Graphs and Genome Assembly Michael Schatz

Bioinformatics Lecture 3 Quantitative Biology 2010

Sequence Alignment Review

Outline

I. Graphs and Graph Theory

- 2. Genome Assembly
 - I. Assembly Validation

- Nodes
 - People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
 - A is connected to B
 - A is related to B
 - A regulates B
 - A precedes B
 - A interacts with B
 - A is related to B

- ...

Graph Types

Biological Networks

Figure 5 Putative regulatory elements shared between groups of correlated and anticorrelated genes

Network Characteristics

	C. elegans	D. melanogaster	S. cerevisiae
# Nodes	2646	7464	4965
# Edges	4037	22831	17536
Avg. / Max Degree	3.0 / 187	6.1 / 178	7.0 / 283
# Components	109	66	32
Largest Component	2386	7335	4906
Diameter	14	12	11
Avg. Shortest Path	4.8	4.4	4.1
Data Sources	2H	2x2H, TAP-MS	8x2H, 2xTAP, SUS

(a) Random network

Small World: Avg. Shortest Path between nodes (proteins) is small Scale Free: Power law distribution of degree – preferential attachment

Kevin Bacon and Bipartite Graphs

Q1: Find *any* path from Kevin Bacon to Jason Lee

Depth First Search: 6 hops

Bacon Distance: 3

Kevin Bacon and Bipartite Graphs

DFS

DFS(start, stop)	0
// initialize all nodes dist = - I	A.B.C
start.dist = 0	ABGH
list.addEnd(start)	$A \in \mathbf{M}$
while (!list.empty())	A, D, G, \underline{W}
cur = list.end()	A,B, <u>G</u>
if (cur == stop)	A,B, <u>L</u>
print cur.dist;	A,B, <u>O</u>
else	A,B, <u>N</u>
foreach child in cur.children	A,B,J
if (child.dist == -1)	A.B.E.F
child.dist = cur.dist+l	
list.addEnd(child)	
	A,D, <u>C</u>
	A, <u>B</u>
	A
D:2 — 1:3	D
A:1 E:7 J:6 N:5	<u>1</u>
0 B:1 F:7	
CIG:2L:3O:4	
H:2M:3	

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected components?]

DFS

DFS(start, stop)

// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.end()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

F:7

<u>0</u> A,B,<u>C</u> A,B,G,<u>H</u> A,B,G,<u>M</u> A,B,<u>G</u> A,B,<u>L</u> A,B,<u>O</u> A,B,<u>N</u> A,B,<u>J</u> A,B,E,<u>F</u> A,B,E,K A,B,<u>E</u> A,<u>B</u> A D I

BFS

BFS(start, stop) // initialize all nodes dist = -1start.dist = 0list.addEnd(start) while (!list.empty()) cur = list.begin() if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1list.addEnd(child) D:2

F:2

G:2

H:2

0

A,B,C B,C,D,E <u>C</u>,D,E,F,L $\underline{D}, E, F, L, G, H$ E,F,L,G,H,I <u>F</u>,L,G,H,I,J L,G,H,I,J,K <u>G</u>,H,I,J,K,O <u>H</u>,I,J,K,O <u>I</u>,J,K,O,M J,K,O,M <u>K</u>,O,M,N <u>O</u>,M,N <u>M</u>,N Ν

BFS and **TSP**

- BFS computes the shortest path between a pair of nodes in $O(|E|) = O(|N|^2)$
- What if we wanted to compute the shortest route visiting every node once?
 - Traveling Salesman Problem

ABDCA:
$$4+2+5+3 = 14$$

ACDBA: $3+5+2+4 = 14^*$
ABCDA: $4+1+5+1 = 11$
ADCBA: $1+5+1+4 = 11^*$
ACBDA: $3+1+2+1 = 7$
ADBCA: $1+2+1+3=7^*$

TSP Hardness

- No known way to partition the problem
 - Knowing optimal tour through n cities doesn't seem to help much for n+I cities

[How many possible tours for n cities?]

