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Sequence Alignment Review

DP Alignment

A/ C A|C|A|C | T A

0 | 2 3 4 5 6 7 8

A | 0 | 2 3 4 5 6 7
G 2 1 | 2 3 4 5 6 7
C 3 2 1 2 2 3 4 5 6
Al 4 3 2 il 2 2 3 4 5
C 5 4 3 2 1 2 2 3 4
A | 6 5 4 3 2 il 2 3 3
C 7 6 S 4 3 2 1 2 3
A | 8 7 6 5 4 3 2 2 2

D[AGCACACA ACACACTA] = 2
AGCACAC-A
I*I1111*]

A-CACACTA

Guaranteed optimal, but slow

BLAST

Very Similar Sequences

Query: HBA_HUMAN Hemoglobin alpha subunit
Shict: HBB_HUMAN Hemoglobin beta subunit

Score = 114 bits (285), Expect = le-26
Identities = 61/145 (42%), Positives = 86/145 (59%), Gaps = 8/145 (5%)

Query 2 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF -~ -~~~ DLSHGSAQV 55
L+P +K+ VA WGKV + E G EAL R+ + +P T+ +F F D G+ +V
Shict 3 LTPEEKSAVTALWGKV- -NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60

Query 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115
K HGKKV A ++ +AH+D++ + LS+LH KL VDP NF+LL + L+ LA H
Shict 61 KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120

Query 116 EFTPAVHASLDKFLASVSTVLTSKY 140

EFTP V A+ K +A V+ L KY
Sbict 121 EFTPPVQAAYQKVVAGVANALAHKY 145

Seed-and-extend for "good" matches to a DB

MUMmer

S
§< \ /
X /< / \

A

Whole Genome Alignment w/ Suffix Tree

Bowtie

* Reversible permutation of the characters in a text

Rank:2 dacaacg
L, aacgSac
aacg$—> b.aca—— gc$aaac
T caacg$a iy
cg$acaa ™
g$Sacaac Rank: 2
Burrows-Wheeler
Mt BT LF Property
implicitly encodes
* BWT(T) is the index for T Suffix Array

Fast searching for short read mapping




Outline

|. Graphs and Graph Theory

2. Genome Assembly
|. Assembly Validation




Graphs

e Nodes

— People, Proteins, Genes, Neurons, Sequences, Numbers, ...

* Edges
— Ais connected to B
— Alis related to B
— A regulates B
— A precedes B
— A interacts with B
— Alis related to B



Graph Types

Directed
Acyclic
List Tree Graph

Complete
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Biological Networks

Figure 5 Putative regulatory el shared b groups of correlated and
anticorrelated genes
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Network Characteristics

C. elegans D. melanogaster S. cerevisiae
# Nodes 2646 7464 4965
# Edges 4037 22831 17536
Avg. /| Max Degree | 3.0 / 187 6.1/ 178 7.0 / 283
# Components 109 66 32
Largest Component | 2386 7335 4906
Diameter 14 12 11
Avg. Shortest Path | 4.8 4.4 4.1
Data Sources 2H

2x2H, TAP-MS

8x2H, 2xTAP, SUS

Small World: Avg. Shortest Path between nodes (proteins) is small
Scale Free: Power law distribution of degree — preferential attachment




Kevin Bacon and Bipartite Graphs
!

Q1:

Find any path
from
Kevin Bacon
to
Jason Lee

) |

Depth First Search:
6 hops

Bacon Distance:




Kevin Bacon and Bipartite Graphs

Q2:

Find the shortest
path from
Kevin Bacon
to
Jason Lee

Breadth First Search:
4 hops

Bacon Distance:




DFS

DFS(start, stop) 0
/[ initialize all nodes dist = -1 A B,C
start.dist =0 A B 6 H

list.addEnd(start)
while (!list.empty()) A.B,G,M

cur = list.end() o
if (cur == stop) [How many nodes will it visit?]
print cur.dist;
else
foreach child in cur.children [What's the running time?]
if (child.dist == -1)
child.dist = cur.dist+|

3 ) [What happens for disconnected
list.addEnd(child)

components?]




