
Computational Genomics
Michael Schatz

Oct 3, 2011
Frontiers in Genomics

Outline

Part 1: Schatz Lab Overview

Part 2: Sequence Alignment

Part 3: Genome Assembly

Part 4: Parallel & Cloud Computing

A Little About Me

Born
RFA

CMU

TIGR
UMD

CSHL

Computational Biology

 Computational Genomics
1.  Alignment
2.  Assembly
3.  Expression
4.  Comparative Genomics

 Computational Thinking
1.  Algorithm
2.  Data structure
3.  Computational Analysis
4.  Computational Modeling

"Computer science is no more about computers than astronomy is about telescopes."
 Edger Dijkstra

Computer Science = Science of Computation
•  Compute solutions to problems, designing & building systems
•  Computers are very, very dumb, but we can instruct them

•  Build complex systems out of simple components

Computational Biology = Thinking Computationally about Biology
•  Analysis: Make more powerful instruments, analyze results
•  Design: experimental protocols, procedures, systems

Genomics & Quantitative Biology

Genome Assembly Mutations & Disease

Differential Analysis Phylogeny & Evolution

Outline

Part 1: Schatz Lab Overview

Part 2: Sequence Alignment
•  Exact Matching
•  Suffix Arrays
•  Bowtie and the BWT

Part 3: Genome Assembly
Part 4: Parallel & Cloud Computing

Searching for GATTACA
•  Where is GATTACA in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 1

•  Strategy 1: Brute Force

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match at offset 2

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A …

No match at offset 3…

Searching for GATTACA
•  Where is GATTACA in the human genome?

•  Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

•  Brute Force:
–  At every possible offset in the genome:

•  Do all of the characters of the query match?

•  Analysis
–  Simple, easy to understand
–  Genome length = n [3B]
–  Query length = m [7]
–  Comparisons: (n-m+1) * m [21B]

•  Overall runtime: O(nm)
 [How long would it take if we double the genome size, read length?]

 [How long would it take if we double both?]

Expected Occurrences
 The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT, …
–  1 in 16,384 should be GATTACA
–  E=n/(4m) [183,105 expected occurrences]

 [How long do the reads need to be for a significant match?]

0 5 10 15 20 25 30

0e
+0

0
2e

+0
8

4e
+0

8
6e

+0
8

Evalue and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

0 5 10 15 20 25 30

1e
−0

9
1e
−0

5
1e
−0

1
1e

+0
3

1e
+0

7

E−value and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

Brute Force Reflections
 Why check every position?

–  GATTACA can't possibly start at position 15 [WHY?]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

–  Improve runtime to O(n + m) [3B + 7]
•  If we double both, it just takes twice as long
•  Knuth-Morris-Pratt, 1977
•  Boyer-Moyer, 1977, 1991

–  For one-off scans, this is the best we can do (optimal performance)
•  We have to read every character of the genome, and every character of the query
•  For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book
•  What if we need to check many queries?

•  We don't need to check every page of the phone book to find 'Schatz'
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book

without any loss in accuracy

•  Sorting the genome: Suffix Array (Manber & Myers, 1991)

–  Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

Hi

Lo

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9;

Lo
Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
•  Middle = Suffix[9] = GATTACA…

 => Match at position 2!

Lo
Hi

Binary Search Analysis
•  Binary Search

 Initialize search range to entire list
 mid = (hi+lo)/2; middle = suffix[mid]
 if query matches middle: done
 else if query < middle: pick low range
 else if query > middle: pick hi range

 Repeat until done or empty range [WHEN?]

•  Analysis
•  More complicated method
•  How many times do we repeat?

•  How many times can it cut the range in half?
•  Find smallest x such that: n/(2x) ! 1; x = lg2(n) [32]

•  Total Runtime: O(m lg n)
•  More complicated, but much faster!
•  Looking up a query loops 32 times instead of 3B

 [How long does it take to search 6B or 24B nucleotides?]

Suffix Array Construction
•  How can we store the suffix array?

 [How many characters are in all suffixes combined?]

S = 1 + 2 + 3 + · · ·+ n =
n�

i=1

i =
n(n+ 1)

2
= O(n2)

Pos

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

TGATTACAGATTACC

•  Hopeless to explicitly store 4.5 billion billion characters

•  Instead use implicit representation
•  Keep 1 copy of the genome, and a list of sorted offsets
•  Storing 3 billion offsets fits on a server (12GB)

•  Searching the array is very fast, but it takes time to construct

•  This time will be amortized over many, many searches
•  Run it once "overnight" and save it away for all future queries

Sorting
Quickly sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

[How do you do it?]

