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Outline 

1.  Milestones in genomics 
1.  Quick primer on molecular biology 
2.  The evolution of sequencing 

2.  Hadoop Applications for Genomics 
1.  Mapping & Jnomics 
2.  Assembly & Contrail 



Milestones in Genomics 

http://compbio.pbworks.com/w/page/16252897/Introduction%20and%20Basic%20Molecular%20Biology 

In 1953 James Watson and Francis Crick 
determined the double helix structure of 
DNA as a long series of 4 different 
nucleotides. In 1958 Francis Crick 
established the Central Dogma of 
Biology: 
 
1.  Genetic information is transmitted 

from generation to generation by the 
sequence of nucleotides in your DNA. 

2.  Active regions called genes, are 
transcribed into messenger RNAs 
that are sent to cellular machines 
called ribosomes for processing 

3.  RNA messages are translated by the 
ribosomes into proteins that do work 
in the cell 



Milestones in Genomics 
Your genome and environment define who you are: 
 

•  Human with 5 fingers & 5 toes 
•  Hair, eye & skin color 
•  Susceptibility to diseases, responses to drugs 
•  Personality and social disorders 
•  … 

 
There is tremendous interest to sequence genomes: 
 

•  What is your genome sequence?  
•  How does your genome compare to my genome? 
•  Where are the genes and how active are they? 
•  How does gene activity change under development? 
•  Where do proteins bind and regulate genes? 
•  How has the disease mutated your genome? 
•  What virus and microbes are living inside you? 
•  What drugs should we give you? 
•  … 



1977 
1st Complete Organism 
Bacteriophage φX174 

5375 bp 

Radioactive Chain Termination  
5000bp / week / person 

 
http://en.wikipedia.org/wiki/File:Sequencing.jpg 

http://www.answers.com/topic/automated-sequencer 

Nucleotide sequence of bacteriophage φX174 DNA 
Sanger, F. et al. (1977) Nature. 265: 687 - 695 

Milestones in Genomics: 
Zeroth Generation Sequencing 



Milestones in Genomics: 
First Generation Sequencing 

1995  
Fleischmann et al. 

1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2000  
Myers et al. 

1st Large WGS Assembly. 
Celera Assembler. 116 Mbp 

2001 
 Venter et al. / IHGSC  

Human Genome 
Celera Assembler. 2.9 Gbp 

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. 
"The machine was so revolutionary that it could decode in a single day the same amount 
of genetic material that most DNA labs could produce in a year. " J. Craig Venter 



Milestones in Genomics: 
Second Generation Sequencing 

2004 
454/Roche 

Pyrosequencing 
 

Current Specs (Titanium):  
1M 400bp reads / run =  

1Gbp / day 

2007 
Illumina 

Sequencing by Synthesis 
 

Current Specs (HiSeq 2000):  
2.5B 100bp reads / run =  

60Gbp / day 

2008 
ABI / Life Technologies 

SOLiD Sequencing 
 

Current Specs (5500xl):  
5B 75bp reads / run =  

30Gbp / day 



Milestones in Genomics: 
Third Generation Sequencing 

2010 
Ion Torrent 

Postlight Sequencing 
 

Current Specs (Ion 318):  
11M 300bp reads / run =  

>1Gbp / day 

2011 
Pacific Biosciences 
SMRT Sequencing 

 
Current Specs (RS):  

50k 10kbp reads / run =  
>500Mbp / day 

2012 
Oxford Nanopore 

Nanopore sensing 
 

Many GB / day? 
Very Long Reads? 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.youtube.com/watch?v=l99aKKHcxC4 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Milestones in Genomics 

De novo Assembly 

Alignment & Variations 

A 
T 
T 
T 
T 
T 

Differential Analysis 

Phylogeny & Modeling 



Sequencing Centers 

Next Generation Genomics: World Map of High-throughput Sequencers 
http://pathogenomics.bham.ac.uk/hts/ 

Worldwide capacity exceeds 15Pbp/year 



•  MapReduce is Google's framework for large data computations  
–  Data and computations are spread over thousands of computers 

•  Indexing the Internet, PageRank, Machine Learning, etc…  (Dean and Ghemawat, 2004) 
•  946PB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010) 

–  Hadoop is the leading open source implementation 
•  Developed and used by Yahoo, Facebook, Twitter, Amazon, etc 
•  GATK is an alternative implementation specifically for NGS 

Hadoop MapReduce 

•  Benefits 
–  Scalable, Efficient, Reliable 
–  Easy to Program 
–  Runs on commodity computers 

