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Exact Matching Review

Where is GATTACA in the human genome!?
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In-exact alignhment

* Where is GATTACA approximately in the human genome!

— And how do we efficiently find them?

* |t depends...

— Define "approximately’
* Hamming Distance, Edit distance, or Sequence Similarity
* Ungapped vs Gapped vs Affine Gaps

* Global vs Local
* All positions or the single 'best"?

— Efficiency depends on the data characteristics & goals
* Smith-Waterman: Exhaustive search for optimal alignments

* BLAST: Hash based homology searches
* MUMmer: Suffix Tree based whole genome alignment

* Bowtie: BWT alignment for short read mapping



Searching for GATTACA
* Where is GATTACA approximately in the human genome!

Match Score: | /7



Searching for GATTACA
* Where is GATTACA approximately in the human genome!

Match Score: 7/7



Searching for GATTACA
* Where is GATTACA approximately in the human genome!

Match Score: | /7



Searching for GATTACA
* Where is GATTACA approximately in the human genome!

1120345 6 7 8 9 1011201314 15] .

T G A. T T A C A G A T T A C C

G A T T A C A

Match Score: 6/7 <-We may be very interested in these imperfect matches
Especially if there are no perfect end-to-end matches



Hamming Distance

| XXX

* Metric to compare sequences (DNA,AA,ASCII, binary, etc...)
— Non-negative, identity, symmetry, triangle equality

— How many characters are different between the 2 strings!?
* Minimum number of substitutions required to change transform A into B

* Traditionally defined for end-to-end comparisons
— Here end-to-end (global) for query, partial (local) for reference

[When is Hamming Distance appropriate?]

* Find all occurrences of GATTACA with Hamming Distance < |

[What is the running time of a brute force approach?]



Seed-and-Extend Alignment

10bp read
Theorem: An alignment of a sequence of length m y 1 difference
with at most k differences must contain
an exact match at least s=m/(k+1) bp long 1 #
(Baeza-Yates and Perleberg, 1996)
2 —%
Proof: Pigeon hole principle .
K=2 pigeons (differences) can't fill all K+ pigeon holes (seeds) 3
Rod g %% 4 8
* 3 *—% 5 8
» % N8 g %
— Search Algorithm 7 *
— Use an index to rapidly find short exact 3 -—
alignments to seed longer in-exact alignments
— RMAP CloudBurst, ... 9
— Specificity of the seed depends on length 10

=> See Lecture |
— Length s seeds can also seed some lower quality alignments
— Won't have perfect sensitivity, but avoids very short seeds
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Hamming Distance Limitations

* Hamming distance measures the number of
substitutions (SNPs)

— Appropriate if that’s all we expect/want to find

* lllumina sequencing error model
* Other highly constrained sequences

* What about insertions and deletions?
— At best the indel will only slightly lower the score
— At worst highly similar sequences will fail to align



Example Alighments

ACGTCTAG

| |*****/\

ACTCTAG-

* Hamming distance=5

— 2 matches, 5 mismatches, | not aligned

Nathan Edwards



Example Alighments

ACGTCTAG

cEE

—ACTCTAG

* Hamming distance = 2

— 5 matches, 2 mismatches, | not aligned

Nathan Edwards



Example Alighments

ACGTCTAG

RN
AC-TCTAG

* Edit Distance = |
— 7 matches, 0 mismatches, | not aligned

Nathan Edwards



Global Alignment problem

* Given two sequences, S (length n) and T (length m), find the
best end-to-end alignment of S and T.

[When is this appropriate!? ]

* Edit distance (Levenshtein distance)

— Minimum number of substitutions, insertions and deletions between 2
sequences.

— Hamming distance is an upper bound on edit distance

* Definition
— Let D(i,j) be the edit distance of the alignment of S[I...i] and T[I...j].
— Edit distance of S and T (end-to-end) is D(n,m).



Edit Distance Example
AGCACACA > ACACACTA in 4 steps

AGCACACA -2 (l.change G to Q)
ACCACACA =2 (2.delete Q)
ACACACA =2 (3.changeAtoT)
ACACACT =2 (4.insertA afterT)
ACACACTA -2 done

[Is this the best we can do!?]