6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis
•  Selection Sort (Input: list of n numbers)

 for pos = 1 to n
 // find the smallest element in [pos, n]
 smallest = pos
 for check = pos+1 to n

 if (list[check] < list[smallest]): smallest = check

 // move the smallest element to the front
 tmp = list[smallest]
 list[pos] = list[smallest]
 list[smallest] = tmp

•  Complexity Analysis

•  Outer loop: pos = 1 to n
•  Inner loop: check = pos to n
•  Running time: Outer * Inner = O(n2) [4.5 Billion Billion]

[Challenge Questions: Why is this slow? / Can we sort any faster?]

T = n+ (n− 1) + (n− 2) + · · ·+ 3 + 2 + 1 =
n�

i=1

i =
n(n+ 1)

2
= O(n2)

Divide and Conquer
•  Selection sort is slow because it rescans the entire list for each element

•  How can we split up the unsorted list into independent ranges?
•  Hint 1: Binary search splits up the problem into 2 independent ranges (hi/lo)
•  Hint 2: Assume we know the median value of a list

n

[How many times can we split of n items a list in half?]

= < > 2 x n/2

= < > = = < > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Complexity Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

�
O(1) if n ≤ 1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)�

i=0

2in

2i
=

lg(n)�

i=0

n = O(n lg n)

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Complexity Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

�
O(1) if n ≤ 1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)�

i=0

2in

2i
=

lg(n)�

i=0

n = O(n lg n)

In-exact alignment

•  Where is GATTACA approximately in the human genome?
–  And how do we efficiently find them?

•  It depends…
–  Define 'approximately'

•  Hamming Distance, Edit distance, or Sequence Similarity
•  Ungapped vs Gapped vs Affine Gaps, Global vs Local

–  Algorithm depends on the data characteristics & goals
•  Smith-Waterman: Exhaustive search for optimal alignments
•  BLAST: Hash-table based homology searches
•  Bowtie: BWT alignment for short read mapping

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

Theorem: An alignment of a sequence of length m
with at most k differences must contain
an exact match at least s=m/(k+1) bp long

(Baeza-Yates and Perleberg, 1996)
!"#"

$"

%&'(")*+,"

%",-.*)*/0*"

%"

1" 232"

4"

$"

!"

4"

5"

5"

6"

6"

$"

!"

4"

5"

7"

8"

%&"

6"

–  Proof: Pigeonhole principle
–  1 pigeon can't fill 2 holes

–  Seed-and-extend search
–  Use an index to rapidly find short exact

 alignments to seed longer in-exact alignments
–  BLAST, MUMmer, Bowtie, BWA, SOAP, …

 [How could you use seed-and-extend with a suffix array?]

Seed-and-Extend Alignment

Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

$GATTACA!
A$GATTAC!
ACA$GATT!
ATTACA$G!
CA$GATTA!
GATTACA$!
TACA$GAT!
TTACA$GA!

Burrows-Wheeler Transform

•  Suffix Array is fast to search, but much larger than genome
•  BWT is a reversible permutation of the genome based on the suffix array
•  Core index for Bowtie (Langmead et al., 2009) and most recent short read

mapping applications

Burrows Wheeler
Matrix

BWT(T) T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124

GATTACA$! ACTGA$TA!

LF Property
implicitly encodes
suffix array

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Part 1: Summary
•  Short Read Mapping: Seed-and-extend search of the BWT

•  If we fail to reach the end, back-track and resume search
•  The beginning of the read is used as high confidence seed
•  100s of times faster than competing approaches, works entirely in RAM

•  Algorithms choreograph the dance of data inside the machine

•  Algorithms add provable precision to your method
•  A smarter algorithm can solve the same problem with much less work

•  Computational Techniques

•  Binary search: Fast lookup in any sorted list
•  Divide-and-conquer: Split a hard problem into an easier problem
•  Recursion: Solve a problem using a function of itself
•  Indexing: Focus on just the important parts
•  Seed-and-extend: Anchor the problem using a portion of it

Break

Outline

Part 1: Schatz Lab Overview
Part 2: Sequence Alignment

Part 3: Genome Assembly
•  Assembly by analogy
•  Coverage, read length, and repeats
•  Contiging & Scaffolding
•  Assembly Forensics

Part 4: Parallel & Cloud Computing

Shredded Book Reconstruction

•  Dickens accidentally shreds the first printing of A Tale of Two Cities
–  Text printed on 5 long spools

•  How can he reconstruct the text?
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments
–  The short fragments from every copy are mixed together
–  Some fragments are identical

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, …

Greedy Reconstruction

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

of times, it was the

times, it was the age

It was the best of

of times, it was the

best of times, it was

times, it was the worst

was the best of times,

the best of times, it

it was the worst of

was the worst of times,

worst of times, it was

of times, it was the

times, it was the age

it was the age of

was the age of wisdom,

the age of wisdom, it

age of wisdom, it was

of wisdom, it was the

wisdom, it was the age

it was the age of

was the age of foolishness,

the worst of times, it

 The repeated sequence make the correct
reconstruction ambiguous
•  It was the best of times, it was the [worst/age]

