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Computational Biology 

 Computational Genomics 
1.  Alignment 
2.  Assembly 
3.  Expression 
4.  Comparative Genomics 

 Computational Thinking 
1.  Algorithm 
2.  Data structure 
3.  Computational Analysis 
4.  Computational Modeling 

"Computer science is no more about computers than astronomy is about telescopes." 
 Edger Dijkstra 

 

Computer Science = Science of Computation 
•  Compute solutions to problems, designing & building systems 
•  Computers are very, very dumb, but we can instruct them 

•  Build complex systems out of simple components 
 
Computational Biology = Thinking Computationally about Biology 
•  Analysis: Make more powerful instruments, analyze results 
•  Design: experimental protocols, procedures, systems 
 



Genomics & Quantitative Biology 

Genome Assembly Mutations & Disease 

Differential Analysis Phylogeny & Evolution 



Outline 

Part 1: Schatz Lab Overview 

Part 2: Sequence Alignment 
•  Exact Matching 
•  Suffix Arrays 
•  Bowtie and the BWT 

Part 3: Genome Assembly 
Part 4: Parallel & Cloud Computing 

 



Searching for GATTACA 
•  Where is GATTACA in the human genome? 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

No match at offset 1 

•  Strategy 1: Brute Force 
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Searching for GATTACA 
•  Where is GATTACA in the human genome? 

•  Strategy 1: Brute Force 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A … 

No match at offset 3… 



Searching for GATTACA 
•  Where is GATTACA in the human genome? 

•  Strategy 1: Brute Force 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

No match at offset 9 <-  Checking each possible position takes time 



Brute Force Analysis 

•  Brute Force: 
–  At every possible offset in the genome: 

•  Do all of the characters of the query match? 

•  Analysis 
–  Simple, easy to understand 
–  Genome length = n          [3B] 
–  Query length    = m              [7] 
–  Comparisons: (n-m+1) * m                   [21B] 

•  Overall runtime: O(nm)  
     [How long would it take if we double the genome size, read length?] 

             [How long would it take if we double both?] 



Expected Occurrences 
 The expected number of occurrences (e-value) of a given sequence in a 
genome depends on the length of the genome and inversely on the length 
of the sequence 

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT, … 
–  1 in 16,384 should be GATTACA 
–  E=n/(4m)                            [183,105 expected occurrences] 

       [How long do the reads need to be for a significant match?] 
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Brute Force Reflections 
 Why check every position? 

–  GATTACA can't possibly start at position 15          [WHY?] 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 

G A T T A C A 

–  Improve runtime to O(n + m)           [3B + 7] 
•  If we double both, it just takes twice as long 
•  Knuth-Morris-Pratt, 1977 
•  Boyer-Moyer, 1977, 1991 

–  For one-off scans, this is the best we can do (optimal performance) 
•  We have to read every character of the genome, and every character of the query 
•  For short queries, runtime is dominated by the length of the genome 



Suffix Arrays: Searching the Phone Book 
•  What if we need to check many queries? 

•  We don't need to check every page of the phone book to find 'Schatz' 
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book 

without any loss in accuracy 
 
•  Sorting the genome: Suffix Array (Manber & Myers, 1991) 

–  Sort every suffix of the genome 

 

Split into n suffixes Sort suffixes alphabetically 

[Challenge Question: How else could we split the genome?] 



Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; 

Lo 

Hi 
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Searching the Index 
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Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 
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Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 
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Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 
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Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 
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Searching the Index 

# Sequence Pos 

1 ACAGATTACC… 6 

2 ACC… 13 

3 AGATTACC… 8 

4 ATTACAGATTACC…  3 

5 ATTACC… 10 

6 C… 15 

7 CAGATTACC… 7 

8 CC… 14 

9 GATTACAGATTACC…    2 

10 GATTACC… 9 

11 TACAGATTACC… 5 

12 TACC… 12 

13 TGATTACAGATTACC… 1 

14 TTACAGATTACC… 4 

15 TTACC… 11 

•  Strategy 2: Binary search 
•  Compare to the middle, refine as higher or lower 
 

•  Searching for GATTACA 
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8 
•  Middle = Suffix[8] = CC 

 => Higher: Lo = Mid + 1 

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12 
•  Middle = Suffix[12] = TACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10 
•  Middle = Suffix[10] = GATTACC 

 => Lower: Hi = Mid - 1 

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9 
•  Middle = Suffix[9] = GATTACA… 

 => Match at position 2! 

