Alignment & Assembly
Michael Schatz

Bioinformatics Lecture 3
Quantitative Biology 201 |

Exact Matching Review

Where is GATTACA in the human genome!?

E=183,105
Brute Force Suffix Array Suffix Tree Hash Table
(3 GB) (>15 GB) (>51 GB) (>15 GB)
6 $ v —
BANANA A \A | O {BAN =001 NuLL
BAN 5| A% 1 /BANANA B
ANA 3 | ANAS$ B |E| L :
NAN 1 | ANANAS $ NA $ NAS || ||
ANA 0 | BANANAS | O (A= 101> a3 O ML
4] NAS $/ \NAS [O = 201>
2 | NANA$ B
Naive Vmatch, PacBio Aligner MUMmer, MUMmerGPU BI&'AI;/?XPMCAI‘&M%?J?SQA
Slow & Easy Binary Search Tree Searching Seed-and-extend

Sequence Alighment Review

DP Alignment

(=]

vrlw (N|—=|N|N[(N|(w (D>

AlwNp|(=|M|IvV|w|w|[x|O

W N|[= (N[N |w|a[x|n|D>

N[l=—[p N |fw(a(nnwn o |[O

NIV w(w (s | oo (N |-
N[(wlw|a|lun|lo|N|[w|o|D>

>PIO|>OI> OO >
(N |v|s|w|o|—
Nl |v|s|wN(i—|o|—=(>
o|ln|lalw | N|—|=[—|N|0O

D[AGCACACA,ACACACTA] = 2
AGCACAC-A

11T

A-CACACTA

Guaranteed optimal, but slow

BLAST

Very Similar Sequences

Query: HBA HUMAN Hemoglobin alpha subunit
Shict: HBB_HUMAN Hemoglobin beta subunit

Score = 114 bits (285), Expect = le-26
Identities = 61/145 (42%), Positives = 86/145 (59%), Gaps = 8/145 (5%)

Query 2 LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF ------! DLSHGSAQV 55
L+P +K+ VA WGKV + E G EAL R+ + +P T+ +F F D G+ +V
Shict 3 LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV 60

Query 56 KGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPA 115
K HGKKV A ++ +AH+D++ + LS+LH KL VDP NF+LL + L+ LA H
Sbhict 61 KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK 120

Query 116 EFTPAVHASLDKFLASVSTVLTSKY 140

EFTP V A+ K +A V+ L KY
Sbict 121 EFTPPVQAAYQKVVAGVANALAHKY 145

Seed-and-extend for "good" matches to a DB

MUMmer

Translocation Inversion Insertion

A

Whole Genome Alignment w/ Suffix Tree

Bowtie
* Reversible permutation of the characters in a text

$acaacg
aacg$ac

lalgaacgs$
[E]caacg$ —— acg$aca—— gc$aaac

Rank: 2
~

T caacgs BWT(T)
cg$acaa
g$acaac Rank: 2
Burrows-Wheeler
Matrix BWM(T) LF Property
. X implicitly encodes
* BWT(T) is the index for T Suffix Array

Fast searching for short read mapping

Whole Genome Alighment
with MUMmer

Slides Courtesy of Adam M. Phillippy
amp@umics.umd.edu

Goal of WGA

* For two genomes, A and B, find a mapping from
each position in A to its corresponding
position in B

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

Not so fast...

* Genome A may have insertions, deletions,
translocations, inversions, duplications or SNPs
with respect toB (sometimes all of the above)

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGCTAGGCTATTAAA GAGGAG GGCTGAGCA

WGA visualization

* How can we visualize whole genome alighments!?