 [Any ideas on how to proceed?]

de Bruijn Graph Construction

•  Dk = (V,E)
•  V = All length-k subfragments (k < l)
•  E = Directed edges between consecutive subfragments

•  Nodes overlap by k-1 words

•  Locally constructed graph reveals the global sequence structure
•  Overlaps between sequences implicitly computed

It was the best was the best of It was the best of

Original Fragment Directed Edge

de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

the age of foolishness

It was the best

best of times, it

was the best of

the best of times,

of times, it was

times, it was the

it was the worst

was the worst of

worst of times, it

the worst of times,

it was the age

was the age of
the age of wisdom,

age of wisdom, it

of wisdom, it was

wisdom, it was the

After graph construction,
try to simplify the graph as

much as possible

de Bruijn Graph Assembly

the age of foolishness

It was the best of times, it

 of times, it was the

it was the worst of times, it

it was the age of
the age of wisdom, it was the After graph construction,

try to simplify the graph as
much as possible

 Generally an exponential number of compatible sequences
–  Value computed by application of the BEST theorem (Hutchinson, 1975)

 L = n x n matrix with ru-auu along the diagonal and -auv in entry uv

 ru = d+(u)+1 if u=t, or d+(u) otherwise
 auv = multiplicity of edge from u to v

Counting Eulerian Tours

ARBRCRD
or

ARCRBRD
A R D

B

C

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Milestones in Genome Assembly

2000. Myers et al.
1st Large WGS Assembly.

Celera Assembler. 116 Mbp

1995. Fleischmann et al.
1st Free Living Organism
TIGR Assembler. 1.8Mbp

2010. Li et al.
1st Large SGS Assembly.
SOAPdenovo 2.2 Gbp

1977. Sanger et al.
1st Complete Organism

5375 bp

2001. Venter et al., IHGSC
Human Genome

Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC
1st Multicellular Organism

BAC-by-BAC Phrap. 97Mbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Current Applications
•  Novel genomes

•  Metagenomes

•  Sequencing assays
– Structural variations
– Transcript assembly
– …

Assembling a Genome

2. Construct assembly graph from overlapping reads

…AGCCTAGACCTACAGGATGCGCGACACGT

 GGATGCGCGACACGTCGCATATCCGGT…

3. Simplify assembly graph

 1. Shear & Sequence DNA

4. Detangle graph with long reads, mates, and other links

Illumina Sequencing by Synthesis

Metzker (2010) Nature Reviews Genetics 11:31-46
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

1. Prepare

2. Attach

3. Amplify

4. Image

5. Basecall

Paired-end and Mate-pairs
Paired-end sequencing
•  Read one end of the molecule, flip, and read the other end
•  Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence
•  Mate failures create short paired-end reads

10kbp

10kbp
circle

300bp

2x100 @ ~10kbp (outies)

2x100 @ 300bp (innies)

Typical genome coverage

1
2
3
4
5
6 C

ov
er

ag
e

Contig

Reads

Imagine raindrops on a sidewalk

Coverage and Read Length
Idealized Lander-Waterman model
•  Reads start at perfectly random

positions

•  Poisson distribution in coverage
–  Contigs end when there are no

overlapping reads

•  Contig length is a function of
coverage and read length
–  Effective coverage reduced by o/l
–  Short reads require much higher

coverage to reach same expected
contig length

Lander Waterman Expected Contig Length vs Coverage

Read Coverage

E
x
p
e
c
te

d
 C

o
n
ti
g
 L

e
n
g
th

 (
b
p
)

0 5 10 15 20 25 30 35 40

1
0
0

1
k

1
0
k

1
0
0
k

1
M

+dog mean

+dog N50

+panda mean

+panda N50

1000 bp

710 bp

250 bp

100 bp

52 bp

30 bp

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

Repeats and Read Length

•  Explore the relationship between read length and contig N50 size
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000
–  Contig/Read length relationship depends on specific repeat composition

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 250 500 750 1000

C
on

ti
g

N
50

 S
iz

e
(M

bp
)

Read Length

Bacillus anthracis
5.22Mbp

Colwellia psychrerythraea
5.37Mbp

Escherichia coli K12
4.64Mbp

Salmonella typhi
4.80Mbp

Yersinia pestis
4.70Mbp

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21.

Short Read Assembly

AAGA
ACTT
ACTC
ACTG
AGAG
CCGA
CGAC
CTCC
CTGG
CTTT
…

de Bruijn Graph Potential Genomes

AAGACTCCGACTGGGACTTT

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph
–  Human genome: >3B nodes, >10B edges

•  The new short read assemblers require tremendous computation
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

Reads

AAGACTGGGACTCCGACTTT

Histogram of cov

Coverage

De
ns
ity

0 20 40 60 80 100

0.
00
0

0.
00
5

0.
01
0

0.
01
5

!