DFS

DFS(start, stop)
/[ initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
cur = list.end()
if (cur == stop)
print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+|
list.addEnd(child)

0

A.B,C
A.B,G,H
A.B,GM

BFS
BFS(start, stop)

/I initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
cur = list.begin()
if (cur == stop)
print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+1
list.addEnd(child)

0

AB,C
B,.C.D,E
C,D,E/FL
D,E,F.L,G,H
E.F.L,G,H,I
F.L,GH,IJ
L,G,H,IlJK
G,H,1J.KO
H,l,J,K,O
1,J,K,O,M
J,K,O,M
K,O,M;N
OM,N

M,N




BFS and TSP

* BFS computes the shortest path between a
pair of nodes in O(|E[) = O(|N|?)

* What if we wanted to compute the shortest
route visiting every node once!

— Traveling Salesman Problem A

ABDCA:4+2+5+3 = |4
ACDBA: 3+5+2+4 = | 4*
ABCDA: 4+[+5+] = ||
ADCBA: | +5+1+4 = | |*
ACBDA: 3+1+2+1 =7
ADBCA: [+2+[+3=7 *




TSP Hardness

* No known way to partition the
problem

— Knowing optimal tour through n cities
doesn't seem to help much for n+1
cities

[How many possible tours for n cities?]

* Extensive searching is the only
known provably correct algorithm
— Brute Force: O(n!)

e ~20 cities max
e 200=24x 108




Greedy Search

Greedy Search 10
cur=graph.randNode() 11
while (!done) 11 10
next=cur.getNextClosest() 11
o0

Greedy: ABDCA = |10+10+50+11= 8l
Optimal: ACBDA = [+ 1+10+11] =43

Greedy finds the global optimum only when
|. Greedy Choice: Local is correct without reconsideration

2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins



Branch-and-Bound

* Abort on suboptimal solutions
as soon as possible
— ADBECA = | +2+2+2+3 = |0
— ABDE = 4+2+30> 10
— ADE=1+30> 10
— AED = 1+30> 10

* Performance Heuristic
— Always gives the optimal answer
— Doesn't always help performance, but often does

— Current TSP record holder:
* 85,900 cities [When not?]

- 85900! = | (386526



TSP and NP-complete
* TSP is one of many extremely hard

problems of the class NP-complete  « K}\

— Extensive searching is the only way to

find an exact solution Y

— A _

— Often have to settle for approx. solution / A \

* WARNING: Many optimization problems are in this class
— Find a tour the visits every node once
— Find the smallest set of vertices covering all the edges
— Find the largest clique in the graph
— Find a set of items with maximal value but limited weight

— Maximizing the number of tetris pieces played

— http://en.wikipedia.org/wiki/List_of NP-complete problems



Shortest Common Superstring

Given: S={s,, ..., s, }

Problem: Find minimal length superstring of S

S; 5,83 = CAC CACC 15
s, CACCC S;,5:,8,= CAC GGGTGC14

s, CCGGGTGC $5,5,,83= CCGGGTG ACC 15
s; CCACC S,,55,8; = CCGGGTG C 13
$3,5,8,=C GGGTGC 12

$3,5,,8;,= CCA ACCC 15

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH



Paths through graphs and assembly

* Hamiltonian circuit: visit each node (city)
exactly once, returning to the start

— If we could do this fast, we could exactly assemble
genomes as the shortest common superstring

[ Is this the right model for assembly? ]




Eulerian Cycle Problem

* Seven Bridges of Konigsberg

— Find a cycle that visits every edge exactly once
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[Can you find the cycle?]



Euler Theorem

* A graph is balanced if for every vertex the
number of incoming edges equals to the

number of outgoing edges:
in(v)=out(v)
* Theorem: A connected graph is Eulerian if and
only if each of its vertices is balanced.

