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A Little About Me




Computational Biology

"Computer science is no more about computers than astronomy is about telescopes."
Edger Dijkstra

Computer Science = Science of Computation
* Compute solutions to problems, designing & building systems
* Computers are very, very dumb, but we can instruct them

* Build complex systems out of simple components

Computational Biology = Thinking Computationally about Biology
* Analysis: Make more powerful instruments, analyze results
* Design: experimental protocols, procedures, systems

Computational Genomics Computational Thinking

|. Alignment |. Algorithm

2. Assembly 2. Data structure

3. Expression 3. Computational Analysis
4. Comparative Genomics 4. Computational Modeling

o



Genomics & Quantitative Biology

Genome Assembly Mutations & Disease
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Searching for GATTACA
* Where is GATTACA in the human genome!

* Strategy |:Brute Force

1120345 6 7 8 9 1011201314 15] .

T G A. T T A C A G A T T A C C ..

G A T T A C A

No match at offset |



Searching for GATTACA
* Where is GATTACA in the human genome!

* Strategy |:Brute Force

1120345 6 7 8 9 1011201314 15] .

T G A. T T A C A G A T T A C C ..

G A T T A C A

Match at offset 2



Searching for GATTACA
* Where is GATTACA in the human genome!

* Strategy |:Brute Force

1120345 6 7 8 9 1011201314 15] .

T G A. T T A C A G A T T A C C ..

G A T T A C A ..

No match at offset 3...



Searching for GATTACA
* Where is GATTACA in the human genome!

* Strategy |:Brute Force

1120345 6 7 8 9 1011201314 15] .

T G A. T T A C A G A T T A C C

G A T T A C A

No match at offset 9 <- Checking each possible position takes time



Brute Force Analysis

e Brute Force:

— At every possible offset in the genome:
* Do all of the characters of the query match?

* Analysis
— Simple, easy to understand
— Genome length = n [3B]
— Query length =m [7]
— Comparisons: (n-m+1) * m [21B]

* Opverall runtime: O(nm)
[How long would it take if we double the genome size, read length?]
[How long would it take if we double both?]



e-value

2e+08 4e+08 6e+08

0e+00

Expected Occurrences

The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence

— | in 4 bases are G, | in 16 positions are GA, | in 64 positions are GAT, ...

— 1 in 16,384 should be GATTACA

— E=n/(4™) [183,105 expected occurrences]
[How long do the reads need to be for a significant match?]

Evalue and sequence length E-value and sequence length
cutoff 0.1 cutoff 0.1
~ MW human (3B)
| fly (130M)
HW human (3B) ? - f
® fly (130M) o | E. coli (5M)
W E. coli (5M)

1e+03

e-value

1e-01

1e-05

1e-09

seq len seq len



Brute Force Reflections

Why check every position!?
— GATTACA can't possibly start at position |5 [WHY?]

1203 45 6 7 8 9 1011201314 5] .

T G A. T T A C A G A T T A C C

G A T T A C A

— Improve runtime to O(n + m) [3B + 7]
* If we double both, it just takes twice as long
 Knuth-Morris-Pratt, 1977
* Boyer-Moyer, 1977, 1991

— For one-off scans, this is the best we can do (optimal performance)
* We have to read every character of the genome, and every character of the query
* For short queries, runtime is dominated by the length of the genome



Suffix Arrays: Searching the Phone Book

* What if we need to check many queries?
*  We don't need to check every page of the phone book to find 'Schatz’

* Sorting alphabetically lets us immediately skip 96% (25/26) of the book
without any loss in accuracy

* Sorting the genome: Suffix Array (Manber & Myers, 1991)

— Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]



Searching the Index

* Strategy 2:Binary search

Searching for GATTACA

Compare to the middle, refine as higher or lower

Lo = I;Hi = 15;

Lo
$

# Sequence

ACAGATTACC...

ACC...

AGATTACC...

ATTACAGATTACC...

ATTACC...

C...

CAGATTACC...

CC...

GATTACAGATTACC...

2
3
4
5
6
7
8
9
0

GATTACC...

TACAGATTACC...

12

TACC...

TGATTACAGATTACC...

TTACAGATTACC...

TTACC...




Searching the Index
* Strategy 2:Binary search

* Compare to the middle, refine as higher or lower
Lo

é
«  Searching for GATTACA | | ACAGATTACC. . ¢
e Lo=1I;Hi=15Mid=(1+15)/2=8 2| ACC... 3
«  Middle = Suffix[8] = CC j 2:;22;};@ j
5| ATTACC... 10
6| C... 15
7 | CAGATTACC... 7
8| CC... 14
9 | GATTACAGATTACC... 2
10 | GATTACC... 9
Il | TACAGATTACC... 5
12 [ TACC... 12
13 | TGATTACAGATTACC... I
14 | TTACAGATTACC... 4
Hi I5 [ TTACC... I
=




Searching the Index
* Strategy 2:Binary search

* Compare to the middle, refine as higher or lower
Lo

9

«  Searching for GATTACA | | ACAGATTACC.. 6
e Lo=1I;Hi=15Mid=(1+15)/2=8 2| ACC... 3
«  Middle = Suffix[8] = CC 3 | AGATTACC. . 8
=> Higher: Lo = Mid + | ‘5‘ 211222GATTACCM TO
6| C... 15

7 | CAGATTACC... 7
8| CC... 14

9 | GATTACAGATTACC... 2

10 | GATTACC... 9

Il | TACAGATTACC... 5
12 [ TACC... 12

13 | TGATTACAGATTACC... I

14 | TTACAGATTACC... 4

lﬂ I5 [ TTACC... I




Searching the Index

* Strategy 2:Binary search
* Compare to the middle, refine as higher or lower

# Sequence

* Searching for GATTACA
* Lo=I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

* Lo=9%Hi=15;

-» 9 | GATTACAGATTACC... 2
10 [ GATTACC... 9
Il | TACAGATTACC... 5
12 [ TACC... 12
13 | TGATTACAGATTACC... | |
14 | TTACAGATTACC... 4

I;Ii) 15| TTACC... I




Searching the Index
* Strategy 2:Binary search

* Compare to the middle, refine as higher or lower

# Sequence

* Searching for GATTACA
* Lo=I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

Lo =9;Hi=I5Mid= (9+15)2 = |2
»  Middle = Suffix[12] = TACC

9 | GATTACAGATTACC...
10 [ GATTACC...