Edit Distance Example
AGCACACA > ACACACTA in 3 steps

AGCACACA -2 (l.change G to Q)
ACCACACA =2 (2.delete Q)
ACACACA - (3.insertT after 374 C)
ACACACTA -> done

[Is this the best we can do!?]



Edit Distance Observations

D (AGCACACA, ACACACTA) = ?

D(0,0)=0 .
<__D(AG,ACA)=2

< D(A,ACAC)=3

D(0,ACAC)=4__—
" D(0,ACACA) =5

Base cases are easy, seems to be some relation between scores of neighboring cells



Reverse Engineering Edit Distance

D (AGCACACA, ACACACTA) = ?

Imagine we already have the optimal alighment of the strings, the last column can
only be | of 3 options:

..M . ..D
<A = <A
<A <A e

The optimal alignment of last two columns is then | of 9 possibilities

..M ..IM ..DM .MI ..II ..DI ..MD ..ID ..DD
..CA ..-A ..CA wA- == LA- .CA ..-A ..CA
.TA .. TA ..-A ..TA ..TA ..-A WA= LA- -

The optimal alignment of the last three columns is then | of 27 possibilities...

M. I.. . D...
wXee = e X...
B Y.. . -

Eventually spell out every possible sequence of {I,M,D}



Reverse Engineering Edit Distance

D (AGCACACA, ACACACTA) = ?

Imagine we already have the optimal alighment of the strings, the last column can

only be | of 3 options:

H

|

D=3

o
il
N
o
il
N

If these are the edit distances of the three possible optimal alignments up to the last
column, the overall optimal alignment must use option M and the final distance is 2+0=2

This suggests an overall structure to the computation:

The edit distance of the overall alignment is computed from the edit distance of three
possible alignments with the last column removed.... these values are themselves
computed by removing the second to last column, and so forth down to the trivial

base case of an empty string.



Recursive solution

* Computation of D is a recursive process.

— At each step, we only allow matches, substitutions, and indels
— D(ij) interms of D(i" ,j ) fori’ <iandj <i].

D(AGCACACA, ACACACTA) = min{D(AGCACACA, ACACACT) + I,
D(AGCACAC, ACACACTA) + |,
D(AGCACAC, ACACACT) +6(A, 2)}

/IN/ v\/ N/ l\/v\ /I I\ / \/[\,  ring tme



Dynamic Programming

* We could code this as a recursive function call...

...with an exponential number of function evaluations

* There are only (n+1)x(m+1) pairs i and |

— We are evaluating D(i,j) multiple times

* Compute D(i,j) bottom up.
— Start with smallest (i,j) = (I,1).

— Store the intermediate results in a table.
e Compute D(i,j) after D(i-1,j), D(i,j-1), and D(i-1,j-1)



Recurrence Relation for D

Find the edit distance (minimum number of operations to
convert one string into another) in O(mn) time

Base conditions:
— D(i,0) =i, for all i = 0,...,n
— D(0,j) = j, for all j = 0,...,m

Fori>0,j>0:
D(i,j) = min {
D(i-1,j) + I, /[ align O chars from S, | from T
D(i,j-1) + 1, /[ align | chars from S,0 from T
D(i-1,j-1) + &(S(i),T(j)) // align 1+1 chars
}

[Why do we want the min?]



Dynamic Programming Matrix

>O>|IO> OG>
®|N|lo|un|la|lw|v|[—]|o

[What does the initialization mean?]



Dynamic Programming Matrix

>O>|IO> OG>
®|N|lo|un|la|lw|v|[—]|o

D[A,A] = min{D[A,]+1, D[,A]+1, D[,]+0(A,A)}



Dynamic Programming Matrix

A
I
0

"
6

.

> 0> |IO0|>» 0|0 >

O I NI~ Un|hAh[WIN|—|O

D[A,AC] = min{D[A,A]+1, D[,AC]+1, D[,A]+5(A,C)}




Dynamic Programming Matrix

C

A

2

3

.