* With an alighment dot plot

— N x M matrix

* Leti = position in genome A

* Letj = position in genome B

* Fill cell (i,j) if A;shows similarity to B,

— A perfect alignment between A and B would completely fill
the positive diagonal

000005

00000ST

000000T

00000S€ 000000

0000057 000000€

0000002

000005

1000000

1500000

2000000

2500000

4500000

MUMmer

* Maximal Unique Matcher (MUM)

— match

* exact match of a minimum length
— maximal

e cannot be extended in either direction without a mismatch
— unique

* occurs only once in both sequences (MUM)

* occurs only once in a single sequence (MAM)

* occurs one or more times in either sequence (MEM)

Fee Fi Fo Fum,
is it a MAM, MEM or MUM?

MUM : maximal unique match
MAM : maximal almost-unique match ————————————-

MEM : MmaxXimal eXact MALCR eeeereeeesmmeessssmssesssseseessssssessssssssssssssessssssssssesssss

Seed and Extend

e How can we make MUMs BIGGER?
|. Find MUMs

¢ using a suffix tree

2. Cluster MUMs

¢ using size, gap and distance parameters

3. Extend clusters

¢ using modified Smith-Waterman algorithm

Seed and Extend

visualization

FIND all MUMs
CLUSTER consistent MUMSs
EXTEND alignments

WGA example with nucmer
* Yersina pestis CO92 vs. Yersina pestis KIM

— High nucleotide similarity, 99.86%

* Two strains of the same species

— Extensive genome shuffling
* Global alignment will not work

— Highly repetitive
* Many local alignments

WGA Alignment

nucmer -maxmatch C092.fasta KIM.fasta
-maxmatch Find maximal exact matches (MEMs)

delta-filter -m out.delta > out.filter.m

-m Many-to-many mapping

show-coords -r out.delta.m > out.coords
-r Sort alignments by reference position

dnadiff out.delta.m

Construct catalog of sequence variations

mummerplot --large --layout out.delta.m

--large Large plot
-—-layout Nice layout for multi-fasta files
--x11 Default, draw using x11 (--postscript, --png)

*requires gnuplot

See manual at http://
mummer.sourceforge.net/manual

References

— Documentation

* http://mummer.sourceforge.net
» publication listing

* http://mummer.sourceforge.net/manual
» documentation

* http://mummer.sourceforge.net/examples
» walkthroughs

— Email
* mummer-help@lists.sourceforge.net
* amp@umiacs.umd.edu

Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

Short Read Applications
* Genotyping: ldentify Variations

GGTATAC...
AATTT CGGTATAC
AATT CGGTATAC
WA GCGGTATA
TTGCGGTA C... |
TTTGCGGT C...
AATTTGC ATAC...
AATTTGC GTATAC... |

\[TTGCGGTATAC...

...CCATAG TATGCGCCC CGC
...CCAT CTATATGCG TCGG
...CCAT GGCTATATG CTATCGG
...CCA AGGCTATAT CCTATCGG
...CCA AGGCTATAT GCCCTATCG
...CC _AGGCTATAT GCCCTATCG
...CC_ TAGGCTATA _GCGCCCTA

...CCATAGGCTATATGCGCCCTATCGGC

s P> ~2>> |

* *.seq: Classify & measure significant peaks

GAAATTTGC
GGAAATTTG
CGGAAATTT
CGGAAATTT
TCGGAAATT
CTATCGGAAA
CCTATCGGA TTTGCGGT
GCCCTATCG AAATTTGC
...CC GCCCTATCG AAATTTGC ATAC...

...CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC...

Short Read Alighment

* Given a reference and a set of reads, report at
least one “good” local alignment for each read
if one exists

— Approximate answer to: where in genome did read originate!?

e What is “good”? For now, we concentrate

on:
. . WTGA TA... LWITGATCATA...
— Fewer mismatches is better Eggi}\ better than EAGAﬁ