(A

@0
()

bioalgorithms.info




Algorithm for Constructing an Eulerian Cycle

a. Start with an arbitrary vertex
v and form an arbitrary cycle R
with unused edges until a dead
end is reached. Since the S
graph is Eulerian this dead end
is necessarily the starting

. . ()
point, I.e., vertex v.

bioalgorithms.info



Algorithm for Constructing an Eulerian Cycle (cont’'d)

b. If cycle from (a) above is not
an Eulerian cycle, it must P
contain a vertex w, which
has untraversed edges. - O o=
Perform step (a) again, using \
vertex w as the starting
point. Once again, we will 5)

end up in the starting vertex

W.

bioalgorithms.info



Algorithm for Constructing an Eulerian Cycle (cont’'d)

c. Combine the cycles
from (a) and (b) into |
a single cycle and “ et

iterate step (b).

(<)

bioalgorithms.info



Counting Eulerian Tours

@ ARERCRD

@“"@“—)@ or
( > ARCRERD
C

Generally an exponential number of compatible sequences
— Value computed by application of the BEST theorem (Hutchinson, 1975)

W(G,t)z(detL){ 1‘{/(7- ) }{ q au.,,} :
ue uv)EE

L = n x n matrix with r-a,, along the diagonal and -a,, in entry uv

r, = d*(u)* 1 if u=t, or d*(u) otherwise

a,, = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.
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Milestones

Vil 268 February 20 977 “-r

articles
Nucleotide sequence of bacteriophage
® X174 DNA

F. Sanger, G. M. Air", B. G, Bareell, N, L. Brown', A. R, Coalson, J, C, Fiddes,
C. A, Hutchison 1115, P, M. Slocombe’ & M. Smith*
- ke l

4. Comiwntpr CB2 3011, UK

MEC Laburnbory of Mebas

1977. Sanger et al.
Is* Complete Organism
5375 bp

o

SCICICE

. T arh
\ W'
Ne

e~ =, _n
The :
Drosophila
Cenome

2000. Myers et al.
|t Large WGS Assembly.
Celera Assembler. | 16 Mbp

in Genome Assembly

Science

1998. C.elegans SC
Ist Multicellular Organism
BAC-by-BAC Phrap. 97Mbp

1995. Fleischmann et al.
It Free Living Organism
TIGR Assembler. 1.8Mbp

THE .
HUMAN _‘f,'“‘
GENOMI

e\' : '
A fees \:L....‘k._' =
2001.Venter et al, IHGSC

Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

2010.Li et al.
Ist Large SGS Assembly.
SOAPdenovo 2.2 Gbp



old” way of genome sequencing

Cloning and clone handling are
very labor intensive

Throughput of capillary
sequencing machines is limited

ARl 3730M
{tgohed Bugyitrra Senger )

P %0 1 100 basen/ read

DNA extraction

Clone into Vectors

OOO OOOOO O OOO

11

Transform bacteria, grow, isolate vector DNA
!

Sequence the brary

+-9-3-3-5-o-

Assemble contiguous fragments
‘Q - - ‘Q - «Q - «4 :Q.ﬁ’:

> Y > Tt T O e

Methods in Moleoular Biology 791,117 WS 2007 Flornan Riker IAM / BOKU v 123



Solexa Sequencing

3'

s'

ol -3

~ \

. A

by ‘.

Q
o
A

L

Sequencing

DNA
(0.01 - 1.0 pg)

‘
i
i

Sample
preparation

Image acquisition Base calling



Typical contig coverage

A o
%I)
(]
%
6.1 ©
5.1
4_1
31
xS w10 N | el B
i i L
Contig
Reads

Imagine raindrops on a sidewalk



Lander-VWaterman stapist'ic.s .