!

!
!!!!!!!!!!!

!!
!!

!
!
!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!
!
!
!!

True k-
mers

Error k-
mers

1. Count all “Q-mers” in reads
•  Fit coverage distribution to mixture model

of errors and regular coverage
•  Automatically determines threshold for

trusted k-mers

2. Correction Algorithm
•  Considers editing erroneous kmers into

trusted kmers in decreasing likelihood
•  Includes quality values, nucleotide/nucleotide

substitution rate

Error Correction with Quake

Quake: quality-aware detection and correction of sequencing reads.
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. 11:R116

Graph Compression
•  After construction, many edges are unambiguous

–  Merge together compressible nodes
–  Error correction reduces number of nodes, number of false edges, and

allows for longer word size

Node Types

(Chaisson, 2009)

 Isolated nodes (10%)

 Tips (46%)

 Bubbles/Non-branch (9%)

 Dead Ends (.2%)

 Half Branch (25%)

 Full Branch (10%)

Graph Correction
–  Errors at end of read

•  Trim off ‘dead-end’ tips

–  Errors in middle of read

•  Pop Bubbles

–  Chimeric Edges

•  Clip short, low coverage nodes

B* A C

B

B’

A C

B A

D

B A

B

B’

A

C

B A

D C

x

A-stat

•! If n reads are a uniform random sample of the genome of length G,
we expect k=n!/G reads to start in a region of length!.

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be
a collapsed repeat

–! Requires an accurate genome size estimate

!

Pr(X " copy) =
n

k

$
%
&

'
(
X)

G

$
%

&

'
(

k
G " X)

G

$
%

&

'
(

n"k

!

A(",k) = ln
Pr(1# copy)

Pr(2# copy)

$

%
&

'

(
) = ln

("n /G)k

k!
e

#"n

G

(2"n /G)k

k!
e

#2"n

G

$

%

&
&
& &

'

(

)
)
))

=
n"

G
k ln2

A B C R
1

R
2

R
1 +

R
2

Coverage Evaluation

Initial Scaffolding

Create an initial scaffold of basic contigs (“unitigs”) whose
coverage indicates they are not repetitive (A-stat > 5).

Scaffold

Bundle

U-Unitig

Repeat Resolution

Rock Stone

Scaffold

Then add in remaining repetitive contigs based on their mate relationships allowing
repetitive sequences to be placed multiple times.

N50 size

Def: 50% of the genome is in contigs larger than N50

Example:

 1 Mbp genome
 Contigs: 300k, 100k, 50k, 45k, 30k, 20k, 15k, 15k, 10k,

 N50 size = 30 kbp
 (300k+100k+50k+45k+30k = 525k >= 500kbp)

Note:

N50 values are only meaningful to compare when base genome
size is the same in all cases

Illumina Sequencing & Assembly
2x76bp @ 275bp

2x36bp @ 3400bp

Validated 51,243,281 88.5%

Corrected 2,763,380 4.8%

Trim Only 3,273,428 5.6%

Removed 606,251 1.0%

k−mer counts

Coverage

Fr
eq
ue
nc
y

0 100 200 300 400

0
20

40
60

80
10
0

! 100bp N50 (bp)

Scaffolds 2,340 253,186

Contigs 2,782 56,374

Unitigs 4,151 20,772

Quake Results SOAPdenovo Results

•  Contigs are never as large as predicted
–  High coverage is a necessary but not sufficient condition
–  Error correction is required for good assembly
–  Sequencing is basically random, but sequence composition is not

•  Repeats control the quality of the assembly
–  Assemblers break contigs at ambiguous repeats
–  Highly repetitive genomes will be highly fragmented

•  Assemblers make mistakes
–  Mis-assemblies confuse all downstream analysis
–  Tension between overlap error rate and repeat resolution

Assembly realities

Comparison of 6 Draft Assemblies
Xanthomonas oryzae pv. oryzicola

50,000

55,000

60,000

65,000

70,000

75,000

80,000

85,000

90,000

A B C D E F

Avg. Contig Size

Assembly Evaluation

Comparison of 6 Draft Assemblies
Xanthomonas oryzae pv. oryzicola

50,000

55,000

60,000

65,000

70,000

75,000

80,000

85,000

90,000

A B C D E F
0

4

8

12

16

20
Avg. Contig Size
Num. Collapsed Repeats

Assembly Evaluation

Correct

Mis-assembly

Compression

A R B R

A R B

Expansion

A R B R

A R B R R

Inversion

A R C R B

A R C R B

Rearrangement

A R B R C R D

A R C R B R D

Correct

Mis-assembly

Basic mis-assemblies can be combined into more complicated patterns:
Insertions, Deletions, Giant Hairballs

Mis-assembly Types

 Automatically scan an assembly to locate
misassembly signatures for further analysis
and correction

 Assembly-validation pipeline
1.  Evaluate Mate Pairs & Libraries
2.  Evaluate Read Alignments
3.  Evaluate Read Breakpoints
4.  Analyze Depth of Coverage

Genome Assembly forensics: finding the elusive mis-assembly.
Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.

