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Milestones in Genomics 

 
Versuche über Pflanzen-Hybriden. Verh. Naturforsch (Experiments in Plant Hybridization) 
Mendel, G. (1866). Ver. Brünn 4: 3–47 (in English in 1901, J. R. Hortic. Soc. 26: 1–32). 

http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization 

Observations of 29,000 pea plants and 7 traits 



Milestones in Genomics 

Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid 
Watson JD, Crick FH (1953). Nature 171: 737–738. 

The origin and behavior of mutable loci in maize 
McClintock, B (1950) Proceedings of the National Academy of Sciences. 36:344–55. 



Milestones in Genomics 

1977 
1st Complete Organism 
Bacteriophage φX174 

5375 bp 

Radioactive Chain Termination  
5000bp / week / person 

 
http://en.wikipedia.org/wiki/File:Sequencing.jpg 

http://www.answers.com/topic/automated-sequencer 

Nucleotide sequence of bacteriophage φX174 DNA 
Sanger, F. et al. (1977) Nature. 265: 687 - 695 



Milestones in Genomics: 
First Generation Sequencing 

1995  
Fleischmann et al. 

1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2000  
Myers et al. 

1st Large WGS Assembly. 
Celera Assembler. 116 Mbp 

2001 
 Venter et al. / IHGSC  

Human Genome 
Celera Assembler. 2.9 Gbp 

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. 
"The machine was so revolutionary that it could decode in a single day the same amount 
of genetic material that most DNA labs could produce in a year. " J. Craig Venter 



Milestones in Genomics: 
Second Generation Sequencing 

2004 
454/Roche 

Pyrosequencing 
Current Specs (Titanium):  
1M 400bp reads / run =  

1Gbp / day 

2007 
Illumina 

Sequencing by Synthesis 
Current Specs (HiSeq 2000):  

2.5B 100bp reads / run =  
60Gbp / day 

2008 
ABI / Life Technologies 

SOLiD Sequencing 
Current Specs (5500xl):  
5B 75bp reads / run =  

30Gbp / day 



Milestones in Genomics: 
Third Generation Sequencing 

2010 
Ion Torrent 

Postlight Sequencing 
Current Specs (Ion 318):  
11M 300bp reads / run =  

>1Gbp / day 

2011 
Pacific Biosciences 
SMRT Sequencing 

Current Specs (RS):  
50k 2kbp reads / run =  

>200Mbp / day 



Milestones in Genomics 

De novo Assembly 

Alignment & Variations 
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T 
T 
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T 

Differential Analysis 

Phylogeny & Evolution 



Sequencing Centers 

Next Generation Genomics: World Map of High-throughput Sequencers 
http://pathogenomics.bham.ac.uk/hts/ 



DNA Data Tsunami 

"Will Computers Crash Genomics?"  
Elizabeth Pennisi (2011) Science. 331(6018): 666-668.  

Current world-wide sequencing capacity exceeds 13Pbp/year 
and is growing at 5x per year! 



21st Century Genomics 
•  The cornerstones of genomics continue to be observation, 

experimentation, and interpretation of the living world 
–  Technology has and will continue to push the frontiers of genomics 
–  Measurements will be made digitally in great quantities, at extremely high 

resolution, and for diverse applications 
 

•  Demands of digital genomics 
1.  Experimental design: selection, collection, tracking & metadata 

•  Ontologies, LIMS, sample databases   

2.  Observation: measurement, storage, transfer, computation 
•  Algorithms to overcome sensor errors & limitations, computing at scale   

3.  Integration: multiple samples, multiple assays, multiple analyses 
•  Reproducible workflows, common formats, resource federation   

4.  Discovery: visualizing, interpreting, modeling 
•  Clustering, data reduction, trend analysis 



Genomics and Parallel Computing 

Our best (only) hope is to use many computers:  
•  Parallel Computing aka Cloud Computing 

•  Now your programs will crash on 1000 
computers instead of just 1  

Current world-wide sequencing capacity exceeds 13Pbp/year 
and is growing at 5x per year! 