Lo 
Hi 



Binary Search Analysis 
•  Binary Search 

 Initialize search range to entire list  
 mid = (hi+lo)/2; middle = suffix[mid] 
 if query matches middle: done 
 else if query < middle: pick low range 
 else if query > middle: pick hi range 

 Repeat until done or empty range         [WHEN?] 

•  Analysis 
•  More complicated method 
•  How many times do we repeat? 

•  How many times can it cut the range in half? 
•  Find smallest x such that: n/(2x) ! 1; x = lg2(n)        [32] 

•  Total Runtime: O(m lg n) 
•  More complicated, but much faster! 
•  Looking up a query loops 32 times instead of 3B 

  [How long does it take to search 6B or 24B nucleotides?] 
 



Suffix Array Construction 
•  How can we store the suffix array? 

    [How many characters are in all suffixes combined?] 

S = 1 + 2 + 3 + · · ·+ n =
n�

i=1

i =
n(n+ 1)

2
= O(n2)

Pos 

6 

13 

8 

3 

10 

15 

7 

14 

2 

9 

5 

12 

1 

4 

11 

TGATTACAGATTACC 

•  Hopeless to explicitly store 4.5 billion billion characters 

•  Instead use implicit representation 
•  Keep 1 copy of the genome, and a list of sorted offsets 
•  Storing 3 billion offsets fits on a server (12GB) 

 
•  Searching the array is very fast, but it takes time to construct 

•  This time will be amortized over many, many searches 
•  Run it once "overnight" and save it away for all future queries  



Sorting 
Quickly sort these numbers into ascending order: 

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19 

[How do you do it?] 
 

6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19 
6, 13, 14, 29, 31, 39, 64, 78, 50, 63, 61, 19 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 64, 78, 50, 63, 61 
6, 13, 14, 19, 29, 31, 39, 50, 64, 78, 63, 61 
6, 13, 14, 19, 29, 31, 39, 50, 61, 64, 78, 63 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 
6, 13, 14, 19, 29, 31, 39, 50, 61, 63, 64, 78 

 
 

http://en.wikipedia.org/wiki/Selection_sort 



Selection Sort Analysis 
•  Selection Sort (Input: list of n numbers) 

 for pos = 1 to n 
 // find the smallest element in [pos, n] 
 smallest = pos  
 for check = pos+1 to n 

 if (list[check] < list[smallest]): smallest = check 
  
 // move the smallest element to the front 
 tmp = list[smallest] 
 list[pos] = list[smallest] 
 list[smallest] = tmp 

•  Complexity Analysis 

•  Outer loop:  pos     = 1 to n 
•  Inner loop:   check = pos to n 
•  Running time:  Outer * Inner = O(n2)         [4.5 Billion Billion] 

[Challenge Questions:  Why is this slow? / Can we sort any faster?] 

T = n+ (n− 1) + (n− 2) + · · ·+ 3 + 2 + 1 =
n�

i=1

i =
n(n+ 1)

2
= O(n2)



Divide and Conquer 
•  Selection sort is slow because it rescans the entire list for each element 

•  How can we split up the unsorted list into independent ranges? 
•  Hint 1:  Binary search splits up the problem into 2 independent ranges (hi/lo) 
•  Hint 2:  Assume we know the median value of a list 

 

n 

[How many times can we split of n items a list in half?] 

= < > 2 x n/2 

= < > = = < > 4 x n/4 

< = > = < = > = < = > = < = > 8 x n/8 

16 x n/16 

2i x n/2i 



QuickSort Analysis 
•  QuickSort(Input: list of n numbers) 

// see if we can quit 
if (length(list)) <= 1): return list 
 
// split list into lo & hi 
pivot = median(list) 
lo = {}; hi = {}; 
for (i = 1 to length(list)) 

if (list[i] < pivot): append(lo, list[i]) 
else:        append(hi, list[i]) 

 
// recurse on sublists 
return (append(QuickSort(lo), QuickSort(hi)) 

 
•  Complexity Analysis (Assume we can find the median in O(n)) 

 

                            [~94B] 

http://en.wikipedia.org/wiki/Quicksort 

T (n) =

�
O(1) if n ≤ 1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)�

i=0

2in

2i
=

lg(n)�

i=0

n = O(n lg n)
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In-exact alignment 

•  Where is GATTACA approximately in the human genome? 
–  And how do we efficiently find them? 

