
Computational Analysis Primer
Michael Schatz & Justin Kinney

Nov 8, 2011
QB Lecture 2

Outline

Part 1: Overview & Fundamentals
•  Why Computers?
•  Overview of Computation Systems
•  Unix and Scripting Primer

Part 2: Example Analysis

Scientific Method

1. Define
Question

2. Gather
Information

3. Form
Hypothesis

4. Experiment
& Collect

Data

5. Analyze &
Interpret

Data

6. Publish
conclusions /
refine idea

What is analysis?
•  Experimental design

•  Frame the question so that it can be
quantitatively answered

•  Assay design
•  Statistical, mathematical, computational

methods to improve the sensors
•  Drawing conclusions

•  Identify trends, patterns, correlations, and
causal links

How do we analyze?
•  Paradigms of science:

1.  Make observations
2.  Formulate mathematical models
3.  Simulate processes
4.  Data-intensive discovery

How do we draw conclusions?

•  Comparison & Triangulation: How does X compare to Y?

•  Modeling & Predictions: How will X respond to Y?

X Y

Exomes of kids with autism Exomes of kids that do not

Genomes of Europeans Genomes of non-Europeans, mammals, …

Gene expression in mutants Gene expression in wild type

Firing patterns of mutant fly neurons Firing patterns of wild type

X Y

Mutant tomatoes Increased temperatures

Human Microbiome Probiotic treatments

Gene expression in mice Knockout of transcription factor

Firing rate in flies Decreased sodium levels

How do we DRAW conclusions?

-902.473!
242.817!

-872.453!
73.9297!
236.169!
46.7525!
975.014!
716.563!

-533.971!
-120.282!

725.12!
-736.76!
176.156!
189.224!
1847.46!

-159.099!
-56.4754!
-973.626!

1181.9!
-315.455!
-1480.43!
215.293!

-747.505!
682.577!

…!

Histogram Scatterplot Heatmap

Data and data transformations are ubiquitous in science
Data are too numerous and transformations are too complex to do by hand
==> Mendel: 100k observations, 10 years
==> HiSeq 2000: 600B observations, 10 days
==> Make friends with your computational tools

What is a computer?
[hardware]

Processor
Arithmetic, logic

cores, clock speed

Display
Human Interface

Network
Computer Interface

Home: 10Mb/s, CSHL: 1Gb/s

RAM
Working Storage – 8 GB
(small, fast, expensive)

Hard Drive
Permanent Storage – 1TB

(big, slow, cheap)

What is a computer?
[software]

Operating System
Mission Control

Windows, Mac, Unix, iOS

Office Applications
Presentations, Documents
Simple statistics and plots Files / Data

Papers, sequences,
measurements

Scientific Applications
Specialized Analysis

Commercial

Code / Scripts
Research Applications

Academic

How does (scientific) software operate?

•  The software we need to run is very specialized, there is no ‘align genomes’
button in Excel
•  Data files are huge, so probably wouldn’t want one anyways

•  It takes a lot of work (and time/money) to create a graphical interface to
software, so most scientific software uses a ‘command line’ interface
•  Important to become comfortable using command line tools

•  Scientific analyses tend to use workflows consisting of several applications
where the output of one phase becomes the input to the next
•  Develop a workflow for dataset X, apply again to dataset Y

Input:

Raw data,
Parameters

Program
A

Output 1:
Intermediate

Result

Program
B

Output 2:
Final Result

Where is the command line?

•  Your Mac has a very powerful command line interface hidden just beneath the
graphical environment
•  This command line interface is (basically) the same as that used by our

scientific cluster BlueHelix
•  Big data files are stored on our central storage system BlueArc

•  This environment has a universe of programs you can use to manipulate files
and data in novel ways
•  Learning to use this environment is a lot like learning a new language
•  http://korflab.ucdavis.edu/Unix_and_Perl/index.html

Hola, como estas?
Command Output

man Look up something in the manual (also try Google)

ls List the files in the current directory

cd Change to a different directory

pwd Print the working directory

mv, cp, rm Move, copy, remove files

mkdir, rmdir Make or remove directories

cat, less, head, tail, cat Display (parts) of a text file

echo Print a string

sort, uniq Sort a file, get the unique lines

find, grep Find files named X, or containing X

chmod Change permissions on a file

wc Count lines in a file

jot / seq Output numbers from 1 to X (on Linux use seq)

| (pipe), > (redirect) Send output to a different program, different file

File Hierarchy
Files are stored in nested directories (folders) that form a tree
•  The top of the tree is called the root, and is spelled ‘/’

•  Your home directory (on mac) is at
 /Users/username

•  Command line tools are at
/bin/
/usr/bin/
/usr/local/bin/

•  A few special directories have shortcuts
~ = home directory
~bob= bob’s home directory
. = current working directory
.. = parent directory
- = last working directory

Working with the shell

Command Effect

Left/Right arrow Edit your current command

Up/Down arrow Scroll back and forth through your command history

Control-r Search backwards through your command history

history What commands did I just run?