It was the best
of times, it

 of times,
 it was the

it was the
age of

it was the worst of
times, it

Assembly Forensics

Mate-Happiness: asmQC
•  Excision: Skip reads between flanking repeats

–  Truth

–  Misassembly: Compressed Mates, Missing Mates

Mate-Happiness: asmQC
•  Insertion: Additional reads between flanking repeats

–  Truth

–  Misassembly: Expanded Mates, Missing Mates

Mate-Happiness: asmQC

•  Rearrangement: Reordering of reads

–  Truth

–  Misassembly: Misoriented Mates

A B

Note: Unhappy mates may also occur for biological or technical reasons.

B A

2kb 4kb 6kb

8 inserts: 3kb-6kb

Local Mean: 4048

C/E Stat: (4048-4000) = +0.33

 (400 / !8)

Near 0 indicates overall happiness

0kb

Sampling the Genome

2kb 4kb 6kb

8 inserts: 3.2kb-6kb

Local Mean: 4461

C/E Stat: (4461-4000) = +3.26

 (400 / !8)

C/E Stat " 3.0 indicates Expansion

0kb

CE Statistic: Expansion

8 inserts: 3.2 kb-4.8kb

Local Mean: 3488

C/E Stat: (3488-4000) = -3.62

 (400 / !8)

C/E Stat # -3.0 indicates Compression

2kb 4kb 6kb 0kb

CE Statistic: Compression

Read Alignment

•  Multiple reads with same conflicting base are unlikely
–  1x QV 30: 1/1000 base calling error
–  2x QV 30: 1/1,000,000 base calling error
–  3x QV 30: 1/1,000,000,000 base calling error

•  Regions of correlated SNPs are likely to be assembly
errors or interesting biological events
–  Highly specific metric

•  AMOS Tools: analyzeSNPs & clusterSNPs
–  Locate regions with high rate of correlated SNPs
–  Parameterized thresholds:

•  Multiple positions within 100bp sliding window
•  2+ conflicting reads
•  Cumulative QV >= 40 (1/10000 base calling error)

A G C
A G C
A G C
A G C
A G C
A G C
C T A
C T A
C T A
C T A
C T A

68
Correlated
SNPs

-5.5 CE Dip

Compressed
Mates

Cluster

Read
Coverage
Spike

Hawkeye: a visual analytics tool for genome assemblies.
Schatz, MC, Phillippy, AM, Shneiderman, B, Salzberg, SL. (2007) Genome Biology 8:R34.

Collapsed Repeat

Validation Accuracy

Assembly Summary
Assembly quality depends on
1.  Coverage: low coverage is mathematically hopeless
2.  Repeat composition: high repeat content is challenging
3.  Read length: longer reads help resolve repeats
4.  Error rate: errors reduce coverage, obscure true overlaps

•  Assembly is a hierarchical, starting from individual reads, build high
confidence contigs/unitigs, incorporate the mates to build scaffolds
–  Extensive error correction is the key to getting the best assembly possible

from a given data set

•  Watch out for collapsed repeats & other misassemblies
–  Globally/Locally reassemble data from scratch with better parameters &

stitch the 2 assemblies together

Break

Outline

Part 1: Schatz Lab Overview
Part 2: Sequence Alignment
Part 3: Genome Assembly

Part 4: Parallel & Cloud Computing
•  Milestones in DNA Sequencing
•  Hadoop & Cloud Computing
•  Sequence Analysis in the Clouds

Milestones in DNA Sequencing
1970 1980 1990 2000 2010

1977
 Sanger et al.

1st Complete Organism
Bacteriophage φX174

5375 bp

Radioactive Chain Termination
5000bp / week / person

http://en.wikipedia.org/wiki/File:Sequencing.jpg

http://www.answers.com/topic/automated-sequencer

Milestones in DNA Sequencing
1970 1980 1990 2000 2010

http://commons.wikimedia.org/wiki/File:370A_automated_DNA_sequencer.jpg

Fluorescent Dye Termination
350bp / lane x 16 lanes =
 5600bp / day / machine

http://www.answers.com/topic/automated-sequencer

1987
Applied Biosystems markets the ABI 370 as

the first automated sequencing machine

Milestones in DNA Sequencing
1970 1980 1990 2000 2010

1995
Fleischmann et al.

1st Free Living Organism
TIGR Assembler. 1.8Mbp

2000
Myers et al.

1st Large WGS Assembly.
Celera Assembler. 116 Mbp

2001
 Venter et al.,

Human Genome
Celera Assembler. 2.9 Gbp

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day.
"The machine was so revolutionary that it could decode in a single day the same amount
of genetic material that most DNA labs could produce in a year. " J. Craig Venter