- Extensive searching is the only known provably correct algorithm
 - Brute Force: O(n!)
 - ~20 cities max
 - 20! = 2.4×10^{18}

Greedy Search

Greedy Search

cur=graph.randNode()
while (!done)
next=cur.getNextClosest()

Greedy: ABDCA = 10+10+50+11=81

Optimal: ACBDA = 11 + 11 + 10 + 11 = 43

Greedy finds the global optimum only when

- I. Greedy Choice: Local is correct without reconsideration
- 2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

Branch-and-Bound

- Abort on suboptimal solutions as soon as possible
 - ADBECA = 1+2+2+2+3 = 10
 - ABDE = 4+2+30 > 10
 - ADE = |+30 > |0|
 - AED = I + 30 > 10

— ...

- Performance Heuristic
 - Always gives the optimal answer
 - Doesn't always help performance, but often does
 - Current TSP record holder:
 - 85,900 cities
 - 85900! = 10^{386526}

[When not?]

TSP and NP-complete

- TSP is one of many extremely hard problems of the class NP-complete
 - Extensive searching is the only way to find an exact solution
 - Often have to settle for approx. solution

- WARNING: Many optimization problems are in this class
 - Find a tour the visits every node once
 - Find the smallest set of vertices covering all the edges
 - Find the largest clique in the graph
 - Find a set of items with maximal value but limited weight
 - Maximizing the number of tetris pieces played

- ...

– http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Shortest Common Superstring

Given: $S = \{s_1, ..., s_n\}$

Problem: Find minimal length superstring of S

 $s_{1}, s_{2}, s_{3} = CACCCGGGTGCCACC \quad 15$ $s_{1} CACCC \qquad s_{1}, s_{3}, s_{2} = CACCCACCGGGTGC14$ $s_{2} CCGGGTGC \qquad s_{2}, s_{1}, s_{3} = CCGGGGTGCACCCACC \quad 15$ $s_{3} CCACC \qquad s_{2}, s_{3}, s_{1} = CCGGGTGCCACCC \quad 13$ $s_{3}, s_{1}, s_{2} = CCACCCGGGTGC \quad 12$ $s_{3}, s_{2}, s_{3} = CCACCGGGTGCACCC \quad 15$

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH

Paths through graphs and assembly

- Hamiltonian circuit: visit each node (city) exactly once, returning to the start
 - If we could do this fast, we could exactly assemble genomes as the shortest common superstring

[Is this the right model for assembly?]

Eulerian Cycle Problem

• Seven Bridges of Königsberg

- Find a cycle that visits every edge exactly once

[Can you find the cycle?]

Euler Theorem

• A graph is **balanced** if for every vertex the number of incoming edges equals to the number of outgoing edges:

in(v)=out(v)

• **Theorem**: A connected graph is Eulerian if and only if each of its vertices is balanced.

Algorithm for Constructing an Eulerian Cycle

a. Start with an arbitrary vertex v and form an arbitrary cycle with unused edges until a dead end is reached. Since the graph is Eulerian this dead end is necessarily the starting point, i.e., vertex v.

(a)

Algorithm for Constructing an Eulerian Cycle (cont'd)

b. If cycle from (a) above is not an Eulerian cycle, it must contain a vertex w, which has untraversed edges. Perform step (a) again, using vertex w as the starting point. Once again, we will end up in the starting vertex

W.

Algorithm for Constructing an Eulerian Cycle (cont'd)

c. Combine the cycles from (a) and (b) into a single cycle and iterate step (b).

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$\mathcal{W}(G,t) = (\det L) \left\{ \prod_{u \in V} (r_u - 1)! \right\} \left\{ \prod_{(u,v) \in E} a_{uv}! \right\}^{-1}$$

L = n x n matrix with r_u - a_{uu} along the diagonal and $-a_{uv}$ in entry uv
 $r_u = d^+(u) + l$ if $u = t$, or $d^+(u)$ otherwise
 a_{uv} = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*.

Break

Milestones in Genome Assembly

Nature Vol. 265 February 24 1977

articles

Nucleotide sequence of bacteriophage Φ X174 DNA

F. Sanger, G. M. Air', B. G. Barrell, N. L. Brown', A. R. Coulson, J. C. Fiddes, C. A. Hutchison III¹, P. M. Slocombe³ & M. Smith' MRC Laboratory of Melocular Biology. Hills Read, Cambridge (B2 2011, UK

A DNA suspense for the generate al bacteripholog PATUP di appresimately 2.375 meteorische lass bene diversitad using the rapid and imply "plus and minu" method. The apparence identification some of the framewer repumsible for the productions of the proteins of the nine horning genes of the productions of the protein of the nine horning genes of the protein and RNAs. Two pairs of geness are cooled by the more region of DNA using different reading frames.