Control-c Cancel the command

Control-u Clear the current line

Control-a, Control-e Jump to the beginning and end of the line

•  The shell is interactive and will attempt to complete your command as soon
as you press enter

$ pwd!
/Users/mschatz!
!
$ echo “Hello, World”!

Hello, World

•  Here are a few tips that will make your life easier

Files and permissions

•  Every file has an owner and a group, you can only read/write to a file if you
have permission to do so

$ pwd!
/Users/mschatz/Desktop/Unix_and_Perl_course/Data/Arabidopsis!
!
$ ls -l!
total 193976!
-rw-r--r--@ 1 mschatz staff 39322356 Jul 9 2009 At_genes.gff!
-rw-r--r--@ 1 mschatz staff 17836225 Oct 9 2008 At_proteins.fasta!
-rw-r--r--@ 1 mschatz staff 30817851 May 7 2008 chr1.fasta!
-rw-r--r--@ 1 mschatz staff 11330285 Jul 10 2009 intron_IME_data.fasta!

•  These files can be read by anyone, but only written by me

•  Change permissions with ‘chmod’
!
$ chmod g+w At_*!
$ man chmod!

•  Programs and scripts have the execute bit set

$ ls -l /bin/ls!
-r-xr-xr-x 1 root wheel 80688 Feb 11 2010 /bin/ls*!

Working with files and directories

•  Create directories and copies of the working files
$ mkdir myfiles!
$ cd myfiles/!
$ cp ../At_* .!
$ ls -l!
total 111648!
-rw-r--r--@ 1 mschatz staff 39322356 Nov 8 01:37 At_genes.gff!
-rw-r--r--@ 1 mschatz staff 17836225 Nov 8 01:37 At_proteins.fasta!

•  Rename files
$ mv At_genes.gff Arabidopsis_genes.gff!

•  See how long the files are
$ wc -l *!
 531497 Arabidopsis_genes.gff!
 214021 At_proteins.fasta!
 745518 total!

•  Clean up!
$ cd ..!
$ rm -rf myfiles/!

[WARNING!!! Double check rm]

Working with text files
•  Display the first few lines of a file
$ head -5 At_proteins.fasta !
>AT1G51370.2 | Symbols: | F-box family protein | chr1:19049283-19050416 FORWARD!
MVGGKKKTKICDKVSHEEDRISQLPEPLISEILFHLSTKDSVRTSALSTKWRYLWQSVPGLDLDPYASSNTNTIVSFVES!
FFDSHRDSWIRKLRLDLGYHHDKYDLMSWIDAATTRRIQHLDVHCFHDNKIPLSIYTCTTLVHLRLRWAVLTNPEFVSLP!
CLKIMHFENVSYPNETTLQKLISGSPVLEELILFSTMYPKGNVLQLRSDTLKRLDINEFIDVVIYAPLLQCLRAKMYSTK!
NFQIISSGFPAKLDIDFVNTGGRYQKKKVIEDILIDISRVRDLVISSNTWKEFFLYSKSRPLLQFRYISHLNARFYISDL!
!

•  Show the first few proteins names in the file
$ grep '>' At_proteins.fasta | head -5!
>AT1G51370.2 | Symbols: | F-box family protein | chr1:19049283-19050416 FORWARD!
>AT1G50920.1 | Symbols: | GTP-binding protein-related | chr1:18874223-18876238 FORWARD!
>AT1G36960.1 | Symbols: | similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G25600.1) | chr1:14017237-14017949 FORWARD!
>AT1G44020.1 | Symbols: | DC1 domain-containing protein | chr1:16719132-16721096 REVERSE!
>AT1G15970.1 | Symbols: | methyladenine glycosylase family protein | chr1:5486538-5488488 REVERSE!

•  Count how many proteins are present, excluding hypothetical proteins
$ grep '>' At_proteins.fasta | wc -l!
 32825!
$ grep '>' At_proteins.fasta | grep -v 'hypothetical' | wc -l!
 31267!