Ur | O DN

11 | TACAGATTACC...
12 | TACC... 12
14 | TTACAGATTACC... 4

Hi I5 | TTACC... Il




Searching the Index

Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo = I;Hi=15Mid = (I1+15)/2=8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

Lo = 9;Hi = I5;Mid = (9+15)/2 = 12
Middle = Suffix[12] = TACC

=> Lower: Hi = Mid - |

Llo=9;Hi=11I;

Sequence

GATTACAGATTACC...

10

GATTACC...

TACAGATTACC...




Searching the Index
Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo = I;Hi=15Mid = (I1+15)/2=8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

Lo = 9;Hi = 15;Mid = (9+15)/2 =12
Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

Lo=9;Hi= I1;Mid = (9+11)/2= 10
Middle = Suffix[10] = GATTACC

#

Sequence

GATTACAGATTACC...

10

GATTACC...
TACAGATTACC...

O N




Searching the Index
Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

# Sequence

Searching for GATTACA
* Lo=I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

* Lo=9;Hi=15Mid=(9+15)/2 =12
* Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

156

GATTACAGATTACC... 2

* Lo=9Hi=1I;Mid=9+11)/2=10
* Middle = Suffix[10] = GATTACC
=> Lower: Hi = Mid - |

e Lo=9;Hi=9;




Searching the Index
Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

# Sequence

Searching for GATTACA
* Lo=I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

* Lo=9;Hi=15Mid=(9+15)/2 =12
* Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

GATTACAGATTACC...

* Lo=9Hi=1I;Mid=9+11)/2=10
* Middle = Suffix[10] = GATTACC
=> Lower: Hi = Mid - |

e Lo=9;Hi=9;,Mid=(9+9)/2=9
* Middle = Suffix[9] = GATTACA...
=> Match at position 2!




L

Binary Search Analysis

* Binary Search
Initialize search range to entire list
mid = (hi+lo)/2; middle = suffix|mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range
Repeat until done or empty range

* Analysis
* More complicated method
* How many times do we repeat!

* How many times can it cut the range in half?
* Find smallest x such that: n/(2¥) < |;x = Ig,(n)

* Total Runtime: O(m Ig n)
* More complicated, but much faster!
* Looking up a query loops 32 times instead of 3B

[WHEN?]

[32]

[How long does it take to search 6B or 24B nucleotides?]



Suffix Array Construction

* How can we store the suffix array?
[How many characters are in all suffixes combined?]

S:1+2+3+---+n:2i:n(n;1)=0(n2) N j
=1 - 10

15

* Hopeless to explicitly store 4.5 billion billion characters 7
14

* Instead use implicit representation 2
* Keep | copy of the genome, and a list of sorted offsets i

* Storing 3 billion offsets fits on a server (12GB) :

* Searching the array is very fast, but it takes time to construct

* This time will be amortized over many, many searches 4

* Run it once "overnight" and save it away for all future queries I

TGATTACAGATTACC



Sorting

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50, 13,63,61,19

[How do you do it?]

6,13,14,29,31,39,64,78,50,63,61, 19
6,13,14,29,31,39,64,78,50,63,61, 19
6,13,14,19,29,31, 39, 64,78,50,63, 6
6,13,14,19,29,31, 39, 64,78,50,63,6
6,13,14,19,29,31, 39, 64,78,50,63, 6
6,13,14,19,29,31,39,50,64,78,63,6
6,13,14,19,29,31,39,50,61, 64,78, 63
6,13, 14,19,29,31,39,50,61,63, 64,78
6,13, 14,19,29,31,39,50,61,63, 64,78
6,13,14,19,29,31,39,50,61,63, 64,78
6,13,14,19,29,31,39,50,61,63, 64,78
6,13,14,19,29,31,39,50,61,63,64,78

http://en.wikipedia.org/wiki/Selection_sort



Selection Sort Analysis

* Selection Sort (Input: list of n numbers)
for pos =1 ton
/I find the smallest element in [pos, n]
smallest = pos
for check = pos+| to n
if (list[check] < list[smallest]): smallest = check

// move the smallest element to the front
tmp = list[smallest]

list[pos] = list[smallest]

list[smallest] = tmp

* Complexity Analysis N

n(n+ 1)

T=nt(n-1+m-2++3+2+1=3 =D gpa

* Outerloop: pos =1ton =

* Inner loop: check = pos to n

* Running time: Outer * Inner = O(n?) [4.5 Billion Billion]

[Challenge Questions: Why is this slow? / Can we sort any faster?]



Divide and Conquer

e Selection sort is slow because it rescans the entire list for each element
* How can we split up the unsorted list into independent ranges!?
* Hint |: Binary search splits up the problem into 2 independent ranges (hi/lo)
* Hint 2: Assume we know the median value of a list

AAAAAN
M ' ' ' ' ' 2i x n/2!

[How many times can we split of n items a list in half?]



QuickSort Analysis

*  QuickSort(Input: list of n numbers)

/Il see if we can quit ! o -
if (length(list)) <= I): return list =0 e "
= - -

/1 split list into lo & hi V . 2
pivot = median(list) « Sills.
lo = {};hi ={}; . 2 | .
for (i = | to length(list)) & -'.

if (list[i] < pivot): append(lo, list[i]) - g

else: aPPend(hi’ IiSt[i]) http://en.wikipedia.org/wiki/Quicksort

Il recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

* Complexity Analysis (Assume we can find the median in O(n))

Tmy_{ou) if n <1

O(n)+2T(n/2) else ) ()
n n n 2'n
T(n):n+2(§)+4(1)+--.+n(ﬁ): E | = E :n:O(nlgn) [~94B]

1=0 1=0



QuickSort Analysis

*  QuickSort(Input: list of n numbers)

I see if we can quit 1 . -
if (length(list)) <= I): return list 2« N
- o -

/1 split list into lo & hi e o I
pivot = median(list) > R =
lo = {}; hi = {}; - : 1 “
for (i = | to length(list)) - -'.

if (list[i] < pivot): append(lo, list[i]) " .

else: aPPend(hi’ IiSt[i]) http://en.wikipedia.org/wiki/Quicksort

Il recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

* Complexity Analysis (Assume we can find the median in O(n))

T(n)_{ O(1) if n <1

O(n)+2T(n/2) else ) ()
n n n 2'n
T(n):n+2(§)+4(1)+--.+n(5): E | = E :n:O(nlgn) [~94B]

1=0 1=0



In-exact alignhment

1203 45 6 7 8 9 10/l 12[13/14 5]

T G AT T A C A G A T T A C C

* Where is GATTACA approximately in the human genome!?