Fits genome of bacteriophage ΦX174 in a single-stranded, sizular DNA of approximately 5,400 nucleotides coding for size known proteins. The order of these genes, as determined by genetic technique^{1,1}. In *A* = *O* = *D* = *F* = *F* = *A*. Genese *F*, *C* and *H* code for structural proteins of the virus capsid, and gene (iso defined by nummer) works code for a structural basic motion. strand DNA of 4X has the same sequence as the mRNA and, in certain conditions, will had ribournes so that a protected forgenetic can be instelled and sequenced. Dely one major kine was found its the ribourne bioding in sequence data it was found its the ribourne bioding in sequence data it with the ribourne bioding in the second of the fution of the gene correction" (non-text) and Schott 11 with DNA option reasons where the sequence correlementary to part of the ribourne bioding with a sequence complementary to the intercentee bioding with a sequence complementary to the intercentee bioding with a sequence complementary to the intercentee bioding with a sequence complementary to and of the ribourne bioding with the sequence sequence of the labelied DNA produced. This decamped with a sequence and a decamped ribourne the family of the second of the labelied DNA produced. This decamped relians method's stateMethod

1977. Sanger *et al.* 1st Complete Organism 5375 bp

1995. Fleischmann *et al.* 1st Free Living Organism TIGR Assembler. 1.8Mbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2000. Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

2001.Venter *et al.,* IHGSC Human Genome Celera Assembler/GigaAssembler. 2.9 Gbp

2010. Li *et al.* Ist Large SGS Assembly. SOAPdenovo 2.2 Gbp

"old" way of genome sequencing

Cloning and clone handling are very labor intensive

Throughput of capillary sequencing machines is limited

Methods in Molecular Biology 791.117 WS 2007 Florian Rilker IAM / BOKU // 123

ABI 3730KL (Applied Biosystems/Sanger)

up to 1.100 bases/read 96 reads/run approx. 1 M8/day and machine

First choice for finishing projects; full length cDNA sequencing; single sample sequencing.

Typical contig coverage

Imagine raindrops on a sidewalk

Lander-Waterman statistics

E(#islands) = Ne^{-c σ} E(island size) = L(e^{c σ} - I) / c + I - σ contig = island with 2 or more reads

Genome Coverage

Idealized assembly

- Uniform probability of a read starting at a given position
 - p = G/N
- Poisson distribution in coverage along genome
 - Contigs end when there is no overlapping read
- Contig length is a function of coverage and read length
 - Short reads require much higher coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research* 20, 1165-73.

Two Paradigms for Assembly

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research* 20, 1165-73.

Overlap-Layout-Consensus

Assemblers: ARACHNE, PHRAP, CAP, TIGR, CELERA

Overlap: find potentially overlapping reads

Layout: merge reads into contigs and contigs into supercontigs

Consensus: derive the DNA sequence and correct read errors

bioalgorithms.info

..ACGATTACAATAGGTT..

All pairs alignment

- Needed by the assembler
- Try all pairs must consider ~ n^2 pairs
- Smarter solution: only n x coverage (e.g. 8) pairs are possible
 - Build a table of k-mers contained in sequences (single pass through the genome)
 - Generate the pairs from k-mer table (single pass through k-mer table)

Overlap between two sequences

The assembler screens merges based on:

- length of overlap
- % identity in overlap region
- maximum overhang size.

[How do we compute the overlap?]

Overlap Graph: Hamiltonian Approach

Each vertex represents a read from the original sequence. Vertices from repeats are connected to many others.

Repeat Types

- Low-Complexity DNA (e.g. AT
 - (e.g. ATATATATACATA...)
- Microsatellite repeats

 $(a_1...a_k)^N$ where k ~ 3-6 (e.g. CAGCAGTAGCAGCACCAG)

- Transposons/retrotransposons
 - Sine
 Short Interspersed Nuclear Elements (e.g., Alu: ~300 bp long, 10⁶ copies)
 - Long Interspersed Nuclear Elements
 ~500 5,000 bp long, 200,000 copies
 - LTR retroposons Long Terminal Repeats (~700 bp) at each end
- Gene Families genes duplicate & then diverge
- Segmental duplications ~very long, very similar copies
- A large fraction of the genome is repetitive
 => any repeat longer than the read length may be problematic

bioalgorithms.info

Unitigging: Pruning the Overlap

- If n reads are a uniform random sample of the genome of length G, we expect k=n Δ/G reads to start in a region of length Δ.
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat
 - Requires an accurate genome size estimate

Initial Scaffolding

Scaffold

Create a initial scaffold of unique unitigs (U-Unitigs) whose A-stat > 5. Also recruit borderline unitigs whose A-stat is > 2 and have consistent mates with the U-Unitigs.