IE_fZ

> 0> |IO0|>» 0|0 >

O I NI~ Un|hAh[WIN|—|O

D[A,ACA] = min{D[A,AC]+1, D[, ACA]+1, D[, AC]+5(A,A)}




Dynamic Programming Matrix

C|A|C|A|C |T|A
0 2 | 3 | 4| > |6 | 78
A | | 2 | 3 | 4|5 ]| 6| 7
G | 2
C | 3
A | 4
C | 5
A | 6
cC | 7
A | 8

D[A,ACACACTA] = 7

*******|

ACACACTA

[What about the other A?]



Dynamic Programming Matrix

Alc|lA|lc|Alc|T|A
o | 1| 2| 3| 4|5 |6 | 7|8
Al 1] o 1| 23] 4]|5]|6]7
G| 2|1 |1 | 2|3]|4]|5]|6]|7
c | 3
A | 4
c | s
A | 6
c | 7
A | 8

D[AG,ACACACTA] = 7
———AG-—-

****|***

ACACACTA



Dynamic Programming Matrix

A|C| A|lC|A|C|T|A

o | 1 | 2| 3| 4|5]| 6| 7] 8

A| 1L o | 1 | 2|3 ]| 4/|5]|6]7
G| 2 | | I 2 | 3| 4| 5| 6 | 7
cC |3 | 2| L | 2|21]3 ]| 4| 5]/]¢
A| 4| 3| 2|1 ] 2|23 ]| 4]F5
cC| 5| 4|3 |21 |2]2]3]/]4
Al 6|5 ]| 4|3 ]2 |1]2]3]:3
c| 7|6 |5 |4 |3 ]|2|1]2]:3
A| 8 | 7|6 |5 ]| 4|3 ]|2]|2]2

D[AGCACACA,ACACACTA] =2
AGCACAC-A
%] ]]*] [Can we do it any better?]
A-CACACTA



Global Alignment Schematic

(0,0)

(n,m)

A high quality alignment will stay close to the diagonal
If we are only interested in high quality alignments, we can skip filling in
cells that can't possibly lead to a high quality alignment
Find the global alignment with at most edit distance d: O(2dn)

Nathan Edwards



Searching for GATTACA

T;
(0,0) < > T

Similarity P& T" 20 (n,m)

Don’ t “charge” for optimal alighment starting in cells (0,j)
Base conds: D(0,j) = 0,D(i,0) = Z, ., s(S(k), -")

Don’ t “charge” for ending alignment at end of P (but not necc.T)
Find cell (n,j) with edit distance < &

Nathan Edwards



Sequence Similarity

* Similarity score generalizes edit distance

— Certain mutations are much more likely than others

* Hydrophilic -> Hydrophillic much more likely than Hydrophillic -> Hydrophobic
— BLOSSUMé62

* Empirically measure substitution rates among proteins that are 62% identical

* Positive score: more likely than chance, Negative score: less likely

Ala 4
Arg -1 5
Asn -2 ) 6
Asp -2 6
Cys o -3 -3 -3
Gln -1 1 C 0
Glu -1 1 C 2
Gly g 1
His
lle
Leu
Lys
Met
Phe
Pro
Ser
Thr
Trp
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Edit Distance and Global Similarity

D(i,j) = min {
D(-1,j) + 1,
D(i,j-1) + 1,

} D(i-1,j-1) + 6(S(), T(}))

s = 4x4 or 20x20 scoring matrix

S(i,j) = max {
S(i-1,j) + 1,
S(i,j-1) + 1,

} S(i-Lj-1) + s(3(1), T(j))

[Why max?]



Local vs. Global Alighment

* The Global Alignment Problem tries to find
the best path between vertices (0,0) and (n,m)
in the edit graph.

* The Local Alignment Problem tries to find the
best path among paths between arbitrary
vertices (ij) and (i’,j) in the edit graph.

[How many (i,j) x (i",j') pairs are there?]