Working with text files 2
•  Create a file of just hypothetical proteins
$ grep '>' At_proteins.fasta | grep 'hypothetical' > hypotheticals!
$ wc -l hypotheticals !
 1558 hypotheticals!
!
!

•  Count hypotheticals per chromosome
$ cut -f4 -d'|' hypotheticals | head -3!
 chr1:11437249-11439801 FORWARD!
 chr1:5167349-5168146 REVERSE!
 chr1:16717096-16717944 FORWARD!
$ cut -f4 -d'|' hypotheticals | cut -f1 -d':' | head -3!
 chr1!
 chr1!
 chr1!
$ cut -f4 -d'|' hypotheticals | cut -f1 -d':' | sort | uniq -c!
 382 chr1!
 234 chr2!
 260 chr3!
 204 chr4!
 384 chr5!
 9 chrC!
 84 chrM!
 1 CAB12631.1 (PTHR11061! [What happened here?]

Scripting basics
•  A bash script is just a list of commands
$ cat simple_script.sh !
#!/bin/sh!
!
echo "Hello, World”!
echo "Shall we play a game?”!
!
$ chmod +x simple_script.sh!
$./simple_script.sh!
!

•  Things get interesting when we add variables and loops
$ cat loop_script.sh !
#!/bin/sh!
!
for name in "Mike" "Justin" "Mickey"!
do!
 echo "Hello, $name" >> people.txt!
 everyone="$name $everyone"!
done!
echo "Hello: $everyone" >> people.txt!
!
$ chmod +x loop_script.sh!
$./loop_script.sh!
$./loop_script.sh!
$./loop_script.sh!
!
!
!

[What does this do?]

[What does this do?]

Scripting basics 2
•  Conditionals and loops let us work over any number and type of file
$ cat conditional_script.sh !
#!/bin/sh!
!
for filename in `/bin/ls *`!
do!
 type=`echo $filename | cut -f2 -d'.'`!
 echo "Processing $filename, type is $type"!
 echo "=================="!
!
 if [[$type == "fasta"]]!
 then!
 protein_count=`grep -c '>' $filename`!
 hypo_count=`grep -c hypothetical $filename`!
 echo "$filename has $protein_count total proteins, $hypo_count are hypothetical"!
 elif [[$type == "gff"]]!
 then!
 echo "$filename stats"!
 cut -f3 $filename | sort | uniq -c!
 else!
 echo "Unknown file type"!
 fi!
!
 echo "=================="!
 echo!
done!
!
!

[What does this do?]

Scripting Challenges
•  Create 1000 files named mutantA.X.txt with X in [1,1000] that each contain ‘gene’

•  That each contain the numbers 1 to X

•  How do I rename 1000 files named mutantA.X.txt to mutantB.X.txt?

•  How can I create a directory with just the files that contain ‘special gene’
!
!

Break

Outline

Part 1: Overview & Fundamentals

Part 2: Example Analysis
•  Background on tracking DNA replication

with next-gen sequencing
•  Walk-through of analysis steps
•  Visualization of discovered replication sites

~300 separate loci direct DNA replication initiation in
Saccharomyces cerevisiae!

The Stillman lab is interested, in part,
in the signaling mechanisms

governing pre-RC firing
-> genome-wide replication tracking

ARS: autonomously replicating sequence

G1 ARS
pre-
RC

For
k

For
kS

while localized to nuclear chromatin in interphase cells, binds
to kinetochores in mitosis and also functions in a reticular net-
work to promote cytokinesis [75,76]. Interestingly, Orc2 is also
associated with centrosome throughout the cell division cycle
and depletion of Orc2 from cells causes significant centrosomes
defects [74]. Detailed studies have not been published for the
other subunits, but it is likely that they also will participate
in other parts of the chromosome replication and segregation
cycle.
Another gene product that participates in origin recognition

is the Cdc6 protein (Fig. 2). CDC6 was first identified as a mu-
tant in the set of cell division cycle mutants described by Hart-
well and colleagues and analysis of the phenotype of CDC6
mutants showed that it had an execution point in late G1 just
prior to entry into S phase [77]. The S. pombe Cdc6p homo-
logue (Cdc18) was isolated as a regulator of DNA replication
because overexpression of the protein caused cells to re-repli-
cate in a single cell division cycle [78]. A link to origins of
DNA replication was implied when overexpression of Cdc6p
was identified as a suppressor of an orc5-1 mutant [7]. Cdc6p
was shown to control the frequency of initiation of DNA rep-
lication and certain mutants in CDC6 cause an over-replica-
tion phenotype [79]. Interestingly, combining cyclin-CDK
phosphorylation site mutants in both ORC subunits and
Cdc6p with constitutive expression of MCM in the nucleus
of cells also caused over-replication of the genome in a single