•  It depends… 
–  Define 'approximately' 

•  Hamming Distance, Edit distance, or Sequence Similarity 
•  Ungapped vs Gapped vs Affine Gaps,  Global vs Local 

–  Algorithm depends on the data characteristics & goals 
•  Smith-Waterman: Exhaustive search for optimal alignments 
•  BLAST: Hash-table based homology searches 
•  Bowtie: BWT alignment for short read mapping 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … 

T G A T T A C A G A T T A C C … 



Theorem:  An alignment of a sequence of length m 
with at most k differences must contain 
an exact match at least s=m/(k+1) bp long 

(Baeza-Yates and Perleberg, 1996) 
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–  Proof: Pigeonhole principle 
–  1 pigeon can't fill 2 holes 

–  Seed-and-extend search 
–  Use an index to rapidly find short exact  

 alignments to seed longer in-exact alignments 
–  BLAST, MUMmer, Bowtie, BWA, SOAP, … 

 [How could you use seed-and-extend with a suffix array?] 

Seed-and-Extend Alignment 



Bowtie: Ultrafast and memory 
efficient alignment of short DNA 
sequences to the human genome 

Slides Courtesy of Ben Langmead 
(langmead@umiacs.umd.edu) 

 



$GATTACA!
A$GATTAC!
ACA$GATT!
ATTACA$G!
CA$GATTA!
GATTACA$!
TACA$GAT!
TTACA$GA!

Burrows-Wheeler Transform 

•  Suffix Array is fast to search, but much larger than genome 
•  BWT is a reversible permutation of the genome based on the suffix array 
•  Core index for Bowtie (Langmead et al., 2009) and most recent short read 

mapping applications 

Burrows Wheeler 
Matrix 

BWT(T) T 

A block sorting lossless data compression algorithm.  
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124 

GATTACA$! ACTGA$TA!

LF Property  
implicitly encodes 
suffix array 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 
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Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 
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BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 
A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Part 1: Summary 
•  Short Read Mapping: Seed-and-extend search of the BWT 

•  If we fail to reach the end, back-track and resume search 
•  The beginning of the read is used as high confidence seed 
•  100s of times faster than competing approaches, works entirely in RAM 

 
 
•  Algorithms choreograph the dance of data inside the machine 

•  Algorithms add provable precision to your method 
•  A smarter algorithm can solve the same problem with much less work 

 
 
•  Computational Techniques 

•  Binary search: Fast lookup in any sorted list 
•  Divide-and-conquer: Split a hard problem into an easier problem 
•  Recursion: Solve a problem using a function of itself 
•  Indexing: Focus on just the important parts 
•  Seed-and-extend: Anchor the problem using a portion of it 

 
 



Break 



Outline 

Part 1: Schatz Lab Overview 
Part 2: Sequence Alignment 
 

Part 3: Genome Assembly 
•  Assembly by analogy 
•  Coverage, read length, and repeats 
•  Contiging & Scaffolding 
•  Assembly Forensics 

Part 4: Parallel & Cloud Computing 

 



Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

of times, it was the 

times, it was the age 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

it was the worst of 

was the worst of times, 

worst of times, it was 

of times, it was the 

times, it was the age 

it was the age of 

was the age of wisdom, 

the age of wisdom, it 

age of wisdom, it was 

of wisdom, it was the 

wisdom, it was the age 

it was the age of 

was the age of foolishness, 

the worst of times, it 

 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 
    [Any ideas on how to proceed?] 



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 

it was the age 

was the age of 
the age of wisdom, 

age of wisdom, it 

of wisdom, it was 

wisdom, it was the 

After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 



 Generally an exponential number of compatible sequences 
–  Value computed by application of the BEST theorem (Hutchinson, 1975) 

 
 
          L = n x n matrix with ru-auu along the diagonal and -auv in entry uv 

   ru = d+(u)+1 if u=t, or d+(u) otherwise 
   auv = multiplicity of edge from u to v 

Counting Eulerian Tours 

ARBRCRD 
or 

ARCRBRD 
A R D 

B 

C 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.  