— And how do we efficiently find them?

* |t depends...

— Define 'approximately’
* Hamming Distance, Edit distance, or Sequence Similarity
* Ungapped vs Gapped vs Affine Gaps, Global vs Local

— Algorithm depends on the data characteristics & goals
* Smith-Waterman: Exhaustive search for optimal alignments
* BLAST: Hash-table based homology searches
* Bowtie: BWT alignment for short read mapping



Seed-and-Extend Alignment

10bp read
X 1 difference
Theorem: An alignment of a sequence of length m 1
with at most k differences must contain
an exact match at least s=m/(k+1) bp long > —
(Baeza-Yates and Perleberg, 1996)
3 %
: . 4 *
— Proof: Pigeonhole principle
— | pigeon can't fill 2 holes 5 %
6 *
— Seed-and-extend search 7 %
— Use an index to rapidly find short exact 3 .
alignments to seed longer in-exact alignments
— BLAST, MUMmer, Bowtie, BWA, SOAP ... 9
10

[How could you use seed-and-extend with a suffix array?]

Ul

O 00 N o wul



Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)



Burrows-Wheeler Transform

SGATTACA
ASGATTAC

— ACTdAKTA

BWT(T)

GATTACAS —
T

GATTACA
TACASGAT
TTACASGA LF Property

Burrows Wheeler |mp!|C|tIy encodes
Matrix suffix array

* Suffix Array is fast to search, but much larger than genome
* BWT is a reversible permutation of the genome based on the suffix array

* Core index for Bowtie (Langmead et al., 2009) and most recent short read
mapping applications

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124



Bowtie algorithm

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCTA



Bowtie algorithm

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCT@



Bowtie algorithm

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATC@



Bowtie algorithm

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGAT@



Bowtie algorithm

Reference

vovwe v o wuwoiwuY v wwve W
e,

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCTA




Bowtie algorithm

Reference

| | |
2 ¥

BWT( Reference )

Query:

AATGATACCGCCACCACCCACATCTA)




Bowtie algorithm

Reference

BWT( Reference )

Query:

AATGRTACGGCGACCACCCAGATCTA




Bowtie algorithm

Reference

| | |
2 ¥

BWT( Reference )

Query:

AATGTIACGECCACCACCCACATCTA]




Bowtie algorithm

Reference

.
.

BWT( Reference )

Query:

A A /\ /\ /\ A \



Part |: Summary

* Short Read Mapping: Seed-and-extend search of the BWT
* If we fail to reach the end, back-track and resume search
* The beginning of the read is used as high confidence seed
* 100s of times faster than competing approaches, works entirely in RAM

* Algorithms choreograph the dance of data inside the machine
* Algorithms add provable precision to your method
e A smarter algorithm can solve the same problem with much less work

* Computational Techniques
* Binary search: Fast lookup in any sorted list

* Divide-and-conquer: Split a hard problem into an easier problem
* Recursion: Solve a problem using a function of itself

* Indexing: Focus on just the important parts
* Seed-and-extend:Anchor the problem using a portion of it







Outline

Part |:Schatz Lab Overview

Part 2: Sequence Alignment

Part 3: Genome Assembly

* Assembly by analogy
* Coverage, read length, and repeats
* Contiging & Scaffolding

* Assembly Forensics

Part 4: Parallel & Cloud Computing




Shredded Book Reconstruction

* Dickens accidentally shreds the first printing of A Tale of Two Cities

— Text printed on 5 long spools

It wag

fhevhesthef bestinfesriesyas whaes worstor of times, it was the pggebiwddomititwashy dbe agfoofifdnlsdmess, |..

It was

fhevhesthe of times, it was the a¢ worst of times, it was the thge adendfddadomwits [thevasetht fagtisiitesishness,

It was

fheva sbidsd bEstmésjritewat \»zahd:hzeomtrsf tifnasei, i}t was the age of wisdom, i it was the age of |idboléskness,]|...

It was

t thasbiist bEsiroésritef, iiawahdveonatref tiftemed it was the age of pisdedoris, itavethehegagst fpolifholiskness, ...

It | wak thesbdst bEsinnédjnjert, itawdhdweownsiref gf times, it was the age ¢

f ofiwdsdomt wasathehegq afgfoolifbolesdsness, |...

How can he reconstruct the text?

— 5 copies x 138,656 words / 5 words per fragment = |38k fragments

— The short fragments from every copy are mixed together

— Some fragments are identical




It was the best of

age of wisdom, it was

best of times, it was

it was the age of

it was the age of

it was the worst of

of times, it was the

of times, it was the

of wisdom, it was the

the age of wisdom, it

the best of times, it

the worst of times, it

times, it was the age

times, it was the worst

was the age of wisdom,

was the age of foolishness,

was the best of times,

was the worst of times,

wisdom, it was the age

worst of times, it was

Greedy Reconstruction

It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

C wWd C WO

The repeated sequence make the correct
reconstruction ambiguous

* It was the best of times, it was the [worst/age]

[Any ideas on how to proceed?]



de Bruijn Graph Construction

D, = (VE)
* V =All length-k subfragments (k <)

* E = Directed edges between consecutive subfragments
* Nodes overlap by k-1 words

Original Fragment Directed Edge

It was the best of It was the best 2| was the best of

Locally constructed graph reveals the global sequence structure
* Overlaps between sequences implicitly computed

de Bruijn, 1946
|dury and Waterman, 1995
Pevzner, Tang, Waterman, 2001



It was the best

N

was the best of

Sy

de Bruijn Graph Assembly

the best of times,

S

best of times, it

N, |

of times, it was

N

it was the worst

times, it was the

After graph construction,
try to simplify the graph as
much as possible

™Sy

was the worst of

S

the worst of times,

S

worst of times, it

it was the age

S

the age of foolishness

was the age of

the age of wisdom,

™SS

age of wisdom, it

S

of wisdom, it was

>SS

wisdom, it was the




de Bruijn Graph Assembly

It was the best of times, it

v

it was the worst of times, it

of times, it was the

After graph construction,
try to simplify the graph as
much as possible

the age of foolishness

it was the age of

the age of wisdom, it was the




Counting Eulerian Tours

B

a —>(®>—> o M
( > ARCRERD
C

Generally an exponential number of compatible sequences
— Value computed by application of the BEST theorem (Hutchinson, 1975)

1
W(G,t) = (et L){ T] (ru - }{ [T et}
ueV u,v)EE
L = n x n matrix with r-a , along the diagonal and -a,, in entry uv

r, = d*(u)* 1 if u=t, or d*(u) otherwise

a,, = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.