L = read length
T = minimum overlap

G = genome size
N = number of reads

c = coverage (NL / G)
c=1-T/L
E#islands) = Ne<@ — 5=

E(island size) = L(e«°—- 1)/ c+ | -0

contig = island with 2 or more reads




Genome Coverage

|dealized assembly

Uniform probability of a read
starting at a given position
— p=G/N

Poisson distribution in coverage
along genome

— Contigs end when there is no
overlapping read

Contig length is a function of
coverage and read length

— Short reads require much
higher coverage

Expected Contig Length (bp)

™

100k

10k

1k

100

Lander Waterman Expected Contig Length vs Coverage

/

panda N50 +

panda mean +

1000 bp
710 bp
250 bp
100 bp
52 bp
30 bp

ERODEON

5 10 15 20 25 30 35 40

Read Coverage

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research 20, | 165-73.




Two Paradigms for Assembly

NKX QWP oo oD

a) Read Layout

GACCTACA
ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

b) Overlap Graph

c) de Bruijn Graph

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research 20, | 165-73.




Overlap-Layout-Consensus

Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and
contigs into supercontigs

Consensus: derive the DNA

sequence and correct read errors ACGATTACAATAGGTT..

bioalgorithms.info



All pairs alignment

* Needed by the assembler
* Try all pairs — must consider ~ n? pairs
* Smarter solution: only n x coverage (e.g. 8) pairs

are possible

— Build a table of k-mers contained in sequences (single
pass through the genome)

— Generate the pairs from k-mer table (single pass
through k-mer table)
E

A k-mer
77N\

B

F -

C

I




Overlap between two sequences

overlap/(JQ bases)  oyerhang (6 bases)
- N — A
+.AGCCTAGACCTACA G CAGGAC
CAGTACTTGG T CTTATCCGGT...
overhang % identity = 18/19 % = 94.7%

overlap - region of similarity between regions
overhang - un-aligned ends of the sequences

The assembler screens merges based on:
* length of overlap

* % identity in overlap region

* maximum overhang size.

[How do we compute the overlap?]



Overlap Graph: Hamiltonian Approach

Each vertex represents a read from the original sequence.
Vertices from repeats are connected to many others.

Reieat Reieat Reﬁeat

==

bioalgorithms.info



Repeat Types

Low-Complexity DNA (e.g. ATATATATACATA..))

Microsatellite repeats  (a,...a)N where k ~ 3-6
(e.g. CAGCAGTAGCAGCACCAQG)

Transposons/retrotransposons
— SINE Short Interspersed Nuclear Elements
(e.g., Alu: ~300 bp long, 108 copies)

— LINE Long Interspersed Nuclear Elements
~500 - 5,000 bp long, 200,000 copies

— LTR retroposons Long Terminal Repeats (~700 bp) at each end
Gene Families genes duplicate & then diverge
Segmental duplications  ~very long, very similar copies
A large fraction of the genome is repetitive

=> any repeat longer than the read length may be problematic
bioalgorithms.info



Unitigging: Pruning the Overlap

B—E

A - g S
E b \\‘1541

N\ F
True Layout Original Overlap Graph

E

v
B\>
E E
/N PNy A.B.D
> 4
A D A

Contained Transitive -
Read v Unique
Edge Join
Removal R I .
cmova Collapsing

Theorem: SCS of unitigs = SCS of reads



* If n reads are a uniform random sample of the genome of length G,
we expect k=n A /G reads to start in a region of length 4.

— If we see many more reads than k (if the arrival rate is > A) , it is likely to be
a collapsed repeat

-~ Requires an accurate genome size estimate

Identify those that cover unique DNA = U-unitigs
0L B TR (AniG) ¥
: ist. For Unique : \ e’
Dist. For Repetitive /\ Pril « copy) ) nA
AR SL o A(AK) = Inf T | o} A a2 k2
- " PRSI P > ‘Pr(?.—mp,\'), (2An/G) . .‘. (s

Definitely Repetitive =~ Don’'t Know Definitely Unique k!



Initial Scaffolding

Scatfold

—— —T1T S T, T,

U-Unitig % ) \k

™/

Create a initial scaffold of unique unitigs (U-Unitigs) whose
A-stat > 5. Also recruit borderline unitigs whose A-stat is > 2
and have consistent mates with the U-Unitigs.