Milestones in Genome Assembly 

2000. Myers et al. 
1st Large WGS Assembly. 

Celera Assembler. 116 Mbp 

1995. Fleischmann et al. 
1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2010. Li et al. 
1st Large SGS Assembly. 
SOAPdenovo 2.2 Gbp 

1977. Sanger et al. 
1st Complete Organism 

5375 bp 

2001. Venter et al., IHGSC 
Human Genome 

Celera Assembler/GigaAssembler. 2.9 Gbp 

1998. C.elegans SC 
1st Multicellular Organism 

BAC-by-BAC Phrap. 97Mbp 

Like Dickens, we must computationally reconstruct a genome from short fragments 



Current Applications 
•  Novel genomes 

 
•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 



Assembling a Genome 

2. Construct assembly graph from overlapping reads 

…AGCCTAGACCTACAGGATGCGCGACACGT 

              GGATGCGCGACACGTCGCATATCCGGT… 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 



Typical genome coverage 
 

1 
2 
3 
4 
5 
6 C

ov
er

ag
e 

Contig 

Reads 

Imagine raindrops on a sidewalk 



Coverage and Read Length 
Idealized Lander-Waterman model 
•  Reads start at perfectly random 

positions 

•  Poisson distribution in coverage 
–  Contigs end when there are no 

overlapping reads 

•  Contig length is a function of 
coverage and read length 
–  Effective coverage reduced by o/l 
–  Short reads require much higher 

coverage to reach same expected 
contig length 

Lander Waterman Expected Contig Length vs Coverage

Read Coverage
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Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  



Repeats and Read Length 

•  Explore the relationship between read length and contig N50 size 
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000 
–  Contig/Read length relationship depends on specific repeat composition 
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Read Length 

Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Yersinia pestis         
4.70Mbp 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21. 



Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph 
–  Human genome: >3B nodes, >10B edges 

•  The new short read assemblers require tremendous computation 
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 
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True k-
mers 

Error k-
mers 

1. Count all “Q-mers” in reads 
•  Fit coverage distribution to mixture model 

of errors and regular coverage 
•  Automatically determines threshold for 

trusted k-mers 

2. Correction Algorithm 
•  Considers editing erroneous kmers into 

trusted kmers in decreasing likelihood 
•  Includes quality values, nucleotide/nucleotide 

substitution rate 

Error Correction with Quake 

Quake: quality-aware detection and correction of sequencing reads. 
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. 11:R116  



Graph Compression 
•  After construction, many edges are unambiguous 

–  Merge together compressible nodes 
–  Error correction reduces number of nodes, number of false edges, and 

allows for longer word size 



Node Types 

(Chaisson, 2009) 

 Isolated nodes (10%) 

 Tips (46%) 

 Bubbles/Non-branch (9%) 

 Dead Ends (.2%) 

 Half Branch (25%) 

 Full Branch (10%) 



Graph Correction 
–  Errors at end of read 

•  Trim off ‘dead-end’ tips 

 
–  Errors in middle of read 

•  Pop Bubbles 
 

 
 

–  Chimeric Edges 

•  Clip short, low coverage nodes 

B* A C 

B 

B’ 

A C 

B A 

D 

B A 

B 

B’ 

A 

C 

B A 

D C 

x 



A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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Coverage Evaluation 



Initial Scaffolding 

Create an initial scaffold of basic contigs (“unitigs”) whose 
coverage indicates they are not repetitive (A-stat > 5).  

Scaffold 

Bundle 

U-Unitig 



Repeat Resolution 

Rock Stone 

Scaffold 

Then add in remaining repetitive contigs based on their mate relationships allowing 
repetitive sequences to be placed multiple times. 



N50 size 

Def: 50% of the genome is in contigs larger than N50 

Example: 
 

 1 Mbp genome 
 Contigs: 300k, 100k, 50k, 45k, 30k, 20k, 15k, 15k, 10k, .... 

 
 N50 size = 30 kbp  
  (300k+100k+50k+45k+30k = 525k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 



Illumina Sequencing & Assembly 
2x76bp @ 275bp 

2x36bp @ 3400bp  

Validated 51,243,281 88.5% 

Corrected 2,763,380 4.8% 

Trim Only 3,273,428 5.6% 

Removed 606,251 1.0% 

k−mer counts

Coverage

Fr
eq
ue
nc
y

0 100 200 300 400

0
20

40
60

80
10
0

# ! 100bp N50 (bp) 

Scaffolds 2,340 253,186 

Contigs 2,782 56,374 

Unitigs 4,151 20,772 

Quake Results SOAPdenovo Results 



•  Contigs are never as large as predicted 
–  High coverage is a necessary but not sufficient condition 
–  Error correction is required for good assembly 
–  Sequencing is basically random, but sequence composition is not 

•  Repeats control the quality of the assembly 
–  Assemblers break contigs at ambiguous repeats 
–  Highly repetitive genomes will be highly fragmented 

•  Assemblers make mistakes 
–  Mis-assemblies confuse all downstream analysis 
–  Tension between overlap error rate and repeat resolution 

Assembly realities 



Comparison of 6 Draft Assemblies
Xanthomonas oryzae pv. oryzicola
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Assembly Evaluation  