Local vs. Global Alignment (cont’ d)

+ Global Alignment

——T—CC-C-AGT—TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

N N e L O e 0 O N
AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

 Local Alignment—Dbetter alignment to find
conserved segment

tccCAGTTATGTCAGgggacacgagcatgcagagac
NN,

aattgccgccgtcgttttcagCAGTTATGTCAGatc



Local Alighment: Example

__________________________ __— Compute a “mini”
________________ : — Global Alignment to
Local aill get Local

Global alignment




The Local Alignment Recurrence

* The largest value of s;; over the whole edit
graph is the score of the best local alignment.

 The recurrence:

S..

I,j

— max

0 -

Si1j T o (v, W/)
Sy T (v, -)
ST o(- W,)

Power of ZERO: there is
only this change from the
original recurrence of a
Global Alignment - since
there is only one “free ride
edge entering into every
vertex

144



Local Alignment Schematic

(0,0)

<« Max score

(n,m)

Nathan Edwards



Affine Gap Penalties

* |n nature, a series of k indels often come as a
single event rather than a series of k single
nucleotide events:

ATA__GC ATAG_GC

ATATTGC AT_GTGC
\ /
[ Normal scoring would [

This is more give the same score  This is less
likely. for both alignments likely.



Accounting for Gaps

* Gaps- contiguous sequence of spaces in one of the rows

* Score for a gap of length x is: -(p + ox)
where p >0 is the gap opening penalty
p will be large relative to gap extension penalty o

— Gap of length I:-(p + 0) = -6
— Gap of length 2:-(p + 02) = -7
— Gap of length 3:-(p + 03) = -8

* Smith-Waterman-Gotoh incorporates affine gap penalties
without increasing the running time O(mn)



Break



Basic Local Alignment Search Tool

* Rapidly compare a sequence Q to a database to find all
sequences in the database with an score above some

cutoff S.
— Which protein is most similar to a newly sequenced one!

— Where does this sequence of DNA originate!

* Speed achieved by using a procedure that typically finds
“most” matches with scores > S.

— Tradeoff between sensitivity and specificity/speed
* Sensitivity — ability to find all related sequences

* Specificity — ability to reject unrelated sequences

(Altschul et al. 1990)



Seed and Extend

FAKDFLAGGVAAATSKTAVAPIERVKLLLOVOQHASKQITADKQYKGIIDCVVRIPKEQGV
FF''D +GG AAAHSKTAVAPIERVKLLLOVQ| ASK I DK+YKGI+D ++R+PKEQGV
FLIDLASGGTAAAVSKTAVAPIERVKLLLOVODASKATIAVDKRYKGIMDVLIRVPKEQGV

Homologous sequence are likely to contain a short high
scoring word pair, a seed.
— Unlike Baeza-Yates, BLAST *doesn't* make explicit guarantees

BLAST then tries to extend high scoring word pairs to
compute maximal high scoring segment pairs (HSPs).

— Heuristic algorithm but evaluates the result statistically.



BLAST - Algorithm -

* Step |:Preprocess Query
Compile the short-high scoring word list from query.

The length of query word, w, is 3 for protein scoring
Threshold T is |3

Query : LAALLNKCKTPQGHRLVNQWIKQPLMDKNRIEE
Query word (W=3f~ ¢PQG 18

DEG 15

DRG 14

PKG 14

PNG 12
PDG 132 nelghborhood score
pge 13 Threshold (T=13)

PMG 13 ¥4
‘PSG 13
PQA 12
PON 12

neighborhood words —




BLAST - Algorithm -

* Step 2: Construct Query Word Hash Table

Query: LAALLNKCKTPQGQRLVYNQWIKQPLMD

; Hash Table
0ys \
position | | 2 3 4 word | position
LAA AAL ALL LLN AAR|1,2,15,16..
£ | LAG AAA AAL LVN AAL|2,3,10,11..
g Z | AAA AGL ALA LLD ™ ‘ ARA|2,15, 43..
3 2 |LGA GAL CLL LLE LAA[1,5,7, ..
@ 2 | IAA RRV VVN GLL| 3,8, 24, ..

AAT VVN(4,21,25,..
AGL .




