
Graphs and Genome Assembly
Michael Schatz

Bioinformatics Lecture 3
Quantitative Biology 2010

Sequence Alignment Review

Guaranteed optimal, but slow

DP Alignment BLAST

Seed-and-extend for "good" matches to a DB

MUMmer

Whole Genome Alignment w/ Suffix Tree

Bowtie

Fast searching for short read mapping

Outline

1.  Graphs and Graph Theory

2.  Genome Assembly
1.  Assembly Validation

Graphs

A B

•  Nodes
–  People, Proteins, Genes, Neurons, Sequences, Numbers, …

•  Edges
–  A is connected to B
–  A is related to B
–  A regulates B
–  A precedes B
–  A interacts with B
–  A is related to B
–  …

Graph Types

A

B

C

List Tree

A

B C D

F H G E

I J

Directed
Acyclic
Graph

A

C D E

F

G

B

A

B C

D E

Cycle

A

B C

D E

Complete

Biological Networks

Network Characteristics

C. elegans! D. melanogaster! S. cerevisiae!
Nodes! 2646! 7464! 4965!
Edges! 4037! 22831! 17536!
Avg. / Max Degree! 3.0 / 187! 6.1 / 178! 7.0 / 283!
Components! 109! 66! 32!
Largest Component! 2386! 7335! 4906!
Diameter! 14! 12! 11!
Avg. Shortest Path! 4.8! 4.4! 4.1!
Data Sources! 2H! 2x2H, TAP-MS! 8x2H, 2xTAP, SUS!

Small World: Avg. Shortest Path between nodes (proteins) is small
Scale Free: Power law distribution of degree – preferential attachment

Kevin Bacon and Bipartite Graphs
72

60

35

31

45

Q1:
Find any path

from
Kevin Bacon

to
Jason Lee

Depth First Search:
6 hops

Bacon Distance:
3

Kevin Bacon and Bipartite Graphs
72

60

35

31

45

Q2:
Find the shortest

path from
Kevin Bacon

to
Jason Lee

Breadth First Search:
4 hops

Bacon Distance:
2

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K 0 B:1

A:1

D:2 I:3

E:7

G:2 L:3 C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

0
A,B,C
A,B,G,H
A,B,G,M
A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E
A,B
A
D
I

DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.end()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

DFS

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected
components?]

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K 0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K

0
A,B,C
B,C,D,E
C,D,E,F,L
D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,K
G,H,I,J,K,O
H,I,J,K,O
I,J,K,O,M
J,K,O,M
K,O,M,N
O,M,N
M,N
N

0

A:1

B:1

C:1

N:4

D:2

E:2

F:2

G:2

H:2

L:2

J:3

I:3

M:3

O:3

K:3

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.begin()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

0 B:1

A:1

D:2 I:3

E:7

G:2 L:3 C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.end()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

DFS
0
A,B,C
A,B,G,H
A,B,G,M
A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E
A,B
A
D
I

BFS and TSP
•  BFS computes the shortest path between a

pair of nodes in O(|E|) = O(|N|2)

•  What if we wanted to compute the shortest
route visiting every node once?
– Traveling Salesman Problem

C

A

D

B
4

1

3

1

5

2

ABDCA: 4+2+5+3 = 14
ACDBA: 3+5+2+4 = 14*
ABCDA: 4+1+5+1 = 11
ADCBA: 1+5+1+4 = 11*
ACBDA: 3+1+2+1 = 7
ADBCA: 1+2+1+3= 7 *

TSP Hardness

•  No known way to partition the
problem
–  Knowing optimal tour through n cities

doesn't seem to help much for n+1
cities

[How many possible tours for n cities?]

•  Extensive searching is the only
known provably correct algorithm
–  Brute Force: O(n!)