Amazon Web Services 

•  All you need is a credit card, and you can 
immediately start using one of the largest 
datacenters in the world 

•  Elastic Compute Cloud (EC2) 
–  On demand computing power 

•  Simple Storage Service (S3) 
–  Scalable data storage 

•  Plus many, many more 
 

h"p://aws.amazon.com	
  



EC2 Architecture 
•  Very large cluster of machines 

–  Effectively infinite resources 
–  High-end servers with many cores 

and many GB RAM 

•  Machines run in a virtualized 
environment 
–  Amazon can subdivide large nodes 

into smaller instances 
–  You are 100% protected from other 

users on the machine 
–  You get to pick the operating 

system, all installed software 



Getting Started 
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/ 



•  MapReduce is Google's framework for large data computations  
–  Data and computations are spread over thousands of computers 

•  Indexing the Internet, PageRank, Machine Learning, etc…  (Dean and Ghemawat, 2004) 
•  946PB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010) 

–  Hadoop is the leading open source implementation 
•  Developed and used by Yahoo, Facebook, Twitter, Amazon, etc 
•  GATK is an alternative implementation specifically for NGS 

Hadoop MapReduce 

•  Benefits 
–  Scalable, Efficient, Reliable 
–  Easy to Program 
–  Runs on commodity computers 

•  Challenges 
–  Redesigning / Retooling applications 

–  Not Condor, Not MPI 
–  Everything in MapReduce 

h"p://hadoop.apache.org	
  



Hadoop for NGS Analysis 
CloudBurst 

Highly Sensitive Short Read 
Mapping with MapReduce 

 
100x speedup mapping 
on 96 cores @ Amazon 

 
 

(Schatz, 2009) http://cloudburst-bio.sf.net 

Quake 

Quality‐aware error 
correction of short reads 

 
Correct 97.9% of errors   
with 99.9% accuracy 

 
 

(Kelley, Schatz,  
Salzberg, 2010) 
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http://www.cbcb.umd.edu/software/quake/ 

Myrna 

Cloud-scale differential gene 
expression for RNA-seq 

 
Expression of 1.1 billion RNA-Seq 

reads in ~2 hours for ~$66 
 
 

(Langmead,  
Hansen, Leek, 2010) http://bowtie-bio.sf.net/myrna/ 

Genome Indexing 

Rapid Parallel Construction 
of Genome Index 

 
Construct the BWT of 

the human genome in 9 minutes 
 
 

(Menon, 
 Bhat, Schatz, 2011*) 

http://code.google.com/p/ 
genome-indexing/ 



 System Architecture 

•  Hadoop Distributed File System (HDFS) 
–  Data files partitioned into large chunks (64MB),  replicated on multiple nodes 
–  Computation moves to the data, rack-aware scheduling 

•  Hadoop MapReduce system won the 2009 GreySort Challenge 
–  Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks 

 

Slave 5 

Slave 4 

Slave 3 

Slave 2 

Slave 1 

Master Desktop 



Hadoop on AWS 

AWS 

EC2 - 5 

EC2 - 4 

EC2 - 3 

EC2 - 2 

EC2 - 1 

EC2 -  
Master 

Desktop 
S3 

•  If you don’t have 1000s of machines, rent them from Amazon 
•  After machines spool up, ssh to master as if it was a local machine. 
•  Use S3 for persistent data storage, with very fast interconnect to EC2. 