— Fa|||ng to align d Iow-_q_uality ~TGATATTA.. pottor than ~TGATGRTA-.
base is better than failing to ~ ©ATea? GTACAT

align a high-quality base

Indexing

* Genomes and reads are too large for direct
approaches like dynamic programming

— Genome indices can be big. For human:

v 6| % O——{BAN = 0 O NULL
A BANANAB A 51 A%
B E, 3 | ANAS$
$ NA .78 NAS ' | ANANAS O—>|ANA= 1 O [ANAS 3 OFP NULL
$ / \ NAS Z EQQANA$ Ol 2 2 O N
2 | NANAS
> 35 GBs > 12 GBs > 12 GBs

* Large indices necessitate painful compromises

|. Require big-memory machine

2. Use secondary storage

3. Build new index each run

4. Subindex and do multiple passes

Burrows-VWheeler Transform

* Reversible permutation of the characters in a text

Rank: 2 Sacaacg
. aacg$ac
alcaacgs$
acaacg$ — @LL d— gc$aajac
T caacgya BWT(T)
cg$acaa ™
g$acaac Rank: 2
Burrows-Wheeler
Matrix BWM(T) LF Property
implicitly encodes
* BWT(T) is the index for T Suffix Array

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equibment Corporation. Technical Report 124

Burrows-VWheeler Transform

* Reversible permutation of the characters in a text

$acaacg
aacg$ac
acaacg$
acaacg$ —> acg$aca— gcS$Saaac
T ¢ ’a acgs$ a‘ BWT(T)
cg$acaa
g$acaac
Burrows-Wheeler
Matrix BWM(T) LF Property
implicitly encodes
* BWT(T) is the index for T Suffix Array

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equibment Corporation. Technical Report 124

Q@O0 D &

Burrows-VWheeler Transform

* Recreating T from BWT(T)

— Start in the first row and apply LF repeatedly,
accumulating predecessors along the way

Original T

/—H

g cg acg aacg caacg acaacg
—_— $ g $ g $ g $ g $ g
a C a C a C | — a C

s\ a $ a $ a s fa $\a $

a a a a a | e—- a a a a

a C a C a C a C a C ===

a a/c—>a C a C a C a

C QgQ=—=——=2>pc’ ¢ c g c g c g c

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCT@

Bowtie algorithm

Reference

BWT(Reference)

Query: _
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA|

Bowtie algorithm

Reference

BWT(Reference)

Query:
AATGATACGGCGACCACCGAGATCTA

Bowtie algorithm

Reference

1 | | A
s e

BWT(Reference)

Query:

AATGATACGGCGACCACCGAGATCTH

Bowtie algorithm

Reference

BWT(Reference)

Query:

AATGRTACCGCGACCACCGAGATCTH

Bowtie algorithm

Reference

1 | | A
s e

BWT(Reference)

Query:

AATGTIACCGCGACCACCGAGATCTH

Bowtie algorithm

Reference

e
o

BWT(Reference)

Query:

A A /\ /\ /\ A A

BWT Short Read Mapping

|. Trim off very low quality bases & adapters from ends of
sequences

2. Execute depth-first-search of the implicit suffix tree
represented by the BWT
|. If we fail to reach the end, back-track and resume search

2. BWT enables searching for good end-to-end matches entirely in RAM

l. |00s of times faster than competing approaches

3. Report the "best" n alignments
|. Best = fewest mismatches/edit distance, possibly weighted by QV
2. Some reads will have millions of equally good mapping positions
3. If reads are paired, try to find mapping that satisfies both

Mapping Applications
* Mapping Algorithms
— Bowtie: (BWT) Fastest, No indels => moderate sensitivity
— BWA: (BWT) Fast, small indels => good sensitivity
— Novoalign: (Hash Table) Slow, RAM intensive, big indels => high sensitivity

* Variation Detection
— SNPs

* SAMTools: Bayesian model incorporating depth, quality values, also indels

* SOAPsnp: SAMTools + known SNPs, nucleotide specific errors, no indels

— Structural Variations

* Hydra:Very sensitive alighment, scan for discordant pairs
* Large indels: Open Research Problem to assembly their sequence

— Copy number changes

* RDexplorer: Scan alignments for statistically significant coverage pileup

— Microsatellite variations
e See Mitch!

