctgtatttgtgacctttttttgta 
actacataagtccttaaataaatgaaggattaacccaaaaccattgttatatgagtccct 
agtttcacactgtaagcttaacatttcctcatagtttataccaatatatatggatttaac 
aggatcttctatcctcgtctgcaacttatctttaccaaacttagtacatatccatttggt 
aacttgcttcataaaactccctatcccgttctcttccattgcattctcatgtctaattat 
cccgtgttcaactactcgagtaatacattcctttttcattttagctacttcaagtgtgca 
tggtttctcgccatattcaagctcaatttctttttccgctttgccaagatactttttaag 



Whole Genome Alignment 
with MUMmer 

Slides Courtesy of Adam M. Phillippy 
amp@umics.umd.edu 



Goal of WGA 
•  For two genomes, A and B, find a mapping from 

each position in A to its corresponding 
position in B 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

41 bp genome 



Not so fast... 
•  Genome A may have insertions, deletions, 

translocations, inversions, duplications or SNPs 
with respect to B (sometimes all of the above) 

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA 



WGA visualization 
•  How can we visualize whole genome alignments? 

•  With an alignment dot plot 
–  N x M matrix 

•  Let i = position in genome A 
•  Let j = position in genome B 
•  Fill cell (i,j) if Ai shows similarity to Bj 

–  A perfect alignment between A and B would completely fill 
the positive diagonal 

T 

G 

C 

A 

A C C T 



B 

A 

B 

A 

Translocation Inversion Insertion 

http://mummer.sourceforge.net/manual/AlignmentTypes.pdf 





MUMmer 
•  Maximal Unique Matcher (MUM) 

–  match 
•  exact match of a minimum length 

–  maximal 
•  cannot be extended in either direction without a mismatch 

–  unique 
•  occurs only once in both sequences (MUM) 
•  occurs only once in a single sequence (MAM) 
•  occurs one or more times in either sequence (MEM) 



Fee Fi Fo Fum, 
is it a MAM, MEM or MUM? 

R 

Q 

MUM : maximal unique match 
MAM : maximal almost-unique match 
MEM : maximal exact match 



Seed and Extend 
•  How can we make MUMs BIGGER? 

1.  Find MUMs 
"  using a suffix tree 

2.  Cluster MUMs 
"  using size, gap and distance parameters 

3.  Extend clusters 
"  using modified Smith-Waterman algorithm 



Seed and Extend  
visualization 

R 

Q 

FIND all MUMs 
CLUSTER consistent MUMs 
EXTEND alignments 



WGA example with nucmer 
•  Yersina pestis CO92 vs. Yersina pestis KIM 

–  High nucleotide similarity, 99.86% 
•  Two strains of the same species 

–  Extensive genome shuffling 
•  Global alignment will not work 

–  Highly repetitive 
•  Many local alignments 



WGA Alignment 

See manual at http://
mummer.sourceforge.net/manual 

nucmer –maxmatch CO92.fasta KIM.fasta 
-maxmatch  Find maximal exact matches (MEMs) 

delta-filter –m out.delta > out.filter.m 
-m  Many-to-many mapping 

show-coords -r out.delta.m > out.coords 
-r  Sort alignments by reference position 

dnadiff out.delta.m 
Construct catalog of sequence variations 

mummerplot --large --layout out.delta.m 
--large   Large plot 
--layout Nice layout for multi-fasta files 
--x11   Default, draw using x11 (--postscript, --png) 
*requires gnuplot 





References 
–  Documentation 

•  http://mummer.sourceforge.net 
»  publication listing 

•  http://mummer.sourceforge.net/manual 
»  documentation 

•  http://mummer.sourceforge.net/examples 
»  walkthroughs 

–  Email 
•  mummer-help@lists.sourceforge.net 
•  amp@umiacs.umd.edu 



Bowtie: Ultrafast and memory 
efficient alignment of short DNA 
sequences to the human genome 

Slides Courtesy of Ben Langmead 
(langmead@umiacs.umd.edu) 



Short Read Applications 
•  Genotyping: Identify Variations 

•  *-seq: Classify & measure significant peaks 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 

TCGGAAATT 
CGGAAATTT 
CGGAAATTT 

AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

GGAAATTTG 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
ATAC… …CC 

 GAAATTTGC 



Short Read Applications 

Finding the 
alignments is 
typically the 
performance 
bottleneck 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 

TCGGAAATT 
CGGAAATTT 
CGGAAATTT 

AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

GGAAATTTG 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
ATAC… …CC 

 GAAATTTGC 



Short Read Alignment 

•  Given a reference and a set of reads, report at 
least one “good” local alignment for each read 
if one exists 
–  Approximate answer to: where in genome did read originate? 