•  ~20 cities max
•  20! = 2.4 x 1018

C

A

D

B
4

1

3

1

5

2

C

A

D

B
4

1

3

1

5

2

E
30 2

1
2

Greedy Search
Greedy Search
cur=graph.randNode()
while (!done)

 next=cur.getNextClosest()

Greedy: ABDCA = 10+10+50+11= 81
Optimal: ACBDA = 11+11+10+11 = 43

Greedy finds the global optimum only when
1.  Greedy Choice: Local is correct without reconsideration
2.  Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

C

A

D

B
10

11

11

11

50

10

Branch-and-Bound
•  Abort on suboptimal solutions

as soon as possible
–  ADBECA = 1+2+2+2+3 = 10
–  ABDE = 4+2+30 > 10
–  ADE = 1+30 > 10
–  AED = 1+30 > 10
–  …

C

A

D

B
4

1

3

1

5

2

E
30 2

1
2

•  Performance Heuristic
–  Always gives the optimal answer
–  Doesn't always help performance, but often does
–  Current TSP record holder:

•  85,900 cities
•  85900! = 10386526

[When not?]

TSP and NP-complete
•  TSP is one of many extremely hard

problems of the class NP-complete
–  Extensive searching is the only way to

find an exact solution
–  Often have to settle for approx. solution

•  WARNING: Many optimization problems are in this class
–  Find a tour the visits every node once
–  Find the smallest set of vertices covering all the edges
–  Find the largest clique in the graph
–  Find a set of items with maximal value but limited weight
–  Maximizing the number of tetris pieces played
–  …
–  http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Given: S = {s1, …, sn}

Problem: Find minimal length superstring of S

s1,s2,s3 = CACCCGGGTGCCACC 15

s1,s3,s2 = CACCCACCGGGTGC 14

s2,s1,s3 = CCGGGTGCACCCACC 15

s2,s3,s1 = CCGGGTGCCACCC 13

s3,s1,s2 = CCACCCGGGTGC 12

s3,s2,s1 = CCACCGGGTGCACCC 15

s1 CACCC

s2 CCGGGTGC

s3 CCACC

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH

Shortest Common Superstring

Paths through graphs and assembly

•  Hamiltonian circuit: visit each node (city)
exactly once, returning to the start
–  If we could do this fast, we could exactly assemble

genomes as the shortest common superstring
 [Is this the right model for assembly?]

A

B D C

E

H
G

I

F
Genome

Eulerian Cycle Problem

•  Seven Bridges of Königsberg
– Find a cycle that visits every edge exactly once

[Can you find the cycle?]

Euler Theorem

•  A graph is balanced if for every vertex the
number of incoming edges equals to the
number of outgoing edges:

 in(v)=out(v)

•  Theorem: A connected graph is Eulerian if and
only if each of its vertices is balanced.

bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle

a.  Start with an arbitrary vertex
v and form an arbitrary cycle
with unused edges until a dead
end is reached. Since the
graph is Eulerian this dead end
is necessarily the starting
point, i.e., vertex v.

bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle (cont’d)

b. If cycle from (a) above is not
an Eulerian cycle, it must
contain a vertex w, which
has untraversed edges.
Perform step (a) again, using
vertex w as the starting
point. Once again, we will
end up in the starting vertex
w.

bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle (cont’d)

c. Combine the cycles
from (a) and (b) into
a single cycle and
iterate step (b).

bioalgorithms.info

 Generally an exponential number of compatible sequences
–  Value computed by application of the BEST theorem (Hutchinson, 1975)

 L = n x n matrix with ru-auu along the diagonal and -auv in entry uv
 ru = d+(u)+1 if u=t, or d+(u) otherwise
 auv = multiplicity of edge from u to v

Counting Eulerian Tours

ARBRCRD
or

ARCRBRD
A R D

B

C

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Break

Milestones in Genome Assembly

2000. Myers et al.
1st Large WGS Assembly.

Celera Assembler. 116 Mbp

1995. Fleischmann et al.
1st Free Living Organism
TIGR Assembler. 1.8Mbp

2010. Li et al.
1st Large SGS Assembly.
SOAPdenovo 2.2 Gbp

1977. Sanger et al.
1st Complete Organism

5375 bp

2001. Venter et al., IHGSC
Human Genome

Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC
1st Multicellular Organism