Sequence Alignment Summary

* Distance metrics:
— Hamming: How many substitutions?
— Edit Distance: How many substitutions or indels?

— Sequence Similarity: How similar (under this model of similarity)?

* Techniques
— Seed-and-extend: Anchor the search for in-exact using exact only

— Dynamic Programming: Find a global optimal as a function of its parts
— BWVT Search: implicit DFS of SA/ST

* Sequence Alignment Algorithms: Pick the right tool for the job
— Smith-Waterman: DP Local sequence alignment
— BLAST: Homology Searching
— MUMmer:Whole genome alignment, short read mapping (with care)

— Bowtie/BWA/Novoalign: short read mapping

Break

Graphs

e Nodes

— People, Proteins, Genes, Neurons, Sequences, Numbers, ...

* Edges
— A is connected to B
— Alis related to B
— A regulates B
— A precedes B
— A interacts with B
— Alis related to B

= = —
=

P ——
——

3

e

—=3E

e

—

=
—

Figure 5 Putative regulatory elements shared bety groups of cor

anticorrelated genes

SIATS HIVEP?-SEPP1.SCYDI-NEFLYINAG)

v

FEBEH - sTs @ oxons)
e

B (]‘,l Jwvmmw)

- >
i+ CUGBP2 (13 exons).
S
2wl e e i

1 B 7 oxgne)

B
INAG oxone)

—]
—t
= = > | wan
CBLNI (3 exons)
CBLNUSPOX.
PNUTLZP()

<>HH¢NHH"HH"WH’MM-UWHj HQ(H"}’H L 3 i
USPeX (b4 anome) P q » % % ama

’ 1 _
@@ P2 (13 exons) Gt ooz
oK Pt e

Vanessa M. Brown et al. Genome Res. 2002; 12: 868-884

Cold Spring Harbor Laboratory Press

CELLCYCLE

Grhtioor Grvhcr
Vi

e T e S B

[ows Tows | [tcms Trmeas |

I
ORO(n MM Otht-Chronosons g - — — S—
T, G ¥ oo - = (o)
[oet Tom | [ionz Tiems | o s
o [omt | [iteme [tens |

1 and

Sulfolobus

/

; tRNA Synthet
A, ATP.

Sayle with

lo], Glaxo
Wellcome, 1995

EUKARYA
Stramenopiles

veolates

Plantee & Red algae

Slime molds
— =% Entamoebae
Heterolobosea
Physarum

Animalia

Fungi

Kinetoplastids
Euglenoids
Microsporidians

Trichomonads
Diplomonads

Themgplwma
Methanobacteria
ARCHAEA

Halobacteria

Graph Types

Directed
Acyclic
List Tree Graph

Complete

Kevin Bacon and Bipartite Graphs

Q1:

Find any path
from
Kevin Bacon
to
Jason Lee

Depth First Search:
6 hops

Bacon Distance:

Kevin Bacon and Bipartite Graphs

Q2:

Find the shortest
path from
Kevin Bacon
to
Jason Lee

Breadth First Search:
4 hops

Bacon Distance:

DFS

DFS(start, stop) 0

// initialize all nodes dist = -1 AB,C
start.dist = 0 A,B,E,H
list.addEnd(start) A,B,G,I_/l

while (!list.empty())
cur = list.end()
if (cur == stop)
print cur.dist;
else

foreach child in cur.children [What's the running time?]
if (child.dist == -1)
child.dist = cur.dist+1

[How many nodes will it visit?]