•  Challenges 
–  Redesigning / Retooling applications 

–  Not Condor, Not MPI 
–  Everything in MapReduce 

h"p://hadoop.apache.org	
  



Hadoop for NGS Analysis 
CloudBurst 

Highly Sensitive Short Read 
Mapping with MapReduce 

 
100x speedup mapping 
on 96 cores @ Amazon 

 
 

(Schatz, 2009) http://cloudburst-bio.sf.net 

Quake 

Quality‐aware error 
correction of short reads 

 
Correct 97.9% of errors   
with 99.9% accuracy 

 
 

(Kelley, Schatz,  
Salzberg, 2010) 
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http://www.cbcb.umd.edu/software/quake/ 

Myrna 

Cloud-scale differential gene 
expression for RNA-seq 

 
Expression of 1.1 billion RNA-Seq 

reads in ~2 hours for ~$66 
 
 

(Langmead,  
Hansen, Leek, 2010) http://bowtie-bio.sf.net/myrna/ 

Genome Indexing 

Rapid Parallel Construction 
of Genome Index 

 
Construct the BWT of 

the human genome in 9 minutes 
 
 

(Menon, 
 Bhat, Schatz, 2011*) 

http://code.google.com/p/ 
genome-indexing/ 



 System Architecture 

•  Hadoop Distributed File System (HDFS) 
–  Data files partitioned into large chunks (64MB),  replicated on multiple nodes 
–  Computation moves to the data, rack-aware scheduling 

•  Hadoop MapReduce system won the 2009 GreySort Challenge 
–  Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks 

 

Slave 5 

Slave 4 

Slave 3 

Slave 2 

Slave 1 

Master Desktop 



Parallel Algorithm Spectrum 
Embarrassingly Parallel 

Map-only 
Each item is Independent 

Loosely Coupled 

MapReduce 
Independent-Sync-Independent 

Tightly Coupled 

Iterative MapReduce 
Constant Sync 



1. Embarrassingly Parallel 
•  Batch computing 

–  Each item is independent 
–  Split input into many chunks 
–  Process each chunk separately on a 

different computer 

•  Challenges 
–  Distributing work, load balancing, 

monitoring & restart 

•  Technologies  
–  Condor, Sun Grid Engine 
–  Amazon Simple Queue 



Elementary School Dance 



2. Loosely Coupled 
•  Divide and conquer 

–  Independently process many items 
–  Group partial results  
–  Scan partial results into final answer 

•  Challenges 
–  Batch computing challenges  
–  + Shuffling of huge datasets 

•  Technologies 
–  Hadoop, Elastic MapReduce, Dryad 
–  Parallel Databases 



Junior High Dance 



Short Read Mapping 

•  Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read 
–  Find where the read most likely originated 
–  Fundamental computation for many assays 

•  Genotyping    RNA-Seq    Methyl-Seq 
•  Structural Variations   Chip-Seq    Hi-C-Seq 

•  Desperate need for scalable solutions 
–  Single human requires >1,000 CPU hours / genome 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

Identify variants 

Reference 

Subject 



Crossbow 

•  Align billions of reads and find SNPs 
–  Reuse software components: Hadoop Streaming 

h"p://bow1e-­‐bio.sourceforge.net/crossbow	
  

•  Map: Bowtie (Langmead et al., 2009) 
–  Find best alignment for each read 
–  Emit (chromosome region, alignment) 

•  Reduce: SOAPsnp (Li et al., 2009) 
–  Scan alignments for divergent columns 
–  Accounts for sequencing error, known SNPs 

•  Shuffle: Hadoop 
–  Group and sort alignments by region 

…
	
   …
	
  



Performance in Amazon EC2 

Asian Individual Genome 

Data Loading 3.3 B reads 106.5 GB $10.65 

Data Transfer 1h :15m 40 cores $3.40 

Setup 0h : 15m 320 cores $13.94 

Alignment 1h : 30m 320 cores $41.82 

Variant Calling 1h : 00m 320 cores $27.88 

End-to-end 4h : 00m $97.69 

Discovered 3.7M SNPs in one human genome for ~$100 in an afternoon. 
Accuracy validated at >99% 

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134  

h"p://bow1e-­‐bio.sourceforge.net/crossbow	
  



Cloud Cluster 

Cloud 
Storage 

…	
  

…	
  

Unaligned	
  
Reads	
  

Map	
  to	
  	
  
Genome	
  

Shuffle	
  	
  
into	
  Bins	
  

Scan	
  	
  
Alignments	
  

Assay	
  	
  
Results	
  

Internet 

Cloud 
Storage 

Internet 

Map-Shuffle-Scan for Genomics 

Cloud Computing and the DNA Data Race. 
Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693 



l  Rapid parallel execution of NGS analysis pipelines 
l  FASTX, BWA, Bowtie, Novoalign, SAMTools, Hydra 

l  Sorting, merging, filtering, selection, of BAM, SAM, BED, fastq 
l  Population analysis: Clustering, GWAS, Trait Inference 

l  Used for rapidly analyzing human diseases and plants 
 

Jnomics: Cloud-scale genomics 
James Gurtowski, Matt Titmus,  Michael Schatz 

Fastq 

BWA 

Filter 

Novo 

Hydra 

Standard Jnomics 
Fastq 

BWA 

Filter 

Novo 

Hydra 

BWA BWA 

Filter Filter 

Novo Novo 

Answering the demands of digital genomics 
Titmus, M.A.., Gurtowski, J, Schatz, M.C.. (2012) Under Review 