Milestones in Genome Assembly

Science

articles
Nucleotide sequence of bacteriophage
®X174 DNA

G ML A, BLG,

1977. Sanger et al.
Is* Complete Organism
5375 bp

Cenome

2000. Myers et al.
It Large WGS Assembly.

Celera Assembler. | 16 Mbp

1995. Fleischmann et al. 1998. C.elegans SC
It Free Living Organism Ist Multicellular Organism
TIGR Assembler. |1.8Mbp BAC-by-BAC Phrap. 97Mbp

u_ v i
2001.Venter et al, IHGSC 2010.Li et al.
Human Genome |t Large SGS Assembly.

Celera Assembler/GigaAssembler. 2.9 Gbp SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments



Current Applications

Novel genomes

£ §or S
GENOME 10K.

* Metagenomes

* Sequencing assays
— Structural variations

— Transcript assembly




Assembling a Genome

|. Shear & Sequence DNA - = —
-~ T =

2. Construct assembly graph from overlapping reads

..AGCCTAGACCTACA
CGCATATCCGGT...
3. Simplify assembly graph
> 0 —> 0 —>0—>0—> 0 —> 0 > 0 —> S
o N o N,

4. Detangle graph with long reads, mates, and other links

TN



lllumina Sequencing by Synthesis

o -
el
% N1 17
. "L
év# l| lll,’ 'l‘ 'I' 4/ ; '
- ln 7 \ ;
1. Prepare Il 'f 1/
I‘||_l‘l"ll l| ‘|'”_./ '\l i/‘ e
 ||'||~ : \ ”it \:.:;'
T "| /v IH
3. Amplify d.'. 'w'i' 'y b
M |
4. Image

Metzker (2010) Nature Reviews Genetics | 1:31-46 o. Basecall



Paired-end and Mate-pairs

Paired-end sequencing
* Read one end of the molecule, flip, and read the other end

* Generate pair of reads separated by up to 500bp with inward orientation

300bp > s

Mate-pair sequencing

* Circularize long molecules (1-10kbp), shear into fragments, & sequence
* Mate failures create short paired-end reads

10kbp

2x100 @ ~10kbp (outies)

> <€
10kbp
circle
2x100 @ 300bp (innies)
> <€




Typical genome coverage

>

Coverage

Imagine raindrops on a sidewalk



Coverage and Read Length

|ldealized Lander-Waterman model

Reads start at perfectly random
positions

Poisson distribution in coverage

— Contigs end when there are no
overlapping reads

Contig length is a function of
coverage and read length
— Effective coverage reduced by o/l

— Short reads require much higher
coverage to reach same expected
contig length

Expected Contig Length (bp)

100k

10k

1k

100

Lander Waterman Expected Contig Length vs Coverage

dog N50 /

dog me

panda N50 +

panda mean +

1000 bp
710 bp
250 bp
100 bp
52 bp
30 bp

EECOEOMm

5 10 15 20 25 30 35 40

Read Coverage

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.




Repeats and Read Length

[9,]

=0=Bacillus anthracis
5.22Mbp

N
AU
N
&
&

Colwellia psychrerythraea
5.37Mbp

4 == Escherichia coli KI2
/ 4.64Mbp
/ / =>¢=Salmonella typhi
/ 4.80Mbp
/ =@ Yersinia pestis
-—k_ﬁ 4.70Mbp

250 500 750 1000
Read Length

w
w U

Contig N50 Size (Mbp)
o
N

- o~
S~

o
(0,1
\

o h

o

* Explore the relationship between read length and contig N50 size
— ldealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000

— Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. | 1:21.



Short Read Assembly

Reads de Bruijn Graph Potential Genomes

AAGA &9 — @& GACTCCGACTGGGACTTT
e -

ACTC GACTGGGACTCCGACTTT

ACTG cre)

AGAG '\ A

CCGA

o AAG AGA @ - @ CTT TTT

CTCC < ™

CTGG GGA €16

CTTT e

“
@

* Genome assembly as finding an Eulerian tour of the de Bruijn graph
— Human genome: >3B nodes, >10B edges

* The new short read assemblers require tremendous computation
— Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
— ABYSS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
— SOAPdenovo (Li et al.,, 2010) pthreads: 40 cores x 40 hours,>140 GB RAM



Density

0.015

0.010

0.005

0.000

Error Correction with Quake

. Count all “Q-mers” in reads

Fit coverage distribution to mixture model

of errors and regular coverage

Automatically determines threshold for
trusted k-mers

Error k- ;iiss:_

1l mers & '\s
It True k-
5;\ mers

0 20 40 60 80
Coverage

2. Correction Algorithm

Considers editing erroneous kmers into
trusted kmers in decreasing likelihood

Includes quality values, nucleotide/nucleotide
substitution rate

observed rjjj;y:[ ACGTCCTAGTTA]

ACGACCTAGTTA
ACGCCCTAGTTA
ACGGCCTAGTTA

corrected reads:

Likelihood

ACGTCCTACTTA

ACGTCCTAATTA
ACGTCCTATTTA

actual read:

ACGCCCTACTTA
ACGCCCTAATTA
ACGCCCTATTTA likelihood threshold:

Quake: quality-aware detection and correction of sequencing reads.
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. | I:R116



Graph Compression

* After construction, many edges are unambiguous
— Merge together compressible nodes

— Error correction reduces number of nodes, number of false edges, and
allows for longer word size

2020202020 >0>0—>0 B —>




Node Types

Isolated nodes (10%)

o - Tips (46%)

Bubbles/Non-branch (9%)

TN
® e — @
P Dead Ends (.2%)
—

™S

_~ Half Branch (25%)
— <

™

Full Branch (10%

~ P ull Branch (10%)
/' \.