Comparison of 6 Draft Assemblies
Xanthomonas oryzae pv. oryzicola
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Assembly Evaluation 



Correct 

Mis-assembly 

Compression 

A R B R 

A R B 

Expansion 

A R B R 

A R B R R 

Inversion 

A R C R B 

A R C R B 

Rearrangement 

A R B R C R D 

A R C R B R D 

Correct 

Mis-assembly 

Basic mis-assemblies can be combined into more complicated patterns: 
Insertions, Deletions, Giant Hairballs 

Mis-assembly Types 



 Automatically scan an assembly to locate 
misassembly signatures for further analysis 
and correction 

 Assembly-validation pipeline 
1.  Evaluate Mate Pairs & Libraries 
2.  Evaluate Read Alignments 
3.  Evaluate Read Breakpoints 
4.  Analyze Depth of Coverage 

Genome Assembly forensics: finding the elusive mis-assembly. 
Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55. 

It was the best 
of times, it 

 of times, 
 it was the 

it was the  
age of 

it was the worst of 
times, it 

Assembly Forensics 



Mate-Happiness: asmQC 
•  Excision: Skip reads between flanking repeats 

–  Truth 

–  Misassembly: Compressed Mates, Missing Mates 



Mate-Happiness: asmQC 
•  Insertion: Additional reads between flanking repeats 

–  Truth 

–  Misassembly: Expanded Mates, Missing Mates 



Mate-Happiness: asmQC 

•  Rearrangement: Reordering of reads 

–  Truth 

–  Misassembly: Misoriented Mates 

A B 

Note:  Unhappy mates may also occur for biological or technical reasons. 

B A 



2kb 4kb 6kb 

8 inserts: 3kb-6kb 

Local Mean: 4048 

C/E Stat:  (4048-4000)   = +0.33 

                (400 / !8)  

Near 0 indicates overall happiness 

0kb 

Sampling the Genome 



2kb 4kb 6kb 

8 inserts: 3.2kb-6kb 

Local Mean: 4461 

C/E Stat:  (4461-4000)   = +3.26 

                (400 / !8)  

C/E Stat " 3.0 indicates Expansion 

0kb 

CE Statistic: Expansion 



8 inserts: 3.2 kb-4.8kb 

Local Mean: 3488 

C/E Stat:  (3488-4000)   = -3.62 

                (400 / !8)  

C/E Stat # -3.0 indicates Compression 

2kb 4kb 6kb 0kb 

CE Statistic: Compression 



Read Alignment 

•  Multiple reads with same conflicting base are unlikely 
–  1x QV 30: 1/1000 base calling error 
–  2x QV 30: 1/1,000,000 base calling error 
–  3x QV 30: 1/1,000,000,000 base calling error 

•  Regions of correlated SNPs are likely to be assembly 
errors or interesting biological events 
–  Highly specific metric 

•  AMOS Tools: analyzeSNPs & clusterSNPs 
–  Locate regions with high rate of correlated SNPs 
–  Parameterized thresholds: 

•  Multiple positions within 100bp sliding window 
•  2+ conflicting reads 
•  Cumulative QV >= 40 (1/10000 base calling error) 

 

A G C 
A G C 
A G C 
A G C 
A G C 
A G C 
C T A 
C T A 
C T A 
C T A 
C T A  



68  
Correlated  
SNPs 

-5.5 CE Dip 

Compressed 
Mates 

Cluster 

Read 
Coverage 
Spike 

Hawkeye: a visual analytics tool for genome assemblies.  
Schatz, MC, Phillippy, AM, Shneiderman, B, Salzberg, SL. (2007) Genome Biology 8:R34. 

Collapsed Repeat 



Validation Accuracy 



Assembly Summary 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

•  Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  
–  Extensive error correction is the key to getting the best assembly possible 

from a given data set 

•  Watch out for collapsed repeats & other misassemblies 
–  Globally/Locally reassemble data from scratch with better parameters & 

stitch the 2 assemblies together 



Break 



Outline 

Part 1: Schatz Lab Overview 
Part 2: Sequence Alignment 
Part 3: Genome Assembly 
 
Part 4: Parallel & Cloud Computing 
•  Milestones in DNA Sequencing 
•  Hadoop & Cloud Computing 
•  Sequence Analysis in the Clouds 

 