Milestones in DNA Sequencing
1970 1980 1990 2000 2010

2004
454/Roche

Pyrosequencing
Current Specs (Titanium):
1M 400bp reads / run =

1Gbp / day

2007
Illumina

Sequencing by Synthesis
Current Specs (HiSeq 2000):

2.5B 100bp reads / run =
60Gbp / day

2008
ABI / Life Technologies

SOLiD Sequencing
Current Specs (5500xl):
5B 75bp reads / run =

30Gbp / day

Second Generation Sequencing Applications

De novo Assembly

Alignment & Variations

A
T
T
T
T
T

Differential Analysis

Phylogeny & Evolution

Sequencing Centers

Next Generation Genomics: World Map of High-throughput Sequencers
http://pathogenomics.bham.ac.uk/hts/

DNA Data Tsunami

"Will Computers Crash Genomics?"
Elizabeth Pennisi (2011) Science. 331(6018): 666-668.

Current world-wide sequencing capacity exceeds 13Pbp/year
and is growing at 5x per year!

Genomics and Parallel Computing

Our best (only) hope is to use many computers:
•  Parallel Computing aka Cloud Computing

•  Now your programs will crash on 1000
computers instead of just 1 !

Current world-wide sequencing capacity exceeds 13Pbp/year
and is growing at 5x per year!

Amazon Web Services

•  All you need is a credit card, and you can
immediately start using one of the largest
datacenters in the world

•  Elastic Compute Cloud (EC2)
–  On demand computing power

•  Support for Windows, Linux, & OpenSolaris
•  Starting at 2.0¢ / core / hour

•  Simple Storage Service (S3)
–  Scalable data storage

•  15¢ / GB monthly fee

•  Plus many others

9:(;<<+=3>+?+@A/>0A?"

EC2 Architecture
•  Very large pool of machines

–  Effectively infinite resources
–  High-end servers with many cores

and many GB RAM

•  Machines run in a virtualized
environment
–  Amazon can subdivide large nodes

into smaller instances
–  You are 100% protected from other

users on the machine
–  You get to pick the operating

system, all installed software

Amazon Machine Images

•  A few Amazon sponsored images
– Suse Linux, Windows

•  Many Community Images & Appliances
– CloudBioLinux: Genomics Appliance
– Crossbow: Hadoop, Bowtie, SOAPsnp
– Galaxy: CloudMan

•  Build you own
– Completely customize your environment
– You results could be totally reproducible

Getting Started
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/

•  MapReduce is Google's framework for large data computations
–  Data and computations are spread over thousands of computers

•  Indexing the Internet, PageRank, Machine Learning, etc… (Dean and Ghemawat, 2004)
•  946 PB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010)

–  Hadoop is the leading open source implementation
•  Developed and used by Yahoo, Facebook, Twitter, Amazon, etc
•  GATK is an alternative implementation specifically for NGS

Hadoop MapReduce

•  Benefits
–  Scalable, Efficient, Reliable
–  Easy to Program
–  Runs on commodity computers

•  Challenges
–  Redesigning / Retooling applications

–  Not Condor, Not MPI
–  Everything in MapReduce

9:(;<<9+,AA(>+(+09*>A)B"

Hadoop for NGS Analysis
CloudBurst

Highly Sensitive Short Read
Mapping with MapReduce

100x speedup mapping
on 96 cores @ Amazon

(Schatz, 2009) http://cloudburst-bio.sf.net

Quake

Quality aware error
correction of short reads

Correct 97.9% of errors
with 99.9% accuracy

(Kelley, Schatz,
Salzberg, 2010)

Histogram of cov

Coverage

D
e
n
si
ty

0 20 40 60 80 100

0
.0
0
0

0
.0
0
5

0
.0
1
0

0
.0
1
5

!

!

!
!!!!!!!!!!

!!!
!!

!
!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!
!
!!

http://www.cbcb.umd.edu/software/quake/

Myrna

Cloud-scale differential gene
expression for RNA-seq

Expression of 1.1 billion RNA-Seq

reads in ~2 hours for ~$66

(Langmead,
Hansen, Leek, 2010) http://bowtie-bio.sf.net/myrna/

Genome Indexing

Rapid Parallel Construction
of Genome Index

Construct the BWT of

the human genome in 9 minutes

(Menon,
 Bhat, Schatz, 2011*)

http://code.google.com/p/
genome-indexing/

 System Architecture

•  Hadoop Distributed File System (HDFS)
–  Data files partitioned into large chunks (64MB), replicated on multiple nodes
–  Computation moves to the data, rack-aware scheduling

•  Hadoop MapReduce system won the 2009 GreySort Challenge
–  Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks
–  Provides many disks in addition to many cores

Slave 5

Slave 4

Slave 3

Slave 2

Slave 1

Master Desktop

Hadoop on AWS

AWS

EC2 - 5

EC2 - 4

EC2 - 3

EC2 - 2

EC2 - 1

EC2 -
Master

Desktop
S3

 If you don’t have 1000s of machines, rent them from Amazon
•  After machines spool up, ssh to master as if it was a local machine.
•  Use S3 for persistent data storage, with very fast interconnect to EC2.