Repeat Resolution

Scaffold

Place rocks (A-stat > 0 with multiple consistent mates), and stones (single mate and overlap path with placed objects) into the gaps. Pebbles, unitigs lackings mates, are no longer incorporated regardless of overlap qualities.

Scaffold merging

After placing borderline unitigs and rocks, there may be sufficient mates to merge scaffolds (mates from stones are not considered). If multiple orientations are possible, choose the scaffold merge with the happiest mates.

This in turn may allow for new rocks and stones to be placed, so iterate these steps until the scaffold stabilizes.

Derive Consensus Sequence

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

Two Paradigms for Assembly

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research* 20, 1165-73.

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 - Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

Short Read Genome Assemblers

- Several new assemblers developed specifically for short read data
 - Old assemblers incompatible for technical and algorithmic reasons
 - Variations on compressed de Bruijn graphs
 - Velvet (Zerbino & Birney, 2008)
 - ALLPATHS (Butler et al, 2008)
 - EULER-USR (Chaisson et al, 2009)
 - ABySS (Simpson et al, 2009)
- Short Read Assembler Overview
 - I. Construct compressed de Bruijn Graph
 - 2. Remove sequencing error from graph
 - 3. Use mate-pairs to resolve ambiguities in the graph
- Very successful for small to medium genomes
 - 2Mbp bacteria 100Mbp flies

de Bruijn Graph Construction

- Map: Scan reads and emit (k_i, k_{i+1}) for consecutive k-mers
 - Also consider reverse complement k-mers, build bi-directed graph
- Reduce: Save adjacency representation of graph (n, (nodeinfo, ni))

Bidirectional de Bruijn Graph

- Designate a representative mer for each mer/rc(mer) pair
 - Use the lexigraphically smaller mer
- Bidirected edges record if connection is between forward or reverse mer
- In practice, keep separate adjacency lists for the forward and reverse mers

AAGG [CCTT]: $AAG^+ \rightarrow AGG^+$ ACTT [AAGA]: $ACT^+ \rightarrow AAG^-$ GCTT [AAGC]: $AGC^- \rightarrow AAG^ AAG^+ \rightarrow AGC^+$

(Medvedev et al, 2007)

Node Types

Isolated nodes (10%)

Tips (46%)

Bubbles/Non-branch (9%)

Dead Ends (.2%)

Half Branch (25%)

Full Branch (10%)

(Chaisson, 2009)

Error Correction

Errors at end of read

• Trim off 'dead-end' tips

- Errors in middle of read
 - Pop Bubbles

- Chimeric Edges
 - Clip short, low coverage nodes

Repeat Analysis

- X-cut
 - Annotate edges with spanning reads
 - Separate fully spanned nodes
 - (Pevzner et al., 2001)

- Scaffolding
 - If mate pairs are available search for a path consistent with mate distance
 - Conceptually very similar to old techniques

Two Paradigms for Assembly

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research* 20, 1165-73.

Unifying view of assembly

sequencing gap - we know the order and orientation of the contigs and have at least one clone spanning the gap

physical gap - no information known about the adjacent contigs, nor about the DNA spanning the gap