Parallel Algorithm Spectrum 
Embarrassingly Parallel 

Map-only 
Each item is Independent 

Loosely Coupled 

MapReduce 
Independent-Sync-Independent 

Tightly Coupled 

Iterative MapReduce 
Constant Sync 



1. Embarrassingly Parallel 
•  Batch computing 

–  Each item is independent 
–  Split input into many chunks 
–  Process each chunk separately on a 

different computer 

•  Challenges 
–  Distributing work, load balancing, 

monitoring & restart 

•  Technologies  
–  Condor, Sun Grid Engine 
–  Amazon Simple Queue 



Elementary School Dance 



2. Loosely Coupled 
•  Divide and conquer 

–  Independently process many items 
–  Group partial results  
–  Scan partial results into final answer 

•  Challenges 
–  Batch computing challenges  
–  + Shuffling of huge datasets 

•  Technologies 
–  Hadoop, Elastic MapReduce, Dryad 
–  Parallel Databases 



Junior High Dance 



Short Read Mapping 

•  Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read 
–  Find where the read most likely originated 
–  Fundamental computation for many assays 

•  Genotyping    RNA-Seq    Methyl-Seq 
•  Structural Variations   Chip-Seq    Hi-C-Seq 

•  Desperate need for scalable solutions 
–  Single human requires >1,000 CPU hours / genome 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

Identify variants 

Reference 

Subject 



Crossbow 

•  Align billions of reads and find SNPs 
–  Reuse software components: Hadoop Streaming 

h"p://bow5e-­‐bio.sourceforge.net/crossbow	
  

•  Map: Bowtie (Langmead et al., 2009) 
–  Find best alignment for each read 
–  Emit (chromosome region, alignment) 

•  Reduce: SOAPsnp (Li et al., 2009) 
–  Scan alignments for divergent columns 
–  Accounts for sequencing error, known SNPs 

•  Shuffle: Hadoop 
–  Group and sort alignments by region 

…
	
   …
	
  



Performance in Amazon EC2 

Asian Individual Genome 

Data Loading 3.3 B reads 106.5 GB $10.65 

Data Transfer 1h :15m 40 cores $3.40 

Setup 0h : 15m 320 cores $13.94 

Alignment 1h : 30m 320 cores $41.82 

Variant Calling 1h : 00m 320 cores $27.88 

End-to-end 4h : 00m $97.69 

Discovered 3.7M SNPs in one human genome for ~$100 in an afternoon. 
Accuracy validated at >99% 

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134  

h"p://bow5e-­‐bio.sourceforge.net/crossbow	
  



Cloud Cluster 

Cloud 
Storage 

…	
  

…	
  

Unaligned	
  
Reads	
  

Map	
  to	
  	
  
Genome	
  

Shuffle	
  	
  
into	
  Bins	
  

Scan	
  	
  
Alignments	
  

Assay	
  	
  
Results	
  

Internet 

Cloud 
Storage 

Internet 

Map-Shuffle-Scan for Genomics 

Cloud Computing and the DNA Data Race. 
Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693 



Jnomics case study:  
Structural variations in esophageal cancer 

•  Structural variations are common to many forms of cancer 
–  Indels, Inversions, CNVs, Translocations of more than a single basepair 
–  “An analysis of available data shows that gene fusions occur in all malignancies, and 

that they account for 20% of human cancer morbidity.” 
•  Mitelman et al. (2007) The impact of translocations and gene fusions on cancer causation. Nature 

Reviews Cancer. 7:223-245 

•  Traditionally identified through cytogenetic imaging & microarrays 
–  FISH, CGH, SOMA, etc 

•  Recent trend is to use sequencing to identify SVs 
–  Decreased cost, improved resolution 
–  Potential exists for basepair resolution of events 

Applications of SKY in cancer cytogenetics 
Bayani, JM, Squire, JA (2002) Cancer Invest. 20(3):373-86. 