Repeat Resolution

Scatfold

— — T T, T,

\
% /\\

Rock — Stone

f

Place rocks (A-stat > 0 with multiple consistent mates), and stones (single mate and
overlap path with placed objects) into the gaps. Pebbles, unitigs lackings mates, are
no longer incorporated regardless of overlap qualities.



Scaffold merging

pn v svqua—— A

After placing borderline unitigs and rocks, there may be sufficient mates to
merge scaffolds (mates from stones are not considered). If multiple
orientations are possible, choose the scaffold merge with the happiest
mates.

This in turn may allow for new rocks and stones to be placed, so iterate
these steps until the scaffold stabilizes.



Derive Consensus Sequence

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read
alignments

Derive each consensus base by weighted
voting



Two Paradigms for Assembly

a) Read Layout b) Overlap Graph

¢ GACCTACA
ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

« B W N
e o0 o0

NKXOQWPpP Do

c) de Bruijn Graph
) de Bruijn Grap /G

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research 20, | 165-73.




Short Read Assembly

Reads de Bruijn Graph Potential Genomes
AAGA o +— o GACTCCGACTGGGACTTT
EEEC; \@ GACTGGGACTCCGACTTT
AGAG \a ~

gg% AAG AGA /@ — @\ CTT TTT

cToc GGA @®

CTTT 4

™
@@

* Genome assembly as finding an Eulerian tour of the de Bruijn graph

— Human genome: >3B nodes, >10B edges

* The new short read assemblers require tremendous computation
— Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
— ABYSS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
— SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM



Short Read Genome Assemblers

* Several new assemblers developed specifically for short read data
— Old assemblers incompatible for technical and algorithmic reasons

— Variations on compressed de Bruijn graphs
* Velvet (Zerbino & Birney, 2008)
* ALLPATHS (Butler et al, 2008)
* EULER-USR (Chaisson et al, 2009)
* ABYSS (Simpson et al, 2009)

e Short Read Assembler Overview
|. Construct compressed de Bruijn Graph
2. Remove sequencing error from graph

3. Use mate-pairs to resolve ambiguities in the graph

* Very successful for small to medium genomes
— 2Mbp bacteria — 100Mbp flies



de Bruijn Graph Construction

* Map: Scan reads and emit (k,k., ) for consecutive k-mers

— Also consider reverse complement k-mers, build bi-directed graph

* Reduce: Save adjacency representation of graph (n, (hodeinfo, ni))

VEQEQQE0Q




Bidirectional de Bruijn Graph

* Designate a representative mer

for each mer/rc(mer) pair AAGG [CCTT]: AAG*->AGG*

ACTT [AAGA]: ACT*-> AAG-

— Use the lexigraphically smaller mer GCTT[AAGC]: AGC- -> AAG-
AAG* -> AGC*
* Bidirected edges record if AGG
connection is between forward / 100
ACT |, .| AAG
or reverse mer 15V 5
\ AGC
* In practice, keep separate 109

adjacency lists for the forward

(Medvedev et al, 2007)
and reverse mers



Node Types

Isolated nodes (10%)

o - Tips (46%)

Bubbles/Non-branch (9%)

o Dead Ends (.2%)
=
™S
_~ Half Branch (25%)
— <=
™S
-~ Full Branch (10%)
=
/' \

(Chaisson, 2009)



Error Correction

— Errors at end of read
* Trim off ‘dead-end’ tips

— Errors in middle of read
* Pop Bubbles

— Chimeric Edges

* Clip short, low coverage nodes

B!

N

A B

& T s — e




e X-cut

— Annotate edges with spanning reads

— Separate fully spanned nodes
* (Pevzner et al,2001)

* Scaffolding

— If mate pairs are available search for a
path consistent with mate distance A

O_’\_—'

Y%

— Conceptually very similar to old

techniques

Repeat Analysis

R

A R BRCRD




Two Paradigms for Assembly

a) Read Layout b) Overlap Graph

¢ GACCTACA
ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

« B W N
e o0 o0

NKXOQWPpP Do

c) de Bruijn Graph
) de Bruijn Grap /G

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research 20, | 165-73.