Def: 50% of the genome is in contigs larger than N50

Example:

```
I Mbp genome
Contigs: 300k, 100k, 50k, 45k, 30k, 20k, 15k, 15k, 10k, ....
```

```
N50 size = 30 kbp
(300k+100k+50k+45k+30k = 525k >= 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Recent Large Assemblies

		Input Sequence						Assembly								
Organism/ Genome Size	Assembler/ Status	-22	Pair	Avg		Read Cov	Pair Cov	Contigs				Scattolds				2
		туре	Size	Read(bp)	Reads				N50	Max	Total		N50	Мак	Total	Ň
Human H. sopiens 3.06b	ABY55 Pub 2009	GA	210bp	35-46	3.58	45x	120x	2.76M	1.5Kb	18.8Kb	2.18Gb	NR	NR	NR	NR	
Grapevine V. vinifero 500Mb	Myriad Pub 2007	Sanger	2-10Kb	579	5.95M	6.9x	21x	-								-
		Sanger	40Kb	460	144K	0.13x	4.4x	58,611	18.2Kb	238Kb	531Mb	2,093	1.33Mb	7.8Mb	421Mb	*
		Sanger	120Kb	369	68K	0.02x	4.2x									
		454	none	169	12.5M	4.2x										
Cucumber C. sativus 367Mb	RePS2 Pub 2009	Sanger	2-6Kb	439	2.08M	3.35+	9.9x	62,412	19,807	NR	226Mb	47,837	1.15Mb	NR	244Mb	1
		Sanger	40Kb	496	339K	0.46×	16.7x									
		Sanger	140Kb	551	33.2K	0.04x	5.6x	NR	2.6Kb	NR	204Mb	NR	19КЬ	NR	238Mb	
		GA	200bp	42	282M	32.5x	76.8×									P .
		GA	400bp	44	173M	20.6x	94.4x	NR	12.5Kb	NR	190Mb	NR	172Kb	NR	200Mb	
		GA	2Kb	53	105M	15.3x	286×									
Panda A.meianoleura 2.46b	SOAP	GA	150	45	1.318	24.5x	43.3x	1								
	denovo Pub 2010	GA	500	67	917M	25.5x	90.2x	200,604	35,728	434,635	2.25Gb	81,469	1.22Mb	6.05Mb	2.30Gb	d
		GA	2Kb	71	397M	11.8x	192×									
		GA	5Kb	38	505M	8.0x	533x									
		GA	1040	35	254M	3.7x	571x									-
Strawberry F. vesco 220Mb	CABOG &	454	none	209	7.73M	7.3x										
	Velvet	454	none	368	787M	13.2*		16,487	28,072	215,349	202Mb	3,263	1.44Mb	4.1Mb	214Mb	
	Announced	454	2.5Kb	193	2.39M	2.1x	6.9x	226.67.8				1.1.1.1.1				
		454	2065	236	1.58M	1.7x	20x									
		GA	none	76	36M	12.4s										
		SOLID	2Kb	25	1.30M	0.14×	6.4x									
Turkey M. galiopavo 1.16b	CABOG Announced	454	3Kb	180	6M	18	8x	10000000	4-2020	008505	1000000	Sec.		385.9	14.2	
		454	20Kb	195	2M	0.3×	18x	128,271	12,594	90Kb	931Mb	26,917	1.5Mb	9Mb	NR	
		454	none	366	13M	4x		• · · ·								
		GA	180bp	74	200M	13x	16x									
		GA	none	74	200M	13x										

Table 1. De novo assemblies of second-generation sequencing projects.

Assembly Validation

Automatically scan an assembly to locate misassembly signatures for further analysis and correction

Assembly-validation pipeline

- I. Evaluate Mate Pairs & Libraries
- 2. Evaluate Read Alignments
- 3. Evaluate Read Breakpoints
- 4. Analyze Depth of Coverage

Genome Assembly forensics: finding the elusive mis-assembly.

Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.

- Evaluate mate "happiness" across assembly
 - Happy = Correct orientation and distance
- Finds regions with multiple:
 - Compressed Mates
 - Expanded Mates
 - Invalid same orientation $(\rightarrow \rightarrow)$
 - Invalid outie orientation (\leftarrow \rightarrow)
 - Missing Mates
 - Linking mates (mate in a different scaffold)
 - Singleton mates (mate is not in any contig)
- Regions with high C/E statistic

• Excision: Skip reads between flanking repeats

• Insertion: Additional reads between flanking repeats

- Misassembly: Expanded Mates, Missing Mates

• Rearrangement: Reordering of reads

Note: Unhappy mates may also occur for biological or technical reasons.

C/E Statistic

- The presence of individual compressed or expanded mates is rare but expected.
- Do the inserts spanning a given position differ from the rest of the library?
 - Flag large differences as potential misassemblies
 - Even if each individual mate is "happy"
- Compute the statistic at all positions
 - (Local Mean Global Mean) / Scaling Factor
- Introduced by Jim Yorke's group at UMD

Sampling the Genome

C/E-Statistic: Expansion

C/E-Statistic: Compression