[What happens for disconnected
components?]

list.addEnd(child)

— o> >
m

DFS

DFS(start, stop)
/[initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
cur = list.end()
if (cur == stop)
print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+|
list.addEnd(child)

0

A.B,C
A.B,G,H
A.B,GM

BFS
BFS(start, stop)

/I initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
cur = list.begin()
if (cur == stop)
print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+1
list.addEnd(child)

0

AB,C
B,.C.D,E
C,D,E,FL
D,E,F.L,G,H
E.F.L,G,H,l
F.L,GH,IJ
L,G,H,IlJK
G,H,1J.KO
H,l,J,K,O
1,J,K,O,M
J,K,O,M
K,O,M;N
OM,N

M,N

BFS and TSP

* BFS computes the shortest path between a
pair of nodes in O(|E[) = O(|N|?)

* What if we wanted to compute the shortest
route visiting every node once!

— Traveling Salesman Problem

ABDCA:4+2+5+3 = |4
ACDBA: 3+5+2+4 = | 4*
ABCDA: 4+[+5+] = ||
ADCBA: |+5+1+4 = | |*
ACBDA: 3+1+2+1 =7
ADBCA: [+2+[+3=7 *

Greedy Search

Greedy Search
cur=graph.smallestEdge() 19
while (!done) 1 :
next=cur.getNextClosest() 21
© 50 ©

Greedy: ABDCA = |+1+[+50= 53
Optimal: ACBDA = [+19+1+2] =42

Greedy finds the global optimum only when
|. Greedy Choice: Local is correct without reconsideration

2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Hardness

* No known way to partition the
problem
— Knowing optimal tour through n cities

doesn't seem to help much for n+1
cities

[How many possible tours for n cities?]

* Extensive searching is the only
known provably correct algorithm

— Brute Force:

e ~20 cities max
e 200=24x 108

Branch-and-Bound

* Abort on suboptimal solutions
as soon as possible
— ADBECA = |+2+2+2+3 = |0
— ABDE = 4+2+30> 10
— ADE=1+30> 10
— AED = 1+30> 10

* Performance Heuristic
— Always gives the optimal answer
— Doesn't always help performance, but often does

— Current TSP record holder:
* 85,900 cities [When not?]

- 85900! = | (386526

TSP and NP-complete

* TSP is one of many extremely hard
problems of the class NP-complete

— Extensive searching is the only way to
find an exact solution

— Often have to settle for approx. solution

* WARNING: Many optimization problems are in this class
— Find a tour the visits every node once
— Find the smallest set of vertices covering all the edges
— Find the largest clique in the graph
— Find a set of items with maximal value but limited weight
— Maximizing the number of tetris pieces played

— http://en.wikipedia.org/wiki/List_of NP-complete problems

Shortest Common Superstring

Given: S={s,, ..., s, }

Problem: Find minimal length superstring of S

S; 5,83 = CAC CACC 15
s; CACCC S;,5:,8,= CAC GGGTGC14

s, CCGGGTGC S5,5,,8;= CCGGGTG ACC 15
s; CCACC S5,5:,8; = CCGGGTG C 13
S3,5,,8,= C GGGTGC 12

S3,5,,8;= CCA ACCC 15

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH

Paths through graphs and assembly

* Hamiltonian circuit: visit each node (read)
exactly once, returning to the start

— If we could do this fast, we could exactly assemble
genomes as the shortest common superstring

Assembling a Genome

|. Shear & Sequence DNA - = —
-~ T =

2. Construct assembly graph from overlapping reads

..AGCCTAGACCTACA
CGCATATCCGGT...
3. Simplify assembly graph
> 0 —> 0 —>0—>0—> 0 —> 0 > 0 —> S
o N o N,

4. Detangle graph with long reads, mates, and other links

TN

lllumina Sequencing by Synthesis

DNA | # i

S ! = ,,\,\Adapter
\ u li / DNA
\ § _— fragment
/ o
\i/ Adapl rs ‘ l I J
i “ “\ b < 2 l.,;,/ D)ense lawn
u 5 \—-_',,_f/ '/ of primers
'~ Adapter
o —
4 #i ! ('