Parallel Algorithm Spectrum
Embarrassingly Parallel

Map-only
Each item is Independent

Loosely Coupled

MapReduce
Independent-Sync-Independent

Tightly Coupled

Iterative MapReduce
Constant Sync

1. Embarrassingly Parallel
•  Batch computing

–  Each item is independent
–  Split input into many chunks
–  Process each chunk separately on a

different computer

•  Challenges
–  Distributing work, load balancing,

monitoring & restart

•  Technologies
–  Condor, Sun Grid Engine
–  Amazon Simple Queue

Elementary School Dance

2. Loosely Coupled
•  Divide and conquer

–  Independently process many items
–  Group partial results
–  Scan partial results into final answer

•  Challenges
–  Batch computing challenges
–  + Shuffling of huge datasets

•  Technologies
–  Hadoop, Elastic MapReduce, Dryad
–  Parallel Databases

Junior High Dance

Short Read Mapping

•  Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read
–  Find where the read most likely originated
–  Fundamental computation for many assays

•  Genotyping RNA-Seq Methyl-Seq
•  Structural Variations Chip-Seq Hi-C-Seq

•  Desperate need for scalable solutions
–  Single human requires >1,000 CPU hours / genome

!CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC!
GCGCCCTA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC!

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA
AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATATG
CTATATGCG

!CC
!CC
!CCA
!CCA
!CCAT

ATAC!
C!
C!

!CCAT
!CCATAG TATGCGCCC

GGTATAC!
CGGTATAC

Identify variants

Reference

Subject

Crossbow

•  Align billions of reads and find SNPs
–  Reuse software components: Hadoop Streaming

9:(;<<'A=C*D'-A>3AE)0*FA)B*>/*G<0)A33'A="

•  Map: Bowtie (Langmead et al., 2009)
–  Find best alignment for each read
–  Emit (chromosome region, alignment)

•  Reduce: SOAPsnp (Li et al., 2009)
–  Scan alignments for divergent columns
–  Accounts for sequencing error, known SNPs

•  Shuffle: Hadoop
–  Group and sort alignments by region

H
"

H
"

Performance in Amazon EC2

Asian Individual Genome

Data Loading 3.3 B reads 106.5 GB $10.65

Data Transfer 1h :15m 40 cores $3.40

Setup 0h : 15m 320 cores $13.94

Alignment 1h : 30m 320 cores $41.82

Variant Calling 1h : 00m 320 cores $27.88

End-to-end 4h : 00m $97.69

Discovered 3.7M SNPs in one human genome for ~$100 in an afternoon.
Accuracy validated at >99%

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134"

9:(;<<'A=C*D'-A>3AE)0*FA)B*>/*G<0)A33'A="

Cloud Cluster

Cloud
Storage

H"

H"

I/+J-B/*,"

K*+,3"

L+("GA""

M*/A?*"

N9EO*""

-/GA"P-/3"

N0+/""

QJ-B/?*/G3"

Q33+R""

K*3EJG3"

Internet

Cloud
Storage

Internet

Map-Shuffle-Scan for Genomics

Cloud Computing and the DNA Data Race.
Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693

Jnomics Structural Variations

Circos plot of high confidence
SVs specific to esophageal
cancer sample
•  Red: SVs specific to tumor
•  Green: SVs in both diseased

and tumor samples

Detailed analysis of disrupted
genes and fusion genes in
progress
•  Preliminary analysis shows

many promising hits to
known cancer genes

3. Tightly Coupled
•  Computation that cannot be partitioned

–  Graph Analysis
–  Molecular Dynamics
–  Population simulations

•  Challenges
–  Loosely coupled challenges
–  + Parallel algorithms design

•  Technologies

–  MPI
–  MapReduce, Dryad, Pregel

High School Dance

Short Read Assembly

AAGA
ACTT
ACTC
ACTG
AGAG
CCGA
CGAC
CTCC
CTGG
CTTT
…

de Bruijn Graph Potential Genomes

AAGACTCCGACTGGGACTTT

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph
–  Human genome: >3B nodes, >10B edges

•  The new short read assemblers require tremendous computation
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

Reads

AAGACTGGGACTCCGACTTT

Warmup Exercise
Who here was born closest to Oct 3?