(Chaisson, 2009)



Graph Correction

— Errors at end of read
* Trim off ‘dead-end’ tips

— Errors in middle of read
* Pop Bubbles

— Chimeric Edges

* Clip short, low coverage nodes

B!

N

A B

& T s — e




Coverage Evaluation

A R, B R, C R,.R,

* If n reads are a uniform random sample of the genome of length G,
we expect k=n A /G reads to start in a region of length A.

— If we see many more reads than k (if the arrival rate is > A) , it is likely to be
a collapsed repeat

— Requires an accurate genome size estimate

Identify those that cover unique DNA = U-unitigs

AP0 B . Rl il (An/G)"
Dist. For Repetiti\/)/\ i |~ Dist. For Unique

-An

Pr(l <’ | A

AMK) =In| DA _yl kA g
Pr(2 - copy) RAn/G)" — G

Definitely Repetitve ~ Don't Know Definitely Unique k! ¢

i >l .
- - |- >




Initial Scaffolding

Scatfold

— —T1T S T, T, T

/ Bundé\{e\
N

\Q/ kn

Create an 1nitial scaffold of basic contigs (“unitigs”) whose
coverage indicates they are not repetitive (A-stat > 5).



Repeat Resolution

Scatfold

— — T T, T, T

/ T
o

Y N

Rock — Stone

f

Then add in remaining repetitive contigs based on their mate relationships allowing
repetitive sequences to be placed multiple times.



N50 size

Def: 50% of the genome 1s 1n contigs larger than N50

Example:

| Mbp genome
Contigs: 300k, 100k, 50k, 45k, 30k, 20k, 15k, 15k, 10k, ....

N50 size = 30 kbp
(300k+ 100k+50k+45k+30k = 525k >= 500kbp)

Note:
N50 values are only meaningful to compare when base genome
size is the same in all cases



Frequency

lllumina Sequencing & Assembly

Quake Results

2x76bp @ 275bp
2x36bp @ 3400bp

0 100 200 a00 400
Coverage
Validated 51,243,281 88.5%
Corrected 2,763,380 4.8%
Trim Only 3,273,428 5.6%
Removed 606,251 1.0%

A

SOAPdenovo Results

SN
NN
AR Genomic DNA

4

Fragment and paired-end sequencing

of libraries with variant insert sizes.

J—

== 150~500 bp

]

1
@ 2~10 Kb

overlap using de Bruijn

\ Represent read sequence
}>’3
o errone: s On

(iv) Merge bubbles

" e J
()Cliptips o verage links  tiny repeats
> \ -
...‘__.:f_. S /.,-q< —":@0_—' -
T
el ' e2
5 Break at repeat boundaries
and output contigs
e3 ed
‘ Scaffold construction
el e2 e3 ed
ll [ I_I[ | l =:! [=p
— -—-_‘ S
- et - Gap 4

#>100bp | NG5O0 (bp)

Scaffolds
Contigs
Unitigs

2,340
2,782
4,151

253,186
56,374
20,772




Assembly realities

* Contigs are never as large as predicted
— High coverage is a necessary but not sufficient condition

— Error correction is required for good assembly
— Sequencing is basically random, but sequence composition is not

* Repeats control the quality of the assembly
— Assemblers break contigs at ambiguous repeats
— Highly repetitive genomes will be highly fragmented

* Assemblers make mistakes
— Mis-assemblies confuse all downstream analysis

— Tension between overlap error rate and repeat resolution



Assembly Evaluation

90,000
85,000
80,000
75,000
70,000
65,000
60,000
55,000
50,000

Comparison of 6 Draft Assemblies
Xanthomonas oryzae pv. oryzicola

O Avg. Contig Size




Assembly Evaluation

Comparison of 6 Draft Assemblies
Xanthomonas oryzae pv. oryzicola

90,000

O Avg. Contig Size

85,000 11 @ Num. Collapsed Repeats

20

80,000

- 16

75,000

70,000

65,000

60,000 A

55,000 -

50,000 - ; . ;
A B C

D E

- 12




Mis-assembly Types

Compression Expansion
Rearrangement Inversion

Basic mis-assemblies can be combined into more complicated patterns:
Insertions, Deletions, Giant Hairballs



Assembly Forensics

Automatically scan an assembly to locate
misassembly signatures for further analysis

and correction

Assembly-validation pipeline
|.  Evaluate Mate Pairs & Libraries
2.  Evaluate Read Alignments
3.  Evaluate Read Breakpoints
4.  Analyze Depth of Coverage

It was the best

of times, it ™ l M
\ it was t%/w@of

times, i

of times,
it was the -
it was the <

age of

Genome Assembly forensics: finding the elusive mis-assembly.
Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.



Mate-Happiness: asmQC

* Excision: Skip reads between flanking repeats
— Truth

S —

D N

— Misassembly: Compressed Mates, Missing Mates

P2



Mate-Happiness: asmQC

* Insertion: Additional reads between flanking repeats

T

— Misassembly: Expanded Mates, Missing Mates

— | —

ZA

— Truth




Mate-Happiness: asmQC

* Rearrangement: Reordering of reads

— Truth /\

e

D BN

— Misassembly: Misoriented Mates

“«— @ —>

D EYEEY S

Note: Unhappy mates may also occur for biological or technical reasons.