1. Prepare '['u'."i Ul

> *»'_'-. 5% Attached
\Attached Free / terminus

\terminus 1ermln{Js ,"(//(W“ 3 \‘\".\
2. Attach Vo '

i Rl
| .ll I| | I i I' .,‘_/ \i\l ¥ i’;ﬁ*g i’/\..o.
Nty n REE ‘///'/ ;

I\/l‘?u V’/l oA
3. Ampllfy VL (L) (R | idill’ |

Metzker (2010) Nature Reviews Genetics | 1:31-46 o. Basecall

Paired-end and Mate-pairs

Paired-end sequencing
* Read one end of the molecule, flip, and read the other end

* Generate pair of reads separated by up to 500bp with inward orientation

300bp > s

Mate-pair sequencing

* Circularize long molecules (1-10kbp), shear into fragments, & sequence

* Matefailuces create short paired-end reads
10kbp

2x100 @ ~10kbp (outies)

> <€
10kbp
circle
2x100 @ 300bp (innies)
> <€

Typical contig coverage

Imagine raindrops on a sidewalk

depth

Expected Fraction of genome >

0.2 0.4 0.6 0.8 1.0

0.0

Genome Coverage Distribution

Depth

This 1s the mathematically model => reality may be much worse

Coverage and Read Length

|ldealized Lander-Waterman model

Reads start at perfectly random
positions

Poisson distribution in coverage

— Contigs end when there are no
overlapping reads

Contig length is a function of
coverage and read length
— Effective coverage reduced by o/l

— Short reads require much higher
coverage to reach same expected
contig length

Expected Contig Length (bp)

100k

10k

1k

100

Lander Waterman Expected Contig Length vs Coverage

dog N50 /

dog me

panda N50 +

panda mean +

1000 bp
710 bp
250 bp
100 bp
52 bp
30 bp

EECOEOMm

5 10 15 20 25 30 35 40

Read Coverage

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

Two Paradigms for Assembly

de Bruijn Graph

Short read assemblers
* Repeats depends on word length
* Read coherency, placements lost

* Robust to high coverage

Overlap Graph

Long read assemblers
* Repeats depends on read length
* Read coherency, placements kept

* Tangled by high coverage

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

Initial Contigs

* After simplification and correction, compress graph
down to its non-branching initial contigs

Y ¢¢

— Aka “unitigs”, “unipaths”

20202020220 >0>0—>0¢ S —> o

Repeats and Read Length

[9,]

=0=Bacillus anthracis
5.22Mbp

N
AU
N
L J
L 4

Colwellia psychrerythraea
5.37Mbp

w
w U

=t=FEscherichia coli K12
4.64Mbp

/ / =>¢=Salmonella typhi
/ 4.80Mbp
/ =@ Yersinia pestis
'—k_ﬂﬁ 4.70Mbp

250 500 750 1000
Read Length

Contig N50 Size (Mbp)
O
S~
N

o
(0,1
\

o h

o

* Explore the relationship between read length and contig N50 size
— ldealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000

— Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. | 1:21.

Repetitive regions

* Over 50% of the human genome is repetitive

Repeat Type Definition / Example

Low-complexity DNA / Microsatellites (b,b,...b)N where | <k <6 2%
CACACACACACACACACACA

SINEs (Short Interspersed Nuclear Alu sequence (~280 bp) 13%

Elements) Mariner elements (~80 bp)

LINEs (Long Interspersed Nuclear ~500 — 5,000 bp 21%

Elements)

LTR (long terminal repeat) Ty | -copia, Ty3-gypsy, Pao-BEL 8%

retrotransposons (~100 — 5,000 bp)

Other DNA transposons 3%

Gene families & segmental duplications 4%

61

Repeats and Coverage Statistics

A R, B R, R+ R,

* If n reads are a uniform random sample of the genome of length G,
we expect k=n A /G reads to start in a region of length A.