BAC-by-BAC Phrap. 97Mbp

Typical contig coverage

Imagine raindrops on a sidewalk

Lander-Waterman statistics

L = read length
T = minimum overlap
G = genome size
N = number of reads
c = coverage (NL / G)
! = 1 – T/L

E(#islands) = Ne-c!
E(island size) = L(ec! – 1) / c + 1 – !
contig = island with 2 or more reads

Genome Coverage
Idealized assembly
•  Uniform probability of a read

starting at a given position
–  p = G/N

•  Poisson distribution in coverage
along genome
–  Contigs end when there is no

overlapping read

•  Contig length is a function of
coverage and read length
–  Short reads require much

higher coverage

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research 20, 1165-73.

Two Paradigms for Assembly

R1: GACCTACA!
R2: ! ACCTACAA!
R3: ! CCTACAAG!
R4: ! CTACAAGT!
A: ! TACAAGTT!
B: ! ACAAGTTA!
C: ! CAAGTTAG!
X: ! TACAAGTC!
Y: ! ACAAGTCC!
Z: ! CAAGTCCG!

!"#$%!&#'!()*+#

,"#&%#-.*/01#2.!34#

5"#67%.8!3#2.!34#

GTT

GTC

TTA

TCC

TAG

CCG

AGT AAG CAA ACA TAC CTA CCT ACC GAC

A

B

X

Y

C

Z

R2 R3 R4 R1

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research 20, 1165-73.

Overlap-Layout-Consensus

Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and
 contigs into supercontigs

Consensus: derive the DNA
sequence and correct read errors ..ACGATTACAATAGGTT..

bioalgorithms.info

34

All pairs alignment
•  Needed by the assembler
•  Try all pairs – must consider ~ n2 pairs
•  Smarter solution: only n x coverage (e.g. 8) pairs

are possible
–  Build a table of k-mers contained in sequences (single

pass through the genome)
–  Generate the pairs from k-mer table (single pass

through k-mer table)

k-mer

Overlap between two sequences

…AGCCTAGACCTACAGGATGCGCGGACACGTAGCCAGGAC!
 CAGTACTTGGATGCGCTGACACGTAGCTTATCCGGT…!

overlap (19 bases) overhang (6 bases)

overhang
overlap - region of similarity between regions
overhang - un-aligned ends of the sequences

The assembler screens merges based on:
•  length of overlap
•  % identity in overlap region
•  maximum overhang size.

% identity = 18/19 % = 94.7%

[How do we compute the overlap?]

Overlap Graph: Hamiltonian Approach

Repeat Repeat Repeat

Each vertex represents a read from the original sequence.
Vertices from repeats are connected to many others.

bioalgorithms.info

Repeat Types
•  Low-Complexity DNA (e.g. ATATATATACATA…)

•  Microsatellite repeats (a1…ak)N where k ~ 3-6
 (e.g. CAGCAGTAGCAGCACCAG)

•  Transposons/retrotransposons
–  SINE Short Interspersed Nuclear Elements

 (e.g., Alu: ~300 bp long, 106 copies)

–  LINE Long Interspersed Nuclear Elements
 ~500 - 5,000 bp long, 200,000 copies

–  LTR retroposons Long Terminal Repeats (~700 bp) at each end

•  Gene Families genes duplicate & then diverge

•  Segmental duplications ~very long, very similar copies

•  A large fraction of the genome is repetitive
 => any repeat longer than the read length may be problematic

bioalgorithms.info

Unitigging: Pruning the Overlap

A

B

C

D
A B

C D

Original Overlap Graph True Layout

A

B

D

Contained
Read

Removal

A

B

D

Transitive
Edge

Removal

A,B,D

Unique
Join

Collapsing

E
F

E

F

E

F

E

F

E

F

Theorem: SCS of unitigs = SCS of reads

Initial Scaffolding

Create a initial scaffold of unique unitigs (U-Unitigs) whose
A-stat > 5. Also recruit borderline unitigs whose A-stat is > 2
and have consistent mates with the U-Unitigs.