Fregquency

40 60 60 100 120

20

Sampling the Genome

Normal Library
Count=10000, Mean=4000, SD=400

1000 <0uo 3000 !!!! !!!! !!LD

Insert Size

kb 2kb 4kb 6kb
R e B e
I I I
L I
I I
I I
I I

8 inserts: 3kb-6kb

Local Mean: 4048

C/E Stat: (4048-4000) = +0.33
(400 / V8)

Near 0O indicates overall happiness




Fregquency

40 60 60 100 120

20

CE Statistic: Expansion

Normal Library
Count=10000, Mean=4000, SD=400

1000 <0uo 3000 !!!! !!!! !!LD

Insert Size

Okb 2kb 4kb 6kb
I I I .
I I

8 inserts: 3.2kb-6kb

Local Mean: 4461

C/E Stat: (4461-4000) = +3.26
(400 / V8)

C/E Stat = 3.0 indicates Expansion




Fregquency

40 60 60 100 120

20

CE Statistic: Compression

Normal Library
Count=10000, Mean=4000, SD=400

1000 <0uo 3000 !!!! !!!! !!LD

Insert Size

8 inserts: 3.2 kb-4.8kb

Local Mean: 3488

C/E Stat: (3488-4000) =
(400 / V8)

C/E Stat < -3.0 indicates Compression




Read Alignment

Multiple reads with same conflicting base are unlikely
— Ix QV 30: I/1000 base calling error
— 2x QV 30: 1/1,000,000 base calling error
— 3x QV 30: 1/1,000,000,000 base calling error

Regions of correlated SNPs are likely to be assembly
errors or interesting biological events
— Highly specific metric

AMOS Tools: analyzeSNPs & clusterSNPs

— Locate regions with high rate of correlated SNPs
— Parameterized thresholds:
* Multiple positions within 100bp sliding window

* 2+ conflicting reads
e Cumulative QV >= 40 (1/10000 base calling error)

OO0 O0r>r>r>>r

> >000000




Collapsed Repeat

- Al - Insers = 8%
Ltcases {exfes Mase Types  Qptions = : = -
Read
Coverage
: Spike
-5.5 CE Dip P
Compressed
Mates
Cluster
| 68
?mwexackm Commhpt HGH_SNP 682 et = Correlated
- SNPs

Hawkeye: a visual analytics tool for genome assemblies.
Schatz, MC, Phillippy, AM, Shneiderman, B, Salzberg, SL. (2007) Genome Biology 8:R34.



Validation Accuracy
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Assembly Summary i3

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless

2. Repeat composition: high repeat content is challenging

3. Read length: longer reads help resolve repeats

4. Error rate: errors reduce coverage, obscure true overlaps

* Assembly is a hierarchical, starting from individual reads, build high
confidence contigs/unitigs, incorporate the mates to build scaffolds

— Extensive error correction is the key to getting the best assembly possible
from a given data set

* Watch out for collapsed repeats & other misassemblies

— Globally/Locally reassemble data from scratch with better parameters &
stitch the 2 assemblies together
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Outline

Part |:Schatz Lab Overview
Part 2: Sequence Alignment

Part 3: Genome Assembly

Part 4: Parallel & Cloud Computing
* Milestones in DNA Sequencing

* Hadoop & Cloud Computing
* Sequence Analysis in the Clouds



Milestones in DNA Sequencing

Natwre Vil 25 February N 977

S —

grticlos

Nucleotide sequence of bacteriophage

® X174 DNA

F. Sanger, G. M. Air', B, G, Barrell, N, L. Brown', A. R, Coalson, J, C, Fiddes,
C. A. Hutchison 1115, P, M. Slocombe' & M. Saith*

MEC Laburabory of Mobaodar Bobagy, 1y Kond. Contvdpr CB3 2011, UK
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5000bp / week / person
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|s* Complete Organism
Bacteriophage ¢ X174
5375 bp

http://en.wikipedia.org/wiki/File:Sequencing.jpg
http://www.answers.com/topic/automated-sequencer




Milestones in DNA Sequencing

i
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1987 Fluorescent Dye Termination
Applied Biosystems markets the ABI 370 as 350bp / lane x 16 lanes =
the first automated sequencing machine 5600bp / day / machine

http://commons.wikimedia.org/wiki/File:370A_automated_DNA_sequencer.jpg http://www.answers.com/topic/automated-sequencer



Milestones in DNA Sequencing
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1995 2000 2001
Fleischmann et al. Myers et al. Venter et al.,
|5t Free Living Organism Ist Large WGS Assembly. Human Genome
TIGR Assembler. |.8Mbp Celera Assembler. | 16 Mbp Celera Assembler. 2.9 Gbp

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day.
"The machine was so revolutionary that it could decode in a single day the same amount
of genetic material that most DNA labs could produce in a year." |. Craig Venter



Milestones in DNA Sequencing

2004 2007 2008
454/Roche [llumina ABI / Life Technologies
Pyrosequencing Sequencing by Synthesis SOLID Sequencing
Current Specs (Titanium): Current Specs (HiSeq 2000): Current Specs (5500xl):
IM 400bp reads / run = 2.5B 100bp reads / run = 5B 75bp reads / run =

| Gbp / day 60Gbp / day 30Gbp / day



Second Generation Sequencing Applications

::g | 96 7
GENOME 10Km

Alignment & Variations Differential Analysis
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De novo Assembly
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Phylogeny & Evolution




Sequencing Centers
N~

A\ ey,

Next Generation Genomics: World Map of High-throughput Sequencers
http://pathogenomics.bham.ac.uk/hts/
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DNA Data Tsunami

Current world-wide sequencing capacity exceeds |3Pbplyear
and is growing at 5x per year!

100,000

Cost and Growth of Bases/ 10,000

/ 1,000

o~
s GenBank

$10,000

Cost per million
base pairs of sequence
(log scale)

Cost (5)

100

$10 10

SOURCE: NCBI

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

"Will Computers Crash Genomics?"
Elizabeth Pennisi (201 1) Science. 331(6018): 666-668.



Genomics and Parallel Computing

DXL -
GENOME 10K U

Current world-wide sequencing capacity exceeds | 3Pbp/year
and is growing at 5x per year!
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Our best (only) hope is to use many computers: - \
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* Parallel Computing aka Cloud Computing =
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Amazon Web Services

http://aws.amazon.com

All you need is a credit card, and you can

AT you | 4 amazon
immediately start using one of the largest web services"
datacenters in the world

l

Elastic Compute Cloud (EC2)

— On demand computing power
* Support for Windows, Linux, & OpenSolaris
 Starting at 2.0¢ / core / hour

" \
el nd nd nd N g w

.
@ -
U O - A

Simple Storage Service (S3)

— Scalable data storage
* 15¢ / GB monthly fee
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Plus many others