…TGATCATA… 
  GATCAA 

…TGATCATA… 
  GAGAAT 

better than 

•  What is “good”?  For now, we concentrate on: 

…TGATATTA… 
  GATcaT 

…TGATcaTA… 
  GTACAT 

better than 

–  Fewer mismatches is better 
–  Failing to align a low-quality 

base is better than failing to 
align a high-quality base 



Indexing 
•  Genomes and reads are too large for direct 

approaches like dynamic programming 

•  Indexing is required 

•  Choice of index is key to performance 

Suffix tree Suffix array Seed hash tables 
Many variants, incl. spaced seeds 



Indexing 
•  Genome indices can be big.  For human: 

•  Large indices necessitate painful compromises 
1.  Require big-memory machine 
2.  Use secondary storage 

> 35 GBs > 12 GBs > 12 GBs 

3.  Build new index each run 
4.  Subindex and do multiple passes 



Burrows-Wheeler Transform 

•  Reversible permutation of the characters in a text 

•  BWT(T) is the index for T 

Burrows-Wheeler 
Matrix BWM(T) 

BWT(T) T 

A block sorting lossless data compression algorithm. 
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124 

Rank: 2 

Rank: 2 

LF Property  
implicitly encodes 
Suffix Array 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 
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BWT( Reference ) 
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Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



BWT Short Read Mapping 
1.  Trim off very low quality bases & adapters from ends of 

sequences 

2.  Execute depth-first-search of the implicit suffix tree 
represented by the BWT 

1.  If we fail to reach the end, back-track and resume search 
2.  BWT enables searching for good end-to-end matches entirely in RAM 

1.  100s of times faster than competing approaches 

3.  Report the "best" n alignments 
1.  Best = fewest mismatches/edit distance, possibly weighted by QV 
2.  Some reads will have millions of equally good mapping positions 
3.  If reads are paired, try to find mapping that satisfies both 



Mapping Applications 
•  Mapping Algorithms 

–  Bowtie: (BWT) Fastest, No indels => moderate sensitivity 
–  BWA: (BWT) Fast, small indels => good sensitivity 
–  Novoalign: (Hash Table) Slow, RAM intensive, big indels => high sensitivity 

•  Variation Detection 
–  SNPs 

•  SAMTools: Bayesian model incorporating depth, quality values, also indels 
•  SOAPsnp: SAMTools + known SNPs, nucleotide specific errors, no indels 

–  Structural Variations 
•  Hydra: Very sensitive alignment, scan for discordant pairs 
•  Large indels: Open Research Problem to assembly their sequence 

–  Copy number changes 
•  RDexplorer: Scan alignments for statistically significant coverage pileup 

–   Microsatellite variations 
•  See Mitch! 



Sequence Alignment Summary 
•  Distance metrics: 

–  Hamming: How many substitutions? 
–  Edit Distance: How many substitutions or indels? 
–  Sequence Similarity: How similar (under this model of similarity)? 

•  Techniques 
–  Seed-and-extend: Anchor the search for in-exact using exact only 
–  Dynamic Programming: Find a global optimal as a function of its parts 
–  BWT Search: implicit DFS of SA/ST  

•  Sequence Alignment Algorithms: Pick the right tool for the job 
–  Smith-Waterman: DP Local sequence alignment 
–  BLAST: Homology Searching 
–  MUMmer: Whole genome alignment, short read mapping (with care) 
–  Bowtie/BWA/Novoalign: short read mapping 



Supplemental 



Suffix Tree for atgtgtgtc$ 

atgtgtgtc$ $ 
c$ gt t 

c$ c$ gt 

7 

1 9 

5 3 

8 

6 

4 2 

10 

c$ c$ 

c$ 

gt gtc$ 

gtc$ 

gt 

Drawing credit: Art Delcher 



MUMmer Clustering 

cluster length = !mi 

gap distance = C 

indel factor = |B – A| / B   or   |B – A| 

R 

Q 

A 

B 

C 

m1 m2 m3 



MUMmer Extending 

R 

Q 

break length = A 

A 

B 

break point = B 

score ~70% 
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MUMmer Banded Alignment 



Burrows-Wheeler Transform 

•  Recreating T from BWT(T) 
– Start in the first row and apply LF repeatedly, 

accumulating predecessors along the way 

Original T 



BWT Exact Matching 
•  LFc(r, c) does the same thing as LF(r) but it 

ignores r’s actual final character and 
“pretends” it’s c: 

Rank: 2 Rank: 2 

L 

F 

LFc(5, g) = 8  

g 



BWT Exact Matching 
•  Start with a range, (top, bot) encompassing all 

rows and repeatedly apply LFc: 
top = LFc(top, qc); bot = LFc(bot, qc) 
qc = the next character to the left in the query 

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000. 



BWT Exact Matching 

•  If range becomes empty (top = bot) the 
query suffix (and therefore the query as a 
whole) does not occur 