BLAST - Algorithm -

e Step 3:Scanning DB

|dentify all exact matches with DB sequences

Query Word Neighborhood Sequences in DB
— — Word list Sequence 1
—_ -
— Sequence 2
N A oy
Y e

Step 1 Step 2 -



BLAST - Algorithm -

* Step 4 (Search optimal alignment)

For each hit-word, extend ungapped alignments in both directions.
Let S be a score of hit-word

* Step 5 (Evaluate the alignment statistically)

Stop extension when E-value (depending on score S) become less than
threshold. The extended match is called High Scoring Segment Pair.

E-value = the number of HSPs having score S (or higher) expected to occur by chance.
—> Smaller E-value, more significant in statistics
Bigger E-value , by chance

E[# occurrences of a string of length m in reference of length L] ~ L/4™



BLAST E-values

The expected number of HSPs with the score at least S is :
K, A are constant depending on model

n,m are the length of query and sequence

The probability of finding at least one such HSP is:
P=1-¢eF

—> If a word is hit by chance (E-value is bigger),

P become smaller.

The distribution of Smith-Waterman local alighment scores between two
random sequences follows the Gumbel extreme value distribution



Parameters

* Larger values of w increases the number of
neighborhood words, but decreases the number of
chance matches in the database.

— Increasing w decreases sensitivity.

* Larger values of T decrease the overall execution
time, but increase the chance of missing a MSP having
score 2 S.

— Increases T decreases the sensitivity

* Larger values of S increase the specificity. The value
of S is affected by changes in the expectation value
parameter.



Very Similar Sequences

Query: HBA HUMAN Hemoglobin alpha subunit
Sbjct: HBB_HUMAN Hemoglobin beta subunit

114 bits (285), Expect = le-26

Score
Identities
Query 2
Sbjct 3
Query 56
Sbjct 61
Query 116
Sbjct 121

= 61/145 (42%), Positives = 86/145 (59%), Gaps = 8/145 (5%)

LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-—-—-——— DLSHGSAQV
IL+P +K+ VA WGKV + E G EAL R+ + +P T+ +F F D G+ +V
LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV

KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA
K HGKKV A ++ +AH+D++ + LS+LH KL VDP NF+LL + L+ LA H
KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK

EFTPAVHASLDKFLASVSTVLTSKY 140
EFTP V A+ K +A V+ L KY
EFTPPVQAAYQKVVAGVANALAHKY 145

55

60

115

120



Quite Similar Sequences

Query: HBA HUMAN Hemoglobin alpha subunit
Sbjct: MYG_HUMAN Myoglobin

Score = 51.2 bits (121), Expect = 1le-07,
Identities = 38/146 (26%), Positives = 58/146 (39%), Gaps = 6/146 (4%)

Query 2 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------ DLSHGSAQV 55
LS + v WGKV A +G E L R+F PT F F D S +
Sbjct 3 LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL 62

Query 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115
K HG V AL + + L+ HA K ++ + +S C++ L + P
Sbjct 63 KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG 122

Query 116 EFTPAVHASLDKFLASVSTVLTSKYR 141
+F +++K L + S Y+
Sbjct 123 DFGADAQGAMNKALELFRKDMASNYK 148



Not similar sequences

Query: HBA HUMAN Hemoglobin alpha subunit
Sbjct: SPAC869.02c [Schizosaccharomyces pombe]

Score = 33.1 bits (74), Expect = 0.24
Identities = 27/95 (28%), Positives = 50/95 (52%), Gaps = 10/95 (10%)

Query 30 ERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAH 89
++M ++P P+F+ +H + + +A AL N ++DD+ +LSA D
Sbjct 59 QKMLGNYPEV---LPYFNKAHQISL--SQPRILAFALLNYAKNIDDL-TSLSAFMDQIVV 112

Query 90 K---LRVDPVNFKLLSHCLLVTLAAHLPAEF-TPA 120
K L++ ++ ++ HCLL T+ LP++ TPA
Sbjct 113 KHVGLQIKAEHYPIVGHCLLSTMQELLPSDVATPA 147



Blast Versions

Program Database Query
BLASTN Nucleotide Nucleotide
BLASTP Protein Protein
: Nucleotide translated in
BLASTX Protein to protein
Nucleotide translated in :
TBLASTN to protein Protein
Nucleotide translated in | Nucleotide translated in
TBLASTX to protein to protein




NCBI Blast

an © 0 CCIETETETTT——D | T * Nucleotide Databases
My NCBI - nI’IA” Genbank

[Sign In] [Register]

oy oSt rome — — refseq: Reference

BLAST finds regions of similarity between biological sequences. more...