EC2 Architecture

* Very large pool of machines
— Effectively infinite resources

— High-end servers with many cores
and many GB RAM

* Machines run in a virtualized
environment

— Amazon can subdivide large nodes
into smaller instances

— You are 100% protected from other
users on the machine

— You get to pick the operating
system, all installed software



Amazon Machine Images

Bl ™« A few Amazon sponsored images
7 o
Aol . — Suse Linux,Windows
AV
iors . .
2 - | * Many Community Images & Appliances
ap s -~  — CloudBiolinux: Genomics Appliance
bR ' | — Crossbow: Hadoop, Bowtie, SOAPsnp
T
WP,  — Galaxy: CloudMan
I« W = |
R | -
N " .
ARG , ¢ * Build you own
A . .
B\ ! — Completely customize your environment

B
-

— You results could be totally reproducible



Getting Started

http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

ano. . Amazon Blastic Compute Clovd o
- Y ! WD/ S0 Arnkronwebserviced. cOom/AWSECD Jlatest /CattingStarted Cuide ) W 'm

(IR

Amazon Elastic Compute Cloud unm
Getting Started Guide (API Version 2010-08-31) -
it Shvind wiis Stn Documentation Feedback v
Sgn Up for 1C2 PP—

Laench an Instance

Iratanie
el Amazon Tlastic Compute Clowd (Amazon [C2) s 8 wed service that enadles you to Bunch and manage

c"m"“' S Lo/ UNEX and Windows server instances n Ama2on’s dots centers, You <an get stacted with Amazon EC2 by
foliowing the tasks shown In the foliowing dsgram, Youll primanly vee the AWS Masagemet Conscle, & point-

Torminate Your 1nstance and-click web-baved interfoce.

Where Do 1 Go from Here?

Please Provide Feemack

Abowt This Guide

This guide waks you through Bunching and connecting to your first Amaron EC2 instance, To start, dick the
following Get Started dutton

| Gmsiared [ :




Hadoop MapReduce

http://hadoop.apache.org

* MapReduce is Google's framework for large data computations

— Data and computations are spread over thousands of computers

* Indexing the Internet, PageRank, Machine Learning, etc... (Dean and Ghemawat, 2004)
* 946 PB processed in May 2010 (Jeff Dean at Stanford, |11.10.2010)

— Hadoop is the leading open source implementation
* Developed and used by Yahoo, Facebook, Twitter, Amazon, etc

* GATK is an alternative implementation specifically for NGS

* Benefits * Challenges
— Scalable, Efficient, Reliable — Redesigning / Retooling applications
— Easy to Program — Not Condor, Not MPI
— Runs on commodity computers — Everything in MapReduce

Google



Hadoop for NGS Analysis

CloudBurst Myrna J——
Highly Sensitive Short Read Cloud-scale differential gene SN
Mapping with MapReduce expression for RNA-seq N, fg
o= 55 SEEEESS
100x speedup mapping Expression of 1.1 billion RNA-Seq U jj:!__:
on 96 cores @ Amazon reads in ~2 hours for ~$66 s

(Langmead,

(Schatz, 2009) Hansen, Leek, 2010)
Quake Genome Indexing $GATTACA
,|.l="~,, . . . A$GATTAC
] i Quality-aware error Rapid Parallel Construction ACAS$GATT
] correction of short reads of Genome Index ATTACASG
LA | "o
Ik ||||||| |||||isﬁ..=, ) orrect 97.9% of errors Construct the BWT of GATTACAL
_——— with 99.9% accuracy the human genome in 9 minutes TACASGAT
TTACAS$GA
(Kelley, Schatz, (Menon,
Salzberg, 2010) Bhat, Schatz, 201 | %) genome-indexing/




System Architecture

Slave 5
Slave 4
Slave 3
Slave 2
Slave 1

Desktop Master

* Hadoop Distributed File System (HDFS)

— Data files partitioned into large chunks (64MB), replicated on multiple nodes

— Computation moves to the data, rack-aware scheduling

* Hadoop MapReduce system won the 2009 GreySort Challenge
— Sorted 100TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks

— Provides many disks in addition to many cores



Hadoop on AWS

If you don’t have 1000s of machines, rent them from Amazon

* After machines spool up, ssh to master as if it was a local machine.

* Use S3 for persistent data storage, with very fast interconnect to EC2.



Parallel Algorithm Spectrum

Embarrassingly Parallel

Map-only

Each item is Independent

Loosely Coupled

MapReduce

Independent-Sync-Independent

Tightly Coupled

|terative MapReduce
Constant Sync




|. Embarrassingly Parallel

* Batch computing
— Each item is independent = —

— Split input into many chunks —

— Process each chunk separately on a
different computer

* Challenges

— Distributing work, load balancing,
monitoring & restart

g
l

* Technologies

— Condor, Sun Grid Engine

— Amazon Simple Queue

<_H<_




Elementary School Dance




2. Loosely Coupled

* Divide and conquer

— Independently process many items

S @ — [l

> @ —
> @ < [l

— Group partial results

— Scan partial results into final answer

— Batch computing challenges

!
* Challenges ¢
/N

— + Shuffling of huge datasets

* Technologies

— Hadoop, Elastic MapReduce, Dryad
— Parallel Databases






Short Read Mapping

Identify variants

( GGTATAC...

...CCATAG TATGCGCCC  CGGAAATTT CGGTATAC
...CCAT CTATATGCG TCGGQAAATT CGGTATAC
: ...CCAT GGCTATATG CTATCGGAAA GCGGTATA

Subject | T'GCA AGGCTATAT CCTATCG TTGCGGTA C...
...CCA AGGCTATAT GCCCTATCG TTTGCGGT _ C...
...CC _AGGCTATAT _ GCCCTATCG |AAATTTGC ATAC...
...CC TAGGCTATA GCGCCCTA APAATTTGC GTATAC...

Reference . .CCATAGGCTATATGCGCCCTATCGGlCAATTTGCGGTATAC. .

« Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read
— Find where the read most likely originated
— Fundamental computation for many assays
* Genotyping RNA-Seq Methyl-Seq
* Structural Variations Chip-Seq Hi-C-Seq

* Desperate need for scalable solutions
— Single human requires >1,000 CPU hours / genome



Crossbow

http://bowtie-bio.sourceforge.net/crossbow

Align billions of reads and find SNPs

— Reuse software components: Hadoop Streaming

Map: Bowtie (Langmead et al., 2009) N .
— Find best alignment for each read g’ pg”

— Emit (chromosome region, alignment)

Shuffle: Hadoop | | | | |

— Group and sort alignments by region

Reduce: SOAPsnp (Li et al., 2009) =)

— Scan alignments for divergent columns

— Accounts for sequencing error, known SNPs £J E



Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

_ Asian Individual Genome

Data Loading 3.3 B reads 106.5 GB $10.65
Data Transfer lh:I5m 40 cores $3.40
Setup Oh: 15m 320 cores $13.94
Alignment lh:30m 320 cores $41.82
Variant Calling lh : 00m 320 cores $27.88
End-to-end 4h : 00m $97.69

Discovered 3.7M SNPs in one human genome for ~$100 in an afternoon.
Accuracy validated at >99%

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin |, Pop M, Salzberg SL (2009) Genome Biology. 10:R 134



Map-Shuffle-Scan for Genomics

Cloud Cluster

Unaligned — Mapto —»  Shuffle — Scan —»  Assay

Reads Genome into Bins Alignments Results
- B S <’ et R S —y — |=

| _, SNebg” <. ffﬁﬁfﬁfiIZIZ;.IZIIZIII . £ . —

I \ 2 /
Cloud
Storage
Internet

Cloud Computing and the DNA Data Race.
Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693



Jnomics Structural Variations

BLNS5/BLBS/BLL 10

Circos plot of high confidence
SVs specific to esophageal
cancer sample

* Red: SVs specific to tumor

e Green:SVs in both diseased
and tumor samples

Detailed analysis of disrupted
genes and fusion genes in
progress

* Preliminary analysis shows
many promising hits to

known cancer genes
BLL

BLL+BLB




3. Tightly Coupled

* Computation that cannot be partitioned

— Graph Analysis

— Molecular Dynamics

— Population simulations

* Challenges

— Loosely coupled challenges

— + Parallel algorithms design

 Technologies S\ 2
— MPI =
— MapReduce, Dryad, Pregel
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Short Read Assembly

Reads de Bruijn Graph Potential Genomes

AAGA &9 — @& GACTCCGACTGGGACTTT
e -

ACTC GACTGGGACTCCGACTTT

ACTG cre)

AGAG '\ A

CCGA

o AAG AGA @ - @ CTT TTT

CTCC < ™

CTGG GGA €16

CTTT e

“
@

* Genome assembly as finding an Eulerian tour of the de Bruijn graph
— Human genome: >3B nodes, >10B edges

* The new short read assemblers require tremendous computation
— Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
— ABYSS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
— SOAPdenovo (Li et al.,, 2010) pthreads: 40 cores x 40 hours,>140 GB RAM



Warmup Exercise

Who here was born closest to Oct 3?

— You can only compare to | other person at a time

_— FIFA U20 WORLD CUP ey
2011
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Find winner among 16 teams in just 4 rounds



Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>
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Initial Graph: 42 nodes

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>
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Round 1: 26 nodes (38% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking

— Randomly assign (H)/[T
compressible node

— Compress (H)>

T

links

to each
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Round 2: 15 nodes (64% savings)

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>

Randomized Speed-ups in Parallel Computation.
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Round 2: 8 nodes (81% savings)

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>

Randomized Speed-ups in Parallel Computation.

T

links

Round 3: 6 nodes (86% savings)

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Challenges

Fast Path Compression

— Nodes stored on different computers

— Nodes can only access direct neighbors

Randomized List Ranking
— Randomly assign (H)/[T]to each

compressible node

— Compress (H)>

Performance

T

links

— Compress all chains in log(S) rounds

Randomized Speed-ups in Parallel Computation.

Round 4: 5 nodes (88% savings)

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.




Contrail

http://contrail-bio.sourceforge.net

De novo bacterial assembly
* Genome:E. coli K12 MG1655, 4.6Mbp
* Input: 20.8M 36bp reads, 200bp insert (~150x coverage)

* Preprocessor: Quake Error Correction

Initial Compressed Error Correction Resolve Repeats Cloud Surfing
V'V. ek A o /\ c)
N 51 M 245,131 2,769 1,909 300
Max 27 bp 1,079 bp 70,725 bp 90,088 bp 149,006 bp
N50 27 bp 156 bp 15,023 bp 20,062 bp 54,807 bp

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.




Contrail

http://contrail-bio.sourceforge.net

De novo Assembly of the Human Genome
* Genome: African male NA 18507 (SRA000271, Bentley et al., 2008)
* Input: 3.5B 36bp reads, 210bp insert (~40x coverage)

Initial

Compressed

Error Correction

Resolve Repeats

Cloud Surfing

~— A
o»«»o::;-»»»x;x;» o o—»(‘_} / \ B o - _ - —»(‘, ;
!“4.4.“‘ o /\ c)
N >7 B >| B 42 M 41 M 3.3M
Max 27 bp 303 bp 20,594 bp 20,594 bp 20,594 bp
N50 27 bp < 100 bp 995 bp 1,050 bp 1,427 bp*

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.




De novo mutations and de Bruijn Graphs

‘ Unique __,/
i to affected f

// Shared
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( Searching for de novo mutations in
7 o] o« e .
( the families of 3000 autistic children.

— Assemble together reads from mom,
\ dad, affected & unaffected children

| — Look for sequence paths unique to

COLEC1Z affected child
C->A



Summary

* We are entering the digital age of biology

— Next generation sequencing, microarrays, mass
spectrometry, microscopy, ecology, etc

— Parallel computing may be our only hope for
keeping up with the pace of advance

* Modern biology requires (is) quantitative
biology

— Computational, mathematical, and
statistical techniques applied to analyze,
integrate, and interpret biological sensor
data

* Don’t let the data tsunami crash on you

— Study, practice, collaborate with quantitative
techniques




WATSON SCHOOL
of BIOLOGICAL SCIENCES

Since opening in 1999, the WSBS has become a
leading PhD program in the biological sciences,
one whose fresh approach is quickly being
emulated by other programs across the country.

* An innovative Ph.D. program designed for
exceptional students

— Approximately four years from matriculation to

Ph.D. degree award

— A first year with course work and laboratory
rotations in separate phases

— Emphasis on the principles of scientific reasoning
and logic

* Learn more: http://www.cshl.edu/gradschool
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Thank You!

http://schatzlab.cshl.edu
@mike schatz