Hydra Discordant Pair Analysis 
Illumina sequencing generates reads in pairs from both ends of a 
fragment with a known separation 
1.  Sequence diseased sample using paired-end/mate-pair protocol 
2.  Map reads from sample to reference genome 
3.  If a pair maps unexpectedly far away or with unexpected orientation, there is a SV 

between the reads 

Sample Separation: 2kbp 

Mapped Separation: 1kbp 

4.  Cluster pairs to pinpoint breakpoints 

(Quinlan, 2010) 



Jnomics Structural Variations 

Circos plot of high confidence 
SVs specific to esophageal 
cancer sample 
•  Red: SVs specific to tumor 
•  Green: SVs in both diseased 

and tumor samples 

Detailed analysis of disrupted 
genes and fusion genes in 
progress 
•  Preliminary analysis shows 

many promising hits to 
known cancer genes 



3. Tightly Coupled 
•  Computation that cannot be partitioned 

–  Graph Analysis 
–  Molecular Dynamics 
–  Population simulations 

•  Challenges 
–  Loosely coupled challenges  
–  + Parallel algorithms design 

 
•  Technologies 

–  MPI 
–  MapReduce, Dryad, Pregel 



High School Dance 



Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph 
–  Human genome: >3B nodes, >10B edges 

•  The new short read assemblers require tremendous computation 
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



Warmup Exercise 
Who here was born closest to Oct 4? 

– You can only compare to 1 other person at a time 

Find winner among 16 teams in just 4 rounds 



Graph Compression 
•  After construction, many edges are unambiguous 

–  Merge together compressible nodes 
–  Graph physically distributed over hundreds of computers 

Design Patterns for Efficient Graph Algorithms in MapReduce.  
Lin, J., Schatz, M.C. (2010) Workshop on Mining and Learning with Graphs Workshop (KDD-2010) 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Initial Graph: 42 nodes 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
   

  
 
  

 
  

 
  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 1: 26 nodes (38% savings) 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 15 nodes (64% savings) 

 
  

 
  

 
   
  

 
 

 
 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 8 nodes (81% savings) 

  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 3: 6 nodes (86% savings) 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

 Performance 
–  Compress all chains in log(S) rounds 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 4: 5 nodes (88% savings) 



Contrail 

De novo bacterial assembly 
•  Genome: E. coli K12 MG1655, 4.6Mbp 
•  Input: 20.8M 36bp reads, 200bp insert (~150x coverage) 
•  Preprocessor: Quake Error Correction 

http://contrail-bio.sourceforge.net 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

Cloud Surfing Error Correction Compressed Initial 

N 
Max 
N50 

5.1 M 
27 bp 
27 bp 

245,131 
1,079 bp 

156 bp 

2,769 
70,725 bp 
15,023 bp 

1,909 
90,088 bp 
20,062 bp 

300 
149,006 bp 
54,807 bp 

Resolve Repeats 



Contrail 

De novo Assembly of the Human Genome 
•  Genome: African male NA18507 (SRA000271, Bentley et al., 2008) 
•  Input: 3.5B 36bp reads, 210bp insert (~40x coverage) 

Compressed Initial 

N 
Max 
N50 

>7 B 
27 bp 
27 bp 

>1 B 
303 bp 

< 100 bp 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

http://contrail-bio.sourceforge.net 

Cloud Surfing Error Correction 

4.2 M 
20,594 bp 

995 bp 

4.1 M 
20,594 bp 
1,050 bp 

3.3 M 
20,594 bp 
1,427 bp* 

Resolve Repeats 



De novo mutations and de Bruijn Graphs 

 Searching for de novo mutations in 
the families of 3000 autistic children. 
–  Assemble together reads from mom, 

dad, affected & unaffected children 
–  Look for sequence paths unique to 

affected child 

Unique 
to affected 

Shared  
by all 

COLEC12	
  	
  
C-­‐>A 



•  We are entering the digital age of biology 
–  Next generation sequencing, microarrays, mass 

spectrometry, microscopy, ecology, etc 
–  Parallel computing may be our only hope for 

keeping up with the pace of advance 

•  Modern biology requires (is) quantitative 
biology 

–  Computational, mathematical, and 
statistical techniques applied to analyze, 
integrate, and interpret biological sensor 
data 

•  Emerging technologies are a great start, but 
we need continued research 
–  Need integration across disciplines 

Summary 
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