– You can only compare to 1 other person at a time

Find winner among 16 teams in just 4 rounds

Fast Path Compression
 Challenges

–  Nodes stored on different computers
–  Nodes can only access direct neighbors

 Randomized List Ranking
–  Randomly assign H / T to each

compressible node
–  Compress H " T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Initial Graph: 42 nodes

Fast Path Compression
 Challenges

–  Nodes stored on different computers
–  Nodes can only access direct neighbors

 Randomized List Ranking
–  Randomly assign H / T to each

compressible node
–  Compress H " T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 1: 26 nodes (38% savings)

Fast Path Compression
 Challenges

–  Nodes stored on different computers
–  Nodes can only access direct neighbors

 Randomized List Ranking
–  Randomly assign H / T to each

compressible node
–  Compress H " T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 2: 15 nodes (64% savings)

Fast Path Compression
 Challenges

–  Nodes stored on different computers
–  Nodes can only access direct neighbors

 Randomized List Ranking
–  Randomly assign H / T to each

compressible node
–  Compress H " T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 2: 8 nodes (81% savings)

Fast Path Compression
 Challenges

–  Nodes stored on different computers
–  Nodes can only access direct neighbors

 Randomized List Ranking
–  Randomly assign H / T to each

compressible node
–  Compress H " T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 3: 6 nodes (86% savings)

Fast Path Compression
 Challenges

–  Nodes stored on different computers
–  Nodes can only access direct neighbors

 Randomized List Ranking
–  Randomly assign H / T to each

compressible node
–  Compress H " T links

 Performance
–  Compress all chains in log(S) rounds

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 4: 5 nodes (88% savings)

Contrail

De novo bacterial assembly
•  Genome: E. coli K12 MG1655, 4.6Mbp
•  Input: 20.8M 36bp reads, 200bp insert (~150x coverage)
•  Preprocessor: Quake Error Correction

http://contrail-bio.sourceforge.net

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Cloud Surfing Error Correction Compressed Initial

N
Max
N50

5.1 M
27 bp
27 bp

245,131
1,079 bp

156 bp

2,769
70,725 bp
15,023 bp

1,909
90,088 bp
20,062 bp

300
149,006 bp
54,807 bp

Resolve Repeats

Contrail

De novo Assembly of the Human Genome
•  Genome: African male NA18507 (SRA000271, Bentley et al., 2008)
•  Input: 3.5B 36bp reads, 210bp insert (~40x coverage)

Compressed Initial

N
Max
N50

>7 B
27 bp
27 bp

>1 B
303 bp

< 100 bp

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

http://contrail-bio.sourceforge.net

Cloud Surfing Error Correction

4.2 M
20,594 bp

995 bp

4.1 M
20,594 bp
1,050 bp

3.3 M
20,594 bp
1,427 bp*

Resolve Repeats

De novo mutations and de Bruijn Graphs

 Searching for de novo mutations in
the families of 3000 autistic children.
–  Assemble together reads from mom,

dad, affected & unaffected children
–  Look for sequence paths unique to

affected child

Unique
to affected

Shared
by all

!"#$!%&''
SDTQ

•  We are entering the digital age of biology
–  Next generation sequencing, microarrays, mass

spectrometry, microscopy, ecology, etc
–  Parallel computing may be our only hope for

keeping up with the pace of advance

•  Modern biology requires (is) quantitative
biology

–  Computational, mathematical, and
statistical techniques applied to analyze,
integrate, and interpret biological sensor
data

•  Don’t let the data tsunami crash on you
–  Study, practice, collaborate with quantitative

techniques

Summary

Since opening in 1999, the WSBS has become a
leading PhD program in the biological sciences,
one whose fresh approach is quickly being
emulated by other programs across the country.

•  An innovative Ph.D. program designed for
exceptional students
–  Approximately four years from matriculation to

Ph.D. degree award
–  A !rst year with course work and laboratory

rotations in separate phases
–  Emphasis on the principles of scienti!c reasoning

and logic

•  Learn more: http://www.cshl.edu/gradschool

Acknowledgements
CSHL
Dick McCombie
Melissa Kramer
Eric Antonio
Mike Wigler
Zach Lippman
Doreen Ware
Ivan Iossifov

JHU
Steven Salzberg
Ben Langmead
Jeff Leek

NBACC
Adam Phillipy
Sergey Koren

Univ. of Maryland
Mihai Pop
Art Delcher
Jimmy Lin
David Kelley
Dan Sommer
Cole Trapnell

Schatzlab
Mitch Bekritsky
Matt Titmus
Hayan Lee
James Gurtowski
Anirudh Aithal
Rohith Menon
Goutham Bhat

Thank You!

http://schatzlab.cshl.edu
@mike_schatz