cell cycle [80]. This is in part due to cyclin-CDK complex
(Clb2p-Cdc28p) binding directly to Cdc6p in a phosphoryla-
tion-dependent manner and inhibiting Cdc6p activity [81].
Cdc6p binds directly to ORC [82], potentially via an interac-

tion with Orc1p [83], and enhances the DNA binding specific-
ity of ORC to origin sequences [82]. Furthermore, Cdc6p
interaction with ORC promotes significant structural changes
in ORC, with three subunits becoming very sensitive to prote-
ase digestion in the presence of Cdc6p and ATP, but not ADP
[82]. It is possible that Cdc6p, a AAA+ protein, may bind to
the another AAA+ protein subunit in ORC (such as Orc1p)
and form a structure where adjacent AAA+ subunits interact
like the AAA+ subunits in the DNA polymerase clamp loader
protein complexes that exist in bacteria or eukaryotic cells
[34,35]. For example, the eukaryotic RFC clamp loader pro-
tein requires ATP for loading the DNA polymerase clamp
PCNA onto primer-template DNAs. The ATPase activity of
one subunit of RFC is activated by an arginine finger residue
in an adjacent AAA+ subunit of RFC [34,35]. The potential
similarity between Cdc6p and the clamp loaders has been dis-
cussed previously, since Cdc6p is required form loading the
MCM proteins onto chromatin in vivo and in vitro [6,84–
86]. In vitro, MCM loading requires ATP and both Cdc6p
and ORC bound to DNA. Although Cdc6p may be the func-
tional equivalent of the RFC loader at origins of DNA repli-
cation, it is more likely that the combined ORC-Cdc6p

Fig. 2. Formation of the pre-Replication Complex in eukaryotes involves multiple AAA+ proteins at the origins of DNA replication. ORC, Cdc6p
and Cdt1p cooperate to load the MCM proteins that most likely function as a DNA helicase like SV40 T Ag. MCM structure is modeled from
[38,100].

880 B. Stillman / FEBS Letters 579 (2005) 877–884

DNA sonication
Click-iT linking of EdU to biotin

Tracking replication with EdU pulldown + sequencing!

Release cells into S-phase
EdU incorporation during replication

Streptavidin bead
pull-down

DNA of cells arrested in G1 with α-factor

Barcoding samples for sequencing!

End repair + ligation + PCR

Illumina sequencing

sequencing
primer

pulled-down DNAadaptor + 5 bp barcode

36 bp read

~15 M reads for 14 barcoded samples
Thanks Yi-Jun!

What we will do!

•  Today

•  Map reads to the yeast genome

•  Compute “replication profiles”: # of reads covering each genomic position

•  View these data using the UCSC genome browser; compare to known ARSs

•  Tomorrow

•  Matlab tutorial

•  Load replication profiles into Matlab

•  Smooth and plot replication profiles

•  Homework: compare replication profiles for 3 different strains

Analysis Pipeline

•  No single application available that will let us analyze these data
•  Just 4 steps to go from raw observations to biological discovery

•  Each step requires selection, tuning, and debugging
•  Analogous to a wetlab protocol for running an experiment

•  The components of the pipeline can be used in many other assays
•  Reads => Comparative Genomics, Transcriptome Analysis, de novo

sequencing, Protein binding sites, Chromatin regulation…
•  Alignment => Forms the basis for almost every assay
•  SAMTools => Filtering, selection, interpretation of alignments

Input:

Raw reads .fq

Barcode
management

(fastx)

Align to
genome

(bwa)

Build
Pileup

(samtools)

Convert
to BED
(custom)

Analysis Pipeline

•  Get the files (curl dash Capital-O)

$ curl –O http://schatzlab.cshl.edu/data/challenges/replication_exercise.tgz

•  Unpack the files

$ tar xzvf replication_exercise.tgz!

•  Check out the files

$ cd replication_exercise/ !
$ ls -R!
$ less *.txt!
$ less reads/A1.fastq!

Input:

Raw reads .fq
Genome, etc

Barcode
management

(fastx)

Align to
genome

(bwa)

Build
Pileup

(samtools)

Convert
to BED
(custom)

[What is the secret phrase?]