Read Alignment

- Multiple reads with same conflicting base are unlikely
 - Ix QV 30: I/1000 base calling error
 - 2x QV 30: 1/1,000,000 base calling error
 - 3x QV 30: 1/1,000,000,000 base calling error
- Regions of correlated SNPs are likely to be assembly errors or interesting biological events
 - Highly specific metric
- AMOS Tools: analyzeSNPs & clusterSNPs
 - Locate regions with high rate of correlated SNPs
 - Parameterized thresholds:
 - Multiple positions within 100bp sliding window
 - 2+ conflicting reads
 - Cumulative QV >= 40 (1/10000 base calling error)

AGC AGC AGC AGC AGC AGC CTA CTA CTA CTA CTA CTA

Read Breakpoints

- Find regions of contigs where the depth of coverage is unusually high
- Collapsed Repeat Signature

 Can detect collapse of 100% identical repeats
- AMOS Tool: analyzeReadDepth
 - 2.5x mean coverage

Validation Accuracy

Table 1														
Accuracy of amosyalidate mis-assemb	coursey of amosvalidate mis-assembly signatures and suspicious regions summarized for 16 bacterial genomes assembled with Phrap													
		Char		Mis-asset	noly signatures		Suspicious regional							
Species	Len			Num	Valid	Sara	Num	wild	Sara					
8. antivaca	1-2	47	2	1,334	20	100.0	127	2	100.8					
R. sure	2.4	120	1.0	1,047	30	80.0	158		90.0					
C durnetil	2.0	55	22	1,375	79	100.0	124	19	100.0					
C cavias	1.4	. 270	12	625	16	83.3	90		86.7					
C Muni	1.0	53	5	290	2.0	00.0	81	3	80.0					
(3. etherogenes	1.8	632	12	666	22	91.7			100.0					
P) successgenes	4.8	455	20	1,670	22	95.2	256	54	86.7					
L monocytogenes	2.9	172	-1	1,201	5	100.0	201	1	100.0					
M. capricolum	1.0	37	3	83		0.0	1.0		0.8					
N. sennetsu	0.9	.16		91		164	13		3.6					
P; intermedia	2.7	343	25	1,655	57	100.0	201	20	100.0					
P. torringser	6.4	224	64	2,841	200	95.4	366	55	55.4					
5. apatectiae	2.5	137	25	667	53	95.2	112	.58	85.7					
S. aurous	2.8	624	-45	1,850	69	97.6	227	18	75.8					
W. pipientis	3.3	2017	31	761	92	100.0	1.92	35	100.8					
X. oryawe	5.0	50	155	2,569	379	100.8	500	65	100.8					
Totals	49.8	3412	417	10,949	1,082	96.8	2,242	275	92.6					

Species name, genome length (Len), number of assembled contigs (Ogs), and alignment inferred mis assemblies (Errs) are given in the Tirst four columns. Number of mis-assembles dentifies departures output by amouvalistic (Num) is given in oscilm 5, along with the number of signatures conciding with a known mis-assemblies (Errs) are given in oscilm 6 (Valid), and percentage of known mis-assemblies identified by one or more signatures in column 7 (Sens). The same values are given in columns 8-10 for the suspicious regions output by antisystikate. The suspicious regions represent at least two different, coinciding lines of evidence, whereas the signatures represent a single line of evidence. A signature or region is deemed 'validated' if its location interval overlaps a mis-assembled region identified by dhadtif. Thus, a single signature or ingoin can identify multiple mis-assembles, and unce wersa, a single mis-assemble (can be devidence).

Phillippy et al. Genome Biology 2008 @:R55 doi:10.1186/gb-2008-9-3-r55

Summary

- Graphs are ubiquitous in the world
 - Pairwise searching is easy, finding features is hard
- Assembly is challenging because of repeats
 - The repetitive content depends on the read length
 => Shorter reads are harder to assemble
 - Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

Supplemental

IMDB Movie Graph

- Bipartite Graph
 - I.5 M people
 - I.2 M shows
- Small world graph
 - KB has 2350 direct collaborators
 - I.2 M within 8 hops
 - 83% within 3 hops

Average Bacon Number: 2.981
Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
– Text printed on 5 long spools

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