Align two sequences

‘ (=7 Designing or Testing PCR Primers? Try your search in Primer-BLAST. Go) form. o rga n i S m S

The Align two
BLAST Assembled Genomes sequences link on the
BLAST home page . A I I d
Choose a species genome to search, or list all genomic BLAST databases. now uses the Wgs . rea S
standard BLAST
0 Human O Oryza sativa 0 Gallus gallus ::Zm(;:s:’:bf::z;)
o Mouse o Bos taurus o Pan troglodytes 16:00:00 EST
O Rat O Danio rerio o0 Microbes
o Arabidopsis thaliana o Drosophila o Apis mellifera nw%[‘LLASI
melanogaster
Basic BLAST
Tip of the Day
Choose a BLAST program to run. ° .
How 0 do Bt rotein Databases
BLAST jobs.

Search a nucleotide database using a nucleotide query
Algorithms: blastn, megablast, discontiguous megablast BLAST makes it

easy to examine a
large group of

nr:All non-redundant
blastx ‘ Search protein database using a translated leotide query candidates. Sequences

[2) More tips...

Search protein database using a protein query
Algorithms: blastp, psi-blast, phi-blast

protein blast

tblastn ‘ Search translated nucleotide database using a protein query

tblastx ‘ Search translated nucleotide database using a translated nucleotide query - Refs e q : Refe re n C e
Specialized BLAST P roteins

Choose a type of specialized search (or database name in parentheses.)

o Make specific primers with Primer-BLAST I
o Search trace archives

o Find conserved domains in your sequence (cds)

o Find sequences with similar conserved domain architecture (cdart)

o Search sequences that have gene expression profiles (GEO)

o Search immunoglobulins (IgBLAST) ~
o Search for SNPs (snp) 4
o e £or acont inatinn £ \ 1




BLAST Exercise

>whoami

TTGATGCAGGTATCTGCGACTGAGACAATATGCA
ACAGTTGAATGAATCATAATGGAATGTGCACTCT
AACCAGCCAATTTGATGCTGGCTGCAGAGATGC
AAGATCAAGAGGTGACACCTGCTCTGAAGAAAG
CACAGTTGAACTGCTGGATCTGCAACTACAGCA
GGCACTCCAGGCACCAAGACAACATCTTTTACA
CCAGCAAACATGTGGATTGATATCTCCTAACAGC
AGTGATTAACAGAGACGACTGCAGGATTTGCTTC
CACAAACAAAAT



Whole Genome Alighment
with MUMmer

Slides Courtesy of Adam M. Phillippy
amp@umics.umd.edu




Goal of WGA

* For two genomes, A and B, find a mapping from
each position in A to its corresponding
position in B

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA



Not so fast...

* Genome A may have insertions, deletions,
translocations, inversions, duplications or SNPs
with respect toB (sometimes all of the above)

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGCTAGGCTATTAAA GAGGAG GGCTGAGCA



WGA visualization

* How can we visualize whole genome alighments!?

* With an alighment dot plot

— N x M matrix

* Leti = position in genome A

* Letj = position in genome B

* Fill cell (i,j) if A;shows similarity to B,

— A perfect alignment between A and B would completely fill
the positive diagonal
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MUMmer

* Maximal Unique Matcher (MUM)

— match

* exact match of a minimum length
— maximal

e cannot be extended in either direction without a mismatch
— unique

* occurs only once in both sequences (MUM)

* occurs only once in a single sequence (MAM)

* occurs one or more times in either sequence (MEM)



Fee Fi Fo Fum,
is it a MAM, MEM or MUM?