Unifying view of assem

Original DNA [

fragments - _
E— V\‘\ r —
sequenced ends
' contig 1 contig 2 .
o f . — P— Contigs
ng PP E—— - -

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

contig 1 contig 2

consensus [

S CaffOlding fragments o "T__-_-_-_-______:__ _; _______ i _______ > S



Assembly gaps

Physical gaps

------------- —S =, />

~N

Sequencing gaps

sequencing gap - we know the order and orientation of the contigs and have at
least one clone spanning the gap

physical gap - no information known about the adjacent contigs, nor about the DNA
spanning the gap



N50 size

Def: 50% of the genome 1s 1n contigs larger than N50

Example:

| Mbp genome
Contigs: 300k, 100k, 50k, 45k, 30k, 20k, 15k, 15k, 10k, ....

N50 size = 30 kbp
(300k+ 100k+50k+45k+30k = 525k >= 500kbp)

Note:

N50 values are only meaningful to compare when base genome
size is the same in all cases



Recent Large Assemblies

Table 1. De novo assemblies of second-generation sequencing projects.

- NPt Sequence Msarvhly S
Organis  Assemibler/ | o Par g Rexd  Par | Contigs ! Scaflclds g
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Msoplens e | GA 2108p 3546 359 A5k 120w | Z76M  15Kb  1ASKD 218GH | MR NR NA NR
310Gy
Greoevirn o Sesger 210 579  595M 65 2x
Vvafes Ly | Seee @O0 460 184X O13s A44x | SEEL1  182x  23&ks  SIIME 2093 133Mb  TAML &ML | a
SOoMb Sasger  120¢b 369 €8¢ 002 42
454 none 9 1AM anx -
Cucummser Sanger 2403 439 208M AN %
- m n:?m Mot 56 0% 06k 1674 | AN 19807 NR 226MR | 4TAR LISMD MR 2MMD
Sasger 140D SS1 33K 004« 56«
GA 20w & v xs« vem| " 26k MK 20| MR ab M 2ms | b
GA &0 “ 17 06 A
=2 o= = s 153 e | MM 125 NR MOMR | MR 17D 00Mb | <
Parda SO GA 159 & 1318 M3« 433k
Ameeokewrs  denovo GA 500 67 SITM  295x 902 | J00804 38778 AMEIS 225G  MIAG 12IMb 60%Mb 2.30Gh | ¢
2468 PR | Ga e n WM 1t 19
GA K 3 SOSM B0 53k
GA 1045 35 I54M 30 S7Ie
Strawbersy CABOG & 454 none 208 I T . |
£ ownca Vi bt 454 none 368 TAIM 13 6487  ZAOT) 215,340 200N | 3263 144Mb  &1Mb  Z14MDb
30Mb Amnounced | 454 25my 193 23 2L 6
454 200 2 15M 1 0k
GA rone " WM 124 -
SOUD %D 25 L30M 014e  6dx
Turkey — 454 1T 180 M Ik B i
Mpatepowo g 44 00 195 M 03x  iBx | 120271 123554 9Mb  92IMB | 26517 15Mb WD \R
116 454 naoe £ WM & .
GA 18080 7 00M i3 6
GA rane 7 00M 13«




Assembly Validation

Automatically scan an assembly to locate
misassembly signatures for further analysis
and correction

Assembly-validation pipeline
|.  Evaluate Mate Pairs & Libraries
2.  Evaluate Read Alignments
3. Evaluate Read Breakpoints
4.  Analyze Depth of Coverage

It was the best

of times, it ™ l /\/\
\ it was t%/w@of

times, i

of times,
it was the -
it was the <

age of

Genome Assembly forensics: finding the elusive mis-assembly.
Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.