Milestones in DNA Sequencing 
1970 1980 1990 2000 2010 

1977 
 Sanger et al. 

1st Complete Organism 
Bacteriophage φX174 

5375 bp 

Radioactive Chain Termination  
5000bp / week / person 

 
http://en.wikipedia.org/wiki/File:Sequencing.jpg 

http://www.answers.com/topic/automated-sequencer 



Milestones in DNA Sequencing 
1970 1980 1990 2000 2010 

http://commons.wikimedia.org/wiki/File:370A_automated_DNA_sequencer.jpg 

Fluorescent Dye Termination 
350bp / lane x 16 lanes = 
 5600bp / day / machine 

  
http://www.answers.com/topic/automated-sequencer 

 

1987 
Applied Biosystems markets the ABI 370 as 

the first automated sequencing machine 



Milestones in DNA Sequencing 
1970 1980 1990 2000 2010 

1995  
Fleischmann et al. 

1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2000  
Myers et al. 

1st Large WGS Assembly. 
Celera Assembler. 116 Mbp 

2001 
 Venter et al.,  

Human Genome 
Celera Assembler. 2.9 Gbp 

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. 
"The machine was so revolutionary that it could decode in a single day the same amount 
of genetic material that most DNA labs could produce in a year. " J. Craig Venter 



Milestones in DNA Sequencing 
1970 1980 1990 2000 2010 

2004 
454/Roche 

Pyrosequencing 
Current Specs (Titanium):  
1M 400bp reads / run =  

1Gbp / day 

2007 
Illumina 

Sequencing by Synthesis 
Current Specs (HiSeq 2000):  

2.5B 100bp reads / run =  
60Gbp / day 

2008 
ABI / Life Technologies 

SOLiD Sequencing 
Current Specs (5500xl):  
5B 75bp reads / run =  

30Gbp / day 



Second Generation Sequencing Applications 

De novo Assembly 

Alignment & Variations 

A 
T 
T 
T 
T 
T 

Differential Analysis 

Phylogeny & Evolution 



Sequencing Centers 

Next Generation Genomics: World Map of High-throughput Sequencers 
http://pathogenomics.bham.ac.uk/hts/ 



DNA Data Tsunami 

"Will Computers Crash Genomics?"  
Elizabeth Pennisi (2011) Science. 331(6018): 666-668.  

Current world-wide sequencing capacity exceeds 13Pbp/year 
and is growing at 5x per year! 



Genomics and Parallel Computing 

Our best (only) hope is to use many computers:  
•  Parallel Computing aka Cloud Computing 

•  Now your programs will crash on 1000 
computers instead of just 1 ! 

Current world-wide sequencing capacity exceeds 13Pbp/year 
and is growing at 5x per year! 



Amazon Web Services 

•  All you need is a credit card, and you can 
immediately start using one of the largest 
datacenters in the world 

•  Elastic Compute Cloud (EC2) 
–  On demand computing power 

•  Support for Windows, Linux, & OpenSolaris 
•  Starting at 2.0¢ / core / hour 

•  Simple Storage Service (S3) 
–  Scalable data storage 

•  15¢ / GB monthly fee 

•  Plus many others 

9:(;<<+=3>+?+@A/>0A?"



EC2 Architecture 
•  Very large pool of machines 

–  Effectively infinite resources 
–  High-end servers with many cores 

and many GB RAM 

•  Machines run in a virtualized 
environment 
–  Amazon can subdivide large nodes 

into smaller instances 
–  You are 100% protected from other 

users on the machine 
–  You get to pick the operating 

system, all installed software 



Amazon Machine Images 

•  A few Amazon sponsored images 
– Suse Linux, Windows 

•  Many Community Images & Appliances 
– CloudBioLinux: Genomics Appliance 
– Crossbow: Hadoop, Bowtie, SOAPsnp 
– Galaxy: CloudMan 

•  Build you own 
– Completely customize your environment 
– You results could be totally reproducible 



Getting Started 
http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/ 



•  MapReduce is Google's framework for large data computations  
–  Data and computations are spread over thousands of computers 

•  Indexing the Internet, PageRank, Machine Learning, etc…  (Dean and Ghemawat, 2004) 
•  946 PB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010) 

–  Hadoop is the leading open source implementation 
•  Developed and used by Yahoo, Facebook, Twitter, Amazon, etc 
•  GATK is an alternative implementation specifically for NGS 

Hadoop MapReduce 

•  Benefits 
–  Scalable, Efficient, Reliable 
–  Easy to Program 
–  Runs on commodity computers 

•  Challenges 
–  Redesigning / Retooling applications 

–  Not Condor, Not MPI 
–  Everything in MapReduce 

9:(;<<9+,AA(>+(+09*>A)B"