MUM : maximal unique match
MAM : maximal almost-unique match ————————————-

MEM : MmaxXimal eXact MALCR  eeeereeeesmmeessssmssesssseseessssssessssssssssssssessssssssssesssss




Seed and Extend

e How can we make MUMs BIGGER?
|. Find MUMs

¢ using a suffix tree

2. Cluster MUMs

¢ using size, gap and distance parameters

3. Extend clusters

¢ using modified Smith-Waterman algorithm



Seed and Extend

visualization

FIND all MUMs
CLUSTER consistent MUMSs
EXTEND alignments




WGA example with nucmer
* Yersina pestis CO92 vs. Yersina pestis KIM

— High nucleotide similarity, 99.86%

* Two strains of the same species

— Extensive genome shuffling
* Global alignment will not work

— Highly repetitive
* Many local alignments



WGA Alignment

nucmer -maxmatch C092.fasta KIM.fasta
-maxmatch Find maximal exact matches (MEMs)

delta-filter -m out.delta > out.filter.m

-m Many-to-many mapping

show-coords -r out.delta.m > out.coords
-r Sort alignments by reference position

dnadiff out.delta.m

Construct catalog of sequence variations

mummerplot --large --layout out.delta.m

--large Large plot
-—-layout Nice layout for multi-fasta files
--x11 Default, draw using x11 (--postscript, --png)

*requires gnuplot

See manual at http://
mummer.sourceforge.net/manual
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Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)



Short Read Applications
* Genotyping: ldentify Variations

GGTATAC...
AATTT CGGTATAC
AATT  CGGTATAC
WA GCGGTATA
TTGCGGTA C... |
TTTGCGGT C...
AATTTGC ATAC...
AATTTGC GTATAC... |

\[TTGCGGTATAC...

...CCATAG TATGCGCCC CGC
...CCAT CTATATGCG TCGG
...CCAT GGCTATATG CTATCGG
...CCA AGGCTATAT CCTATCGG
...CCA AGGCTATAT GCCCTATCG
...CC _AGGCTATAT GCCCTATCG
...CC_ TAGGCTATA _GCGCCCTA

...CCATAGGCTATATGCGCCCTATCGGC

s P> ~2>> |

* *.seq: Classify & measure significant peaks

GAAATTTGC
GGAAATTTG
CGGAAATTT
CGGAAATTT
TCGGAAATT
CTATCGGAAA
CCTATCGGA  TTTGCGGT
GCCCTATCG AAATTTGC
...CC GCCCTATCG AAATTTGC ATAC...

...CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC...




Short Read Alighment

* Given a reference and a set of reads, report at
least one “good” local alignment for each read
if one exists

— Approximate answer to: where in genome did read originate!?

e What is “good”? For now, we concentrate

on:
. . WTGA TA... LWITGATCATA...
— Fewer mismatches is better Eggi}\ better than EAGAﬁ

— Fa|||ng to align d Iow-_q_uality ~TGATATTA.. pottor than ~TGATGRTA-.
base is better than failing to ~ ©ATea? GTACAT

align a high-quality base



Indexing

* Genomes and reads are too large for direct
approaches like dynamic programming

— Genome indices can be big. For human:

v 6| % O——{BAN = 0 O NULL
A BANANAB A 51 A%
B E, 3 | ANAS$
$ NA .78 NAS ' | ANANAS O—>|ANA= 1 O [ANAS 3 OFP NULL
$ / \ NAS Z EQQANA$ Ol 2 2 O N
2 | NANAS
> 35 GBs > 12 GBs > 12 GBs

* Large indices necessitate painful compromises

|. Require big-memory machine

2. Use secondary storage

3. Build new index each run

4. Subindex and do multiple passes



Burrows-Wheeler Transform

* Reversible permutation of the characters in a text

Rank: 2 $acaacg
~ aacg$ac
agaacg$
alcaacg$ —> acg$aca—— gcS$Saaac
T caacgva BWT(T)
cg$acaa
g$acaac Rank: 2
Burroyvs-WheeIer
Matrix BWM(T) LF Property
implicitly encodes
* BWT(T) is the index for T Suffix Array

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equibment Corporation. Technical Report 124



Bowtie algorithm

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCTA



Bowtie algorithm

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCT@



Bowtie algorithm

Reference

BWT( Reference )