— If we see many more reads than k (if the arrival rate is > A) , it is likely to be
a collapsed repeat

— Requires an accurate genome size estimate

) . (An/G)* =
Pr(X - copy)=|" (XA) (G_XA) AAK) =In| DLZCOP) kPR o
kN G G Pr(2 - copy) 2An/G) . G G
k!

Scaffolding

* Initial contigs (aka unipaths, unitigs) terminate at
— Coverage gaps: especially extreme GC regions

— Conflicts: sequencing errors, repeat boundaries

* |teratively resolve longest,‘most unique’ contigs

— Both overlap graph and de Bruijn assemblers initially collapse
repeats into single copies

— Uniqueness measured by a statistical test on coverage

%
Y/ A\YZANS

N50 size

Def: 50% of the genome 1s 1n contigs larger than N50

Example: | Mbp genome 50%
¢

T e
st o R

N50 size = 30 kbp
(300k+ 100k+45k+45k+30k = 520k >= 500kbp)

Note:
N50 values are only meaningful to compare when base genome
size is the same in all cases

Assembly Algorithms

ALLPATHS-LG SOAPdenovo Celera Assembler
\ o) @@ ot
e @X ‘O PN
B<2)\ c0) . v [/ AN
\/- “ .. @ o
(1) _— 4 g N
Broad’s assembler BGl’s assembler JCVI’s assembler
(Gnerre et al. 201 1) (Li et al.2010) (Miller et al.2008)
De bruijn graph De bruijn graph Overlap graph
Short + PacBio (patching) Short reads Medium + Long reads
Easy to run if you have Most flexible, but requires a | Supports lllumina/454/PacBio
compatible libraries lot of tuning Hybrid assemblies

LATHON

Attempt to answer the question:
“What makes a good assembly?”’

* Organizers provided simulated sequence data

— Simulated 100 base pair lllumina reads from simulated
diploid organism

* 4| submissions from |7 groups

e Results demonstrate trade-offs assemblers must make

Assembly Results
Scaffolds

Broad

DOEJGI

CSHL

Contig Paths

BGI
Broad

CSHL

* No assembler was perfect!

— See tomorrow’s in house for details

Fill C(itlor Key HEEE s s s

22 em >= 1 le2 le3 le4d le5 le6 le7

Summary

Graphs are ubiquitous in the world

— Pairwise searching is easy, finding features is hard

Assembly quality depends on

I. Coverage: low coverage is mathematically hopeless

2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats

4. Error rate: errors reduce coverage, obscure true overlaps

Assembly is a hierarchical, starting from individual reads, build high
confidence contigs/unitigs, incorporate the mates to build scaffolds

— Extensive error correction is the key to getting the best assembly possible
from a given data set

Supplemental

BWT Exact Matching

* LFc(r, ¢) does the same thing as LF(r) but it
ignores r’ s actual final character and
“pretends’ it’s c:

Rank: 2
~

LFc(5,9) =8

$acaacg
aacg$ac
acaacg$
acg$aca
caacg$a

cg$ac
g$acaac

L

™~
Rank: 2

F

BWT Exact Matching

* Start with a range, (top, bot) encompassing all
rows and repeatedly apply LFc:

top = LFc(top, qc); bot = LFc(bot, qc)

gc = the next character to the left in the query

aac aa a
a c a c a c — c
/
a $ a $ — $a —a $
a a a a / a a a
c a — aa _—¢ aa c a
C a a / c a c a
g c .,—9 ca J c g c
— C

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

BWT Exact Matching

cac ca

(9]

Q OO0 9 9 A
L &N OQ
/
< I L
D O Q
N\

l
QD A
0O 20 LAHOQ
e
|
Q O O/ 0 O A

* If range becomes empty (top = bot) the
query suffix (and therefore the query as a
whole) does not occur

0O DY YLMLOQ