Analysis Pipeline

•  Check out the analysis script

$ cat course_pipeline.sh

•  We have done already done the first steps to partition reads into batches

Quality filter reads!
fastq_quality_filter -q 10 -p 90 -i /data/kinney/data/illumina_sequencing/
11.01.24_sheu_edu/reads.fastq -o reads/reads_qual.fastq!
!
Split reads by batch!
cat reads/reads_qual.fastq | fastx_barcode_splitter.pl --bcfile /data/
kinney/data/illumina_sequencing/11.01.24_sheu_edu/barcodes.txt --prefix reads/
tmp1_ --suffix .fastq --mismatches 0 –bol!
!

•  You can embed comments into scripts with ‘#’

Input:

Raw reads .fq
Genome, etc

Barcode
management

(fastx)

Align to
genome

(bwa)

Build
Pileup

(samtools)

Convert
to BED
(custom)

Analysis Pipeline

•  Now that the reads are prepared, next step is to align
Create bwa index for genome!
bwa index genome/genome.fasta!
!
Align reads using bwa!
bwa aln genome/genome.fasta reads/A1.fastq > mappings/A1.sai!
bwa samse genome/genome.fasta mappings/A1.sai reads/A1.fastq > mappings/A1.sam!

•  BWA (Li & Durbin, 2009) is one of the most popular tools for aligning short

reads to a reference genome. It is used in almost every sequencing assay that
start from short reads. It takes a few steps to run because it uses a special
index of the genome for making the alignments fast. We will talk about it in
detail at the end of the course

Input:

Raw reads .fq
Genome, etc

Barcode
management

(fastx)

Align to
genome

(bwa)

Build
Pileup

(samtools)

Convert
to BED
(custom)

Analysis Pipeline

•  Now that the reads are aligned, need to transform and sort them
Create pileup using samtools!
samtools view -bS mappings/A1.sam > mappings/A1.bam!
samtools sort mappings/A1.bam mappings/A1.sorted!
samtools index mappings/A1.sorted.bam!
samtools pileup -c -f genome/genome.fasta mappings/A1.sorted.bam > pileups/A1.pileup

•  The pileup file encodes how many reads align to each position in the genome
$ less pileups/A1.pileup!

•  Run a quick command to find positions with deep coverage!
$ awk '{if ($8>50){print}}' A1.pileup | less!

Input:

Raw reads .fq
Genome, etc

Barcode
management

(fastx)

Align to
genome

(bwa)

Build
Pileup

(samtools)

Convert
to BED
(custom)

[AWK is a really powerful, if arcane filter]

Analysis Pipeline

•  Now run a custom script to summarize the depth information
$./pileup2bedfile.py pileups/A1.pileup 31!
$ less pileups/A1.pileup.bed!

•  This file can then be loaded into the UCSC Genome Brower for inspection,

and relate it to known annotations

 See http://genome.ucsc.edu/

Input:

Raw reads .fq
Genome, etc

Barcode
management

(fastx)

Align to
genome

(bwa)

Build
Pileup

(samtools)

Convert
to BED
(custom)

Homework
•  Replication Analysis

•  Modify course_pipeline.sh to analyze B1, C1, D1
•  Load the bed files into the UCSC genome browser
•  See if you can spot and interesting variations between the data sets

•  Read the Matlab Getting Started Guide. This is available as a pdf here:
 http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

•  Focus on these sections

•  Introduction
•  Matrices and Arrays
•  Graphics, starting with Basic Plotting Functions
•  Programming
•  Data Analysis
•  Desktop Tools and Development Environment

!
!
!

Resources
•  Much like learning a new spoken language, computer languages have their own

syntax and grammar that will be unfamiliar at first, but get easier and easier
over time
•  There are many ways to accomplish the same task
•  You can quickly become a data magician

•  The way to learn a new computer language is to practice speaking it

•  The ~30 commands you have seen today can be combined together into
an infinite number of combinations

•  Lots of good resources available online:
•  http://www.molvis.indiana.edu/app_guide/unix_commands.html
•  http://tldp.org/LDP/abs/html/index.html
•  http://stackoverflow.com/
•  http://google.com

•  WARNING: Computers can be very unforgiving

•  ‘rm –rf /’ <= delete every file on your computer
•  ‘cp junk.doc thesis.doc’ <= overwrite your thesis with junk.doc
•  ‘cat results.partial > results.all’ <= oops, should have appended with >>

!
!
!