Scaffold

Bundle

U-Unitig

Repeat Resolution

Rock Stone

Scaffold

Place rocks (A-stat > 0 with multiple consistent mates), and stones (single mate and
overlap path with placed objects) into the gaps. Pebbles, unitigs lackings mates, are
no longer incorporated regardless of overlap qualities.

Scaffold merging

After placing borderline unitigs and rocks, there may be sufficient mates to
merge scaffolds (mates from stones are not considered). If multiple
orientations are possible, choose the scaffold merge with the happiest
mates.

This in turn may allow for new rocks and stones to be placed, so iterate
these steps until the scaffold stabilizes.

Derive Consensus Sequence

Derive multiple alignment from pairwise read
alignments

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive each consensus base by weighted
voting

Two Paradigms for Assembly

R1: GACCTACA!
R2: ! ACCTACAA!
R3: ! CCTACAAG!
R4: ! CTACAAGT!
A: ! TACAAGTT!
B: ! ACAAGTTA!
C: ! CAAGTTAG!
X: ! TACAAGTC!
Y: ! ACAAGTCC!
Z: ! CAAGTCCG!

!"#$%!&#'!()*+#

,"#&%#-.*/01#2.!34#

5"#67%.8!3#2.!34#

GTT

GTC

TTA

TCC

TAG

CCG

AGT AAG CAA ACA TAC CTA CCT ACC GAC

A

B

X

Y

C

Z

R2 R3 R4 R1

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research 20, 1165-73.

Short Read Assembly

AAGA
ACTT
ACTC
ACTG
AGAG
CCGA
CGAC
CTCC
CTGG
CTTT
…

de Bruijn Graph Potential Genomes

AAGACTCCGACTGGGACTTT

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph
–  Human genome: >3B nodes, >10B edges

•  The new short read assemblers require tremendous computation
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

Reads

AAGACTGGGACTCCGACTTT

Short Read Genome Assemblers
•  Several new assemblers developed specifically for short read data

–  Old assemblers incompatible for technical and algorithmic reasons
–  Variations on compressed de Bruijn graphs

•  Velvet (Zerbino & Birney, 2008)
•  ALLPATHS (Butler et al, 2008)
•  EULER-USR (Chaisson et al, 2009)
•  ABySS (Simpson et al, 2009)

•  Short Read Assembler Overview
1. Construct compressed de Bruijn Graph
2. Remove sequencing error from graph
3. Use mate-pairs to resolve ambiguities in the graph

•  Very successful for small to medium genomes
–  2Mbp bacteria – 100Mbp flies

de Bruijn Graph Construction
•  Map: Scan reads and emit (ki,ki+1) for consecutive k-mers

–  Also consider reverse complement k-mers, build bi-directed graph

•  Reduce: Save adjacency representation of graph (n, (nodeinfo, ni))

A

C

D

R

B

Bidirectional de Bruijn Graph
•  Designate a representative mer

for each mer/rc(mer) pair
–  Use the lexigraphically smaller mer

•  Bidirected edges record if
connection is between forward
or reverse mer

•  In practice, keep separate
adjacency lists for the forward
and reverse mers

AAG CTT
AGG CCT

ACT AGT

AAGG [CCTT]: AAG+ -> AGG+

ACTT [AAGA]: ACT+ -> AAG-
GCTT [AAGC]: AGC- -> AAG-

 AAG+ -> AGC+

AGC GCT

(Medvedev et al, 2007)

Node Types

(Chaisson, 2009)

 Isolated nodes (10%)

 Tips (46%)

 Bubbles/Non-branch (9%)

 Dead Ends (.2%)

 Half Branch (25%)

 Full Branch (10%)

Error Correction
–  Errors at end of read

•  Trim off ‘dead-end’ tips

–  Errors in middle of read
•  Pop Bubbles

–  Chimeric Edges
•  Clip short, low coverage nodes

B* A C

B

B’

A C

B A

D

B A

B

B’

A

C

B A

D C

x

Repeat Analysis
•  X-cut

–  Annotate edges with spanning reads
–  Separate fully spanned nodes

•  (Pevzner et al., 2001)

•  Scaffolding
–  If mate pairs are available search for a

path consistent with mate distance
–  Conceptually very similar to old

techniques

C

B A

R

D C

B A R

D R

C

A D R

B

A C D R B R R

Two Paradigms for Assembly

R1: GACCTACA!
R2: ! ACCTACAA!
R3: ! CCTACAAG!
R4: ! CTACAAGT!
A: ! TACAAGTT!
B: ! ACAAGTTA!
C: ! CAAGTTAG!
X: ! TACAAGTC!
Y: ! ACAAGTCC!
Z: ! CAAGTCCG!