Hadoop for NGS Analysis 
CloudBurst 

Highly Sensitive Short Read 
Mapping with MapReduce 

 
100x speedup mapping 
on 96 cores @ Amazon 

 
 

(Schatz, 2009) http://cloudburst-bio.sf.net 

Quake 

Quality aware error 
correction of short reads 

 
Correct 97.9% of errors   
with 99.9% accuracy 

 
 

(Kelley, Schatz,  
Salzberg, 2010) 
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http://www.cbcb.umd.edu/software/quake/ 

Myrna 

Cloud-scale differential gene 
expression for RNA-seq 

 
Expression of 1.1 billion RNA-Seq 

reads in ~2 hours for ~$66 
 
 

(Langmead,  
Hansen, Leek, 2010) http://bowtie-bio.sf.net/myrna/ 

Genome Indexing 

Rapid Parallel Construction 
of Genome Index 

 
Construct the BWT of 

the human genome in 9 minutes 
 
 

(Menon, 
 Bhat, Schatz, 2011*) 

http://code.google.com/p/ 
genome-indexing/ 



 System Architecture 

•  Hadoop Distributed File System (HDFS) 
–  Data files partitioned into large chunks (64MB),  replicated on multiple nodes 
–  Computation moves to the data, rack-aware scheduling 

•  Hadoop MapReduce system won the 2009 GreySort Challenge 
–  Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks 
–  Provides many disks in addition to many cores 

 

Slave 5 

Slave 4 

Slave 3 

Slave 2 

Slave 1 

Master Desktop 



Hadoop on AWS 

AWS 

EC2 - 5 

EC2 - 4 

EC2 - 3 

EC2 - 2 

EC2 - 1 

EC2 -  
Master 

Desktop 
S3 

 If you don’t have 1000s of machines, rent them from Amazon 
•  After machines spool up, ssh to master as if it was a local machine. 
•  Use S3 for persistent data storage, with very fast interconnect to EC2. 



Parallel Algorithm Spectrum 
Embarrassingly Parallel 

Map-only 
Each item is Independent 

Loosely Coupled 

MapReduce 
Independent-Sync-Independent 

Tightly Coupled 

Iterative MapReduce 
Constant Sync 



1. Embarrassingly Parallel 
•  Batch computing 

–  Each item is independent 
–  Split input into many chunks 
–  Process each chunk separately on a 

different computer 

•  Challenges 
–  Distributing work, load balancing, 

monitoring & restart 

•  Technologies  
–  Condor, Sun Grid Engine 
–  Amazon Simple Queue 



Elementary School Dance 



2. Loosely Coupled 
•  Divide and conquer 

–  Independently process many items 
–  Group partial results  
–  Scan partial results into final answer 

•  Challenges 
–  Batch computing challenges  
–  + Shuffling of huge datasets 

•  Technologies 
–  Hadoop, Elastic MapReduce, Dryad 
–  Parallel Databases 



Junior High Dance 



Short Read Mapping 

•  Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read 
–  Find where the read most likely originated 
–  Fundamental computation for many assays 

•  Genotyping    RNA-Seq    Methyl-Seq 
•  Structural Variations   Chip-Seq    Hi-C-Seq 

•  Desperate need for scalable solutions 
–  Single human requires >1,000 CPU hours / genome 

!CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC! 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC! 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

!CC 
!CC 
!CCA 
!CCA 
!CCAT 

ATAC! 
C! 
C! 

!CCAT 
!CCATAG TATGCGCCC 

GGTATAC! 
CGGTATAC 

Identify variants 

Reference 

Subject 



Crossbow 

•  Align billions of reads and find SNPs 
–  Reuse software components: Hadoop Streaming 

9:(;<<'A=C*D'-A>3AE)0*FA)B*>/*G<0)A33'A="

•  Map: Bowtie (Langmead et al., 2009) 
–  Find best alignment for each read 
–  Emit (chromosome region, alignment) 

•  Reduce: SOAPsnp (Li et al., 2009) 
–  Scan alignments for divergent columns 
–  Accounts for sequencing error, known SNPs 

•  Shuffle: Hadoop 
–  Group and sort alignments by region 

H
"

H
"



Performance in Amazon EC2 

Asian Individual Genome 

Data Loading 3.3 B reads 106.5 GB $10.65 

Data Transfer 1h :15m 40 cores $3.40 

Setup 0h : 15m 320 cores $13.94 

Alignment 1h : 30m 320 cores $41.82 

Variant Calling 1h : 00m 320 cores $27.88 

End-to-end 4h : 00m $97.69 

Discovered 3.7M SNPs in one human genome for ~$100 in an afternoon. 
Accuracy validated at >99% 