Mate-Happiness: asmQC

* Evaluate mate “happiness” across assembly
— Happy = Correct orientation and distance

* Finds regions with multiple:
— Compressed Mates
— Expanded Mates
— Invalid same orientation (= )
— Invalid outie orientation (& )

— Missing Mates
* Linking mates (mate in a different scaffold)
* Singleton mates (mate is not in any contig)

* Regions with high C/E statistic



Mate-Happiness: asmQC

* Excision: Skip reads between flanking repeats
— Truth

S —

D N

— Misassembly: Compressed Mates, Missing Mates

P2



Mate-Happiness: asmQC

* Insertion: Additional reads between flanking repeats

e |

— Misassembly: Expanded Mates, Missing Mates

— | —

ZA

— Truth




Mate-Happiness: asmQC

* Rearrangement: Reordering of reads

— Truth /\

—

D BN

— Misassembly: Misoriented Mates

«— @ —

D EYEEY S

Note: Unhappy mates may also occur for biological or technical reasons.



C/E Statistic

The presence of individual compressed or expanded
mates is rare but expected.

Do the inserts spanning a given position differ from
the rest of the library?

— Flag large differences as potential misassemblies

— Even if each individual mate is “happy”

Compute the statistic at all positions
— (Local Mean — Global Mean) / Scaling Factor

Introduced by |im Yorke’s group at UMD



Fregquency

40 60 60 100 120

20

Sampling the Genome

Normal Library
Count=10000, Mean=4000, SD=400

1000 <0uo 3000 !!!! !!!! !!UD

Insert Size

Okb 2kb 4kb 6kb
I I I I

8 inserts: 3kb-6kb

Local Mean: 4048

C/E Stat: (4048-4000) = +0.33
(400 / \8)

Near O indicates overall happiness




Fregquency

40 60 60 100 120

20

C/E-Statistic: Expansion

Normal Library
Count=10000, Mean=4000, SD=400

1000 <0uo 3000 !!!! !!!! !!UD

Insert Size

Okb 2kb 4kb 6kb
—
I [

I I

I I

I I
I I
I I
I I

8 inserts: 3.2kb-6kb

Local Mean: 4461

C/E Stat: (4461-4000) = +3.26
(400 / \8)

C/E Stat = 3.0 indicates Expansion




Fregquency

40 60 60 100 120

20

C/E-Statistic: Compression

Normal Library
Count=10000, Mean=4000, SD=400

1000 <0uo 3000 !!!! !!!! !!UD

Insert Size

Okb 2kb 4kb 6kb

8 inserts: 3.2 kb-4.8kb

Local Mean: 3488

C/E Stat: (3488-4000) =
(400 / \8)

C/E Stat < -3.0 indicates
Compression




Read Alignment

Multiple reads with same conflicting base are unlikely
— Ix QV 30: I/1000 base calling error
— 2x QV 30: /1,000,000 base calling error
— 3x QV 30: 1/1,000,000,000 base calling error

Regions of correlated SNPs are likely to be assembly
errors or interesting biological events
— Highly specific metric

AMOS Tools: analyzeSNPs & clusterSNPs

— Locate regions with high rate of correlated SNPs

— Parameterized thresholds:

* Multiple positions within 100bp sliding window
* 2+ conflicting reads

e Cumulative QV >= 40 (1/10000 base calling error)

OO0 O00O>rP2>>>> >

> 000000




Read Breakpoints

Align singleton reads to

375

consensus sequences.

665

428

A consistent breakpoint
shared by multiple reads can <

668

indicate a collapsed repeat.

Initially developed to detect
collapsed repeat in Bacillus
Anthracis.