3. Tightly Coupled 
•  Computation that cannot be partitioned 

–  Graph Analysis 
–  Molecular Dynamics 
–  Population simulations 

•  Challenges 
–  Loosely coupled challenges  
–  + Parallel algorithms design 

 
•  Technologies 

–  MPI 
–  MapReduce, Dryad, Pregel 



High School Dance 



Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

of times, it was the 

times, it was the age 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

it was the worst of 

was the worst of times, 

worst of times, it was 

of times, it was the 

times, it was the age 

it was the age of 

was the age of wisdom, 

the age of wisdom, it 

age of wisdom, it was 

of wisdom, it was the 

wisdom, it was the age 

it was the age of 

was the age of foolishness, 

the worst of times, it 

 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 Model sequence reconstruction as a graph problem. 



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 

it was the age 

was the age of 
the age of wisdom, 

age of wisdom, it 

of wisdom, it was 

wisdom, it was the 

After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 



Genome Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph 
–  Human genome: >3B nodes, >10B edges 

•  The new short read assemblers require tremendous computation 
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



Graph Compression 
•  After construction, many edges are unambiguous 

–  Merge together compressible nodes 
–  Graph physically distributed over hundreds of computers 

Design Patterns for Efficient Graph Algorithms in MapReduce.  
Lin, J., Schatz, M.C. (2010) Workshop on Mining and Learning with Graphs Workshop (KDD-2010) 



Warmup Exercise 
•  Who here was born closest to July 30? 

– You can only compare to 1 other person at a time 

Find winner among 64 teams in just 6 rounds 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Initial Graph: 42 nodes 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
   

  
 
  

 
  

 
  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 1: 26 nodes (38% savings) 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 1: 26 nodes (38% savings) 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 15 nodes (64% savings) 

 
  

 
  

 
   
  

 
 

 
 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 8 nodes (81% savings) 

  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 3: 6 nodes (86% savings) 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H è T  links 

 Performance 
–  Compress all chains in log(S) rounds 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 4: 5 nodes (88% savings) 



Node Types 

(Chaisson, 2009) 

 Isolated nodes (10%) 

 Tips (46%) 

 Bubbles/Non-branch (9%) 

 Dead Ends (.2%) 

 Half Branch (25%) 

 Full Branch (10%) 



Contrail 

De novo Assembly of the Human Genome 
•  Genome: African male NA18507 (SRA000271, Bentley et al., 2008) 
•  Input: 3.5B 36bp reads, 210bp insert (~40x coverage) 

Compressed Initial 

N 
Max 
N50 

>7 B 
27 bp 
27 bp 

>1 B 
303 bp 

< 100 bp 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC et al. In Preparation. 

http://contrail-bio.sourceforge.net 

Cloud Surfing Error Correction 

4.2 M 
20,594 bp 

995 bp 

4.1 M 
20,594 bp 
1,050 bp 

3.3 M 
20,594 bp 
1,427 bp* 

Resolve Repeats 



•  Use assembly techniques to identify complex 
variations from short reads 
–  Improved power to find indels 
–  Trace candidate haplotypes sequences as paths 

through assembly graphs 

G. Narzisi, D. Levy, I. Iossifov, J. Kendall, M. Wigler, M. Schatz 

Scalpel: Haplotype Microassembly 

Ref:    ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
!
Father: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Mother: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Sib:    ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Aut(1): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...!
Aut(2): ...TCAGAACAGCTGGATGAGATCTTACC------CCGGGAGATTGTCTTTGCCCGGA...!
!

  6bp heterozygous indel at chr13:25280526 ATP12A 



•  We are in the digital age of biology 
–  Next generation sequencing, microarrays, mass 

spectrometry, microscopy, ecology, etc 
–  Parallel computing may be our only hope for 

keeping up with the pace of advance 

•  Modern biology requires (is) quantitative 
biology 

–  Computational, mathematical, and 
statistical techniques applied to analyze, 
integrate, and interpret biological sensor 
data 

•  Don’t let the data tsunami crash on you  
–  Study, practice, collaborate with quantitative 

techniques 

Summary 
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