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134" 
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Cloud Cluster 

Cloud 
Storage 
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Internet 

Cloud 
Storage 

Internet 

Map-Shuffle-Scan for Genomics 

Cloud Computing and the DNA Data Race. 
Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693 



Jnomics Structural Variations 

Circos plot of high confidence 
SVs specific to esophageal 
cancer sample 
•  Red: SVs specific to tumor 
•  Green: SVs in both diseased 

and tumor samples 

Detailed analysis of disrupted 
genes and fusion genes in 
progress 
•  Preliminary analysis shows 

many promising hits to 
known cancer genes 



3. Tightly Coupled 
•  Computation that cannot be partitioned 

–  Graph Analysis 
–  Molecular Dynamics 
–  Population simulations 

•  Challenges 
–  Loosely coupled challenges  
–  + Parallel algorithms design 

 
•  Technologies 

–  MPI 
–  MapReduce, Dryad, Pregel 



High School Dance 



Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph 
–  Human genome: >3B nodes, >10B edges 

•  The new short read assemblers require tremendous computation 
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



Warmup Exercise 
Who here was born closest to Oct 3? 

– You can only compare to 1 other person at a time 

Find winner among 16 teams in just 4 rounds 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H " T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Initial Graph: 42 nodes 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
   

  
 
  

 
  

 
  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H " T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 1: 26 nodes (38% savings) 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H " T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 15 nodes (64% savings) 

 
  

 
  

 
   
  

 
 

 
 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H " T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 8 nodes (81% savings) 

  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H " T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 3: 6 nodes (86% savings) 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H " T  links 

 Performance 
–  Compress all chains in log(S) rounds 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 4: 5 nodes (88% savings) 



Contrail 

De novo bacterial assembly 
•  Genome: E. coli K12 MG1655, 4.6Mbp 
•  Input: 20.8M 36bp reads, 200bp insert (~150x coverage) 
•  Preprocessor: Quake Error Correction 

http://contrail-bio.sourceforge.net 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

Cloud Surfing Error Correction Compressed Initial 

N 
Max 
N50 

5.1 M 
27 bp 
27 bp 

245,131 
1,079 bp 

156 bp 

2,769 
70,725 bp 
15,023 bp 

1,909 
90,088 bp 
20,062 bp 

300 
149,006 bp 
54,807 bp 

Resolve Repeats 



Contrail 

De novo Assembly of the Human Genome 
•  Genome: African male NA18507 (SRA000271, Bentley et al., 2008) 
•  Input: 3.5B 36bp reads, 210bp insert (~40x coverage) 

Compressed Initial 

N 
Max 
N50 

>7 B 
27 bp 
27 bp 

>1 B 
303 bp 

< 100 bp 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

http://contrail-bio.sourceforge.net 

Cloud Surfing Error Correction 

4.2 M 
20,594 bp 

995 bp 

4.1 M 
20,594 bp 
1,050 bp 

3.3 M 
20,594 bp 
1,427 bp* 

Resolve Repeats 



De novo mutations and de Bruijn Graphs 

 Searching for de novo mutations in 
the families of 3000 autistic children. 
–  Assemble together reads from mom, 

dad, affected & unaffected children 
–  Look for sequence paths unique to 

affected child 

Unique 
to affected 

Shared  
by all 

!"#$!%&''
SDTQ 



•  We are entering the digital age of biology 
–  Next generation sequencing, microarrays, mass 

spectrometry, microscopy, ecology, etc 
–  Parallel computing may be our only hope for 

keeping up with the pace of advance 

•  Modern biology requires (is) quantitative 
biology 

–  Computational, mathematical, and 
statistical techniques applied to analyze, 
integrate, and interpret biological sensor 
data 

•  Don’t let the data tsunami crash on you  
–  Study, practice, collaborate with quantitative 

techniques 

Summary 



Since opening in 1999, the WSBS has become a 
leading PhD program in the biological sciences, 
one whose fresh approach is quickly being 
emulated by other programs across the country. 

•  An innovative Ph.D. program designed for 
exceptional students 
–  Approximately four years from matriculation to 

Ph.D. degree award 
–  A !rst year with course work and laboratory 

rotations in separate phases 
–  Emphasis on the principles of scienti!c reasoning 

and logic 

•  Learn more: http://www.cshl.edu/gradschool 
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