Query: _
AATGATACGGCGACCACCGAGATCTA



Bowtie algorithm

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCTA|



Bowtie algorithm

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATCTA




Bowtie algorithm

Reference

1 | | A
s e

BWT( Reference )

Query:

AATGATACGGCGACCACCGAGATCTH




Bowtie algorithm

Reference

BWT( Reference )

Query:

AATGRTACCGCGACCACCGAGATCTH




Bowtie algorithm

Reference

1 | | A
s e

BWT( Reference )

Query:

AATGTIACCGCGACCACCGAGATCTH




Bowtie algorithm

Reference

e
o

BWT( Reference )

Query:

A A /\ /\ /\ A A



BWT Short Read Mapping

|.  Trim off very low quality bases & adapters from ends of
sequences

2. Execute depth-first-search of the implicit suffix tree
represented by the BWT
|.  If we fail to reach the end, back-track and resume search

2.  BWT enables searching for good end-to-end matches entirely in RAM

l. |00s of times faster than competing approaches

3. Report the "best" n alignments
|. Best = fewest mismatches/edit distance, possibly weighted by QV
2.  Some reads will have millions of equally good mapping positions
3. If reads are paired, try to find mapping that satisfies both



Mapping Applications
* Mapping Algorithms
— Bowtie: (BWT) Fastest, No indels => moderate sensitivity
— BWA: (BWT) Fast, small indels => good sensitivity
— Novoalign: (Hash Table) Slow, RAM intensive, big indels => high sensitivity

* Variation Detection
— SNPs

* SAMTools: Bayesian model incorporating depth, quality values, also indels

* SOAPsnp: SAMTools + known SNPs, nucleotide specific errors, no indels

— Structural Variations

* Hydra:Very sensitive alighment, scan for discordant pairs
* Large indels: Open Research Problem to assembly their sequence

— Copy number changes

* RDexplorer: Scan alignments for statistically significant coverage pileup

— Microsatellite variations
e See Mitch!



Sequence Alignment Summary

* Distance metrics:
— Hamming: How many substitutions?
— Edit Distance: How many substitutions or indels?

— Sequence Similarity: How similar (under this model of similarity)?

* Techniques
— Seed-and-extend: Anchor the search for in-exact using exact only

— Dynamic Programming: Find a global optimal as a function of its parts
— BWVT Search: implicit DFS of SA/ST

* Sequence Alignment Algorithms: Pick the right tool for the job
— Smith-Waterman: DP Local sequence alignment
— BLAST: Homology Searching
— MUMmer:Whole genome alignment, short read mapping (with care)

— Bowtie/BWA/Novoalign: short read mapping



Supplemental



Q@O0 D &

Burrows-VWheeler Transform

* Recreating T from BWT(T)

— Start in the first row and apply LF repeatedly,
accumulating predecessors along the way

Original T

/—H

g cg acg aacg caacg acaacg
—_— $ g $ g $ g $ g $ g
a C a C a C | — a C

s\ a $ a $ a s fa $\a $

a a a a a | e—- a a a a

a C a C a C a C a C ===

a a/c—>a C a C a C a

C QgQ=—=——=2>pc’ ¢ c g c g c g c



BWT Exact Matching

* LFc(r, ¢) does the same thing as LF(r) but it
ignores r’ s actual final character and
“pretends’ it’s c:

Rank: 2
~

LFc(5,9) =8

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a

cg$ac
g$acaac

L

™~
Rank: 2

F



BWT Exact Matching

* Start with a range, (top, bot) encompassing all
rows and repeatedly apply LFc:

top = LFc(top, qc); bot = LFc(bot, qc)

gc = the next character to the left in the query

aac aa a
a c a c a c — c
/
a $ a $ — $a —a $
a a a a / a a a
c a — aa _—¢ aa c a
C a a / c a c a
g c .,—9 ca J c g c
— C

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.



BWT Exact Matching

cac ca

(9]

Q OO0 9 9 A
L &N OQ
/
< I L
D O Q
N\

l
QD A
0O 20 LAHOQ
e
|
Q O O/ 0 O A

* If range becomes empty (top = bot) the
query suffix (and therefore the query as a
whole) does not occur

0O DY YLMLOQ