!"#$%!&#'!()*+#

,"#&%#-.*/01#2.!34#

5"#67%.8!3#2.!34#

GTT

GTC

TTA

TCC

TAG

CCG

AGT AAG CAA ACA TAC CTA CCT ACC GAC

A

B

X

Y

C

Z

R2 R3 R4 R1

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research 20, 1165-73.

Unifying view of assembly

Contigs

Scaffolding

Assembly gaps

sequencing gap - we know the order and orientation of the contigs and have at
least one clone spanning the gap

physical gap - no information known about the adjacent contigs, nor about the DNA
spanning the gap

Sequencing gaps

Physical gaps

N50 size

Def: 50% of the genome is in contigs larger than N50

Example:

 1 Mbp genome
 Contigs: 300k, 100k, 50k, 45k, 30k, 20k, 15k, 15k, 10k,

 N50 size = 30 kbp
 (300k+100k+50k+45k+30k = 525k >= 500kbp)

Note:

 N50 values are only meaningful to compare when base genome
size is the same in all cases

Recent Large Assemblies

Assembly Validation

 Automatically scan an assembly to locate
misassembly signatures for further analysis
and correction

 Assembly-validation pipeline
1.  Evaluate Mate Pairs & Libraries
2.  Evaluate Read Alignments
3.  Evaluate Read Breakpoints
4.  Analyze Depth of Coverage

Genome Assembly forensics: finding the elusive mis-assembly.
Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.

It was the best
of times, it

 of times,
 it was the

it was the
age of

it was the worst of
times, it

Mate-Happiness: asmQC

•  Evaluate mate “happiness” across assembly
–  Happy = Correct orientation and distance

•  Finds regions with multiple:
–  Compressed Mates
–  Expanded Mates
–  Invalid same orientation (! !)
–  Invalid outie orientation (" !)
–  Missing Mates

•  Linking mates (mate in a different scaffold)
•  Singleton mates (mate is not in any contig)

•  Regions with high C/E statistic

Mate-Happiness: asmQC
•  Excision: Skip reads between flanking repeats

–  Truth

–  Misassembly: Compressed Mates, Missing Mates

Mate-Happiness: asmQC
•  Insertion: Additional reads between flanking repeats

–  Truth

–  Misassembly: Expanded Mates, Missing Mates

Mate-Happiness: asmQC

•  Rearrangement: Reordering of reads

–  Truth

–  Misassembly: Misoriented Mates

A B

Note: Unhappy mates may also occur for biological or technical reasons.

B A

C/E Statistic

•  The presence of individual compressed or expanded
mates is rare but expected.

•  Do the inserts spanning a given position differ from
the rest of the library?
–  Flag large differences as potential misassemblies
–  Even if each individual mate is “happy”

•  Compute the statistic at all positions
–  (Local Mean – Global Mean) / Scaling Factor

•  Introduced by Jim Yorke’s group at UMD

Sampling the Genome
2kb 4kb 6kb

8 inserts: 3kb-6kb

Local Mean: 4048

C/E Stat: (4048-4000) = +0.33

 (400 / !8)

Near 0 indicates overall happiness

0kb

C/E-Statistic: Expansion
2kb 4kb 6kb

8 inserts: 3.2kb-6kb

Local Mean: 4461

C/E Stat: (4461-4000) = +3.26

 (400 / !8)

C/E Stat " 3.0 indicates Expansion

0kb

C/E-Statistic: Compression

8 inserts: 3.2 kb-4.8kb

Local Mean: 3488

C/E Stat: (3488-4000) = -3.62

 (400 / !8)