144337

| .
144203 |

A

A 4

A

BAPDNS3TF 786bp
BAPDFS83TF  786bp
BAPCM37TR 697bp
BAPBW17TR 1049bp

146944

|
146226

RB

A




Read Coverage

* Find regions of contigs where the depth of
coverage is unusually high

* Collapsed Repeat Signature
— Can detect collapse of 100% identical repeats

* AMOS Tool: analyzeReadDepth

— 2.5x mean coverage

A R
R, R,

A

1+ R, B
B




Validation Accuracy
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Summary

* Graphs are ubiquitous in the world

— Pairwise searching is easy, finding features is hard

* Assembly is challenging because of repeats

— The repetitive content depends on the read length

=> Shorter reads are harder to assemble

— Assembly is a hierarchical, starting from individual reads,
build high confidence contigs/unitigs, incorporate the mates
to build scaffolds

— Watch out for collapsed repeats & other misassemblies

* Globally/Locally reassemble data from scratch with better
parameters & stitch the 2 assemblies together



Supplemental



IMDB Movie Graph

[ ] Bi Pa rtite G raP h Distribution of Bacon Numbers

— 1.5 M people
— 1.2 M shows

+05 3e+05 4e+05 5e+05 6e+05 7e+05
I 1 1 1 J

* Small world graph ) D D

— KB has 2350 direct collaborators ¢ = = ¢ = ¢ ¢ 7
ithi A B N : 2.981
— 1.2 M within 8 hops verage Bacon Number: 2.98

— 83% within 3 hops

Oracle of Bacon



Shredded Book Reconstruction

* Dickens accidentally shreds the first printing of A Tale of Two Cities

— Text printed on 5 long spools

It wag

fhevhesthef bestinfeiriesyas whae worstor of times, it was the pggebiwddomititwashy dbe agfoofifdnlsdmess, |..

It was

flhevhesthe of times, it was the a¢ worst of times, it was the thge adendfddadomwits [thevasetht fagtisiiiesishness,

It was

fhevasbidst bEstmoésjritewat \»zahd:hzeomtrsf tifnasei, i}t was the age of wisdom, i it was the age of |idboléskness,]|...

It was

t thasbiist bEsiroésritef, iiawahdveonstref tiftemed it was the age of pisdedoris, itavehehegags fpolifholiskness, ...

It | wak thesbdst bEsinnédjnjert, itawdhdweownsiref gf times, it was the age ¢

f ofiwdsdomt wasathehegq afgfoolifbolesdsness, |...

How can he reconstruct the text?

— 5 copies x 138,656 words / 5 words per fragment = |38k fragments

— The short fragments from every copy are mixed together

— Some fragments are identical




It was the best of

age of wisdom, it was

best of times, it was

it was the age of

it was the age of

it was the worst of

of times, it was the

of times, it was the

of wisdom, it was the

the age of wisdom, it

the best of times, it

the worst of times, it

times, it was the age

times, it was the worst

was the age of wisdom,

was the age of foolishness,

was the best of times,

was the worst of times,

wisdom, it was the age

worst of times, it was

Greedy Reconstruction

It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the
of times, it was the

» W a E WO

The repeated sequence make the correct
reconstruction ambiguous

* It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.



de Bruijn Graph Construction

D, = (VE)
* V =All length-k subfragments (k <)

* E = Directed edges between consecutive subfragments
* Nodes overlap by k-1 words

Original Fragment Directed Edge

It was the best of It was the best 2| was the best of

Locally constructed graph reveals the global sequence structure
* Overlaps between sequences implicitly computed

de Bruijn, 1946
|dury and Waterman, 1995
Pevzner, Tang, Waterman, 2001



It was the best

N

was the best of

Sy

de Bruijn Graph Assembly

the best of times,

S

best of times, it

N, |

of times, it was

S

it was the worst

times, it was the

Try to simplify the graph as
much as possible

™Sy

was the worst of

S

the worst of times,

S

worst of times, it

it was the age

S

the age of foolishness

was the age of

the age of wisdom,

>SS

age of wisdom, it

S

of wisdom, it was

>SS

wisdom, it was the




de Bruijn Graph Assembly

It was the best of times, it

v

it was the worst of times, it

of times, it was the

Try to simplify the graph as
much as possible

the age of foolishness

it was the age of

the age of wisdom, it was the