C/E Stat # -3.0 indicates
Compression

2kb 4kb 6kb 0kb

Read Alignment

•  Multiple reads with same conflicting base are unlikely
–  1x QV 30: 1/1000 base calling error
–  2x QV 30: 1/1,000,000 base calling error
–  3x QV 30: 1/1,000,000,000 base calling error

•  Regions of correlated SNPs are likely to be assembly
errors or interesting biological events
–  Highly specific metric

•  AMOS Tools: analyzeSNPs & clusterSNPs
–  Locate regions with high rate of correlated SNPs
–  Parameterized thresholds:

•  Multiple positions within 100bp sliding window
•  2+ conflicting reads
•  Cumulative QV >= 40 (1/10000 base calling error)

A G C
A G C
A G C
A G C
A G C
A G C
C T A
C T A
C T A
C T A
C T A

Read Breakpoints

144203 146226 145515 147021

16S rRNA 144337 146944

375
665

428
668

BAPDN53TF 786bp
BAPDF83TF 786bp
BAPCM37TR 697bp
BAPBW17TR 1049bp

RA RB

•  Align singleton reads to
consensus sequences.

•  A consistent breakpoint
shared by multiple reads can
indicate a collapsed repeat.

•  Initially developed to detect
collapsed repeat in Bacillus
Anthracis.

Read Coverage

•  Find regions of contigs where the depth of
coverage is unusually high

•  Collapsed Repeat Signature
–  Can detect collapse of 100% identical repeats

•  AMOS Tool: analyzeReadDepth
–  2.5x mean coverage

A R1 + R2 B

A R1 B R2

Validation Accuracy

Summary
•  Graphs are ubiquitous in the world

–  Pairwise searching is easy, finding features is hard

•  Assembly is challenging because of repeats
–  The repetitive content depends on the read length

 => Shorter reads are harder to assemble

–  Assembly is a hierarchical, starting from individual reads,
build high confidence contigs/unitigs, incorporate the mates
to build scaffolds

–  Watch out for collapsed repeats & other misassemblies
•  Globally/Locally reassemble data from scratch with better

parameters & stitch the 2 assemblies together

Supplemental

IMDB Movie Graph
•  Bipartite Graph

–  1.5 M people
–  1.2 M shows

•  Small world graph
–  KB has 2350 direct collaborators
–  1.2 M within 8 hops
–  83% within 3 hops

Average Bacon Number: 2.981

Oracle of Bacon
http://oracleofbacon.org

Shredded Book Reconstruction

•  Dickens accidentally shreds the first printing of A Tale of Two Cities
–  Text printed on 5 long spools

•  How can he reconstruct the text?
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments
–  The short fragments from every copy are mixed together
–  Some fragments are identical

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

Greedy Reconstruction

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

of times, it was the

times, it was the age

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

it was the worst of

was the worst of times,

worst of times, it was

of times, it was the

times, it was the age

it was the age of

was the age of wisdom,

the age of wisdom, it

age of wisdom, it was

of wisdom, it was the

wisdom, it was the age

it was the age of

was the age of foolishness,

the worst of times, it

 The repeated sequence make the correct
reconstruction ambiguous
•  It was the best of times, it was the [worst/age]

 Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

•  Dk = (V,E)
•  V = All length-k subfragments (k < l)
•  E = Directed edges between consecutive subfragments

•  Nodes overlap by k-1 words

•  Locally constructed graph reveals the global sequence structure
•  Overlaps between sequences implicitly computed

It was the best was the best of It was the best of

Original Fragment Directed Edge

de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

the age of foolishness

It was the best

best of times, it

was the best of

the best of times,

of times, it was

times, it was the

it was the worst

was the worst of

worst of times, it

the worst of times,

it was the age

was the age of
the age of wisdom,

age of wisdom, it

of wisdom, it was

wisdom, it was the

Try to simplify the graph as
much as possible

de Bruijn Graph Assembly

the age of foolishness

It was the best of times, it

 of times, it was the

it was the worst of times, it

it was the age of
the age of wisdom, it was the Try to simplify the graph as

much as possible

