
Sorting, Searching, & Aligning
Michael Schatz

Bioinformatics Lecture 1
Quantitative Biology 2012

Short Read Applications
•  Genotyping: Identify Variations

•  *-seq: Classify & measure significant peaks

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
GCGCCCTA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA

GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT

TCGGAAATT
CGGAAATTT
CGGAAATTT

AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATATG
CTATATGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TATGCGCCC

GGTATAC…
CGGTATAC

GGAAATTTG

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…
ATAC… …CC

 GAAATTTGC

Short Read Alignment

•  Given a reference and a set of reads, report at
least one “good” local alignment for each read
if one exists
–  Approximate answer to: where in genome did read originate?

…TGATCATA…
 GATCAA

…TGATCATA…
 GAGAAT

better than

•  What is “good”? For now, we concentrate on:

…TGATATTA…
 GATcaT

…TGATcaTA…
 GTACAT

better than

–  Fewer mismatches is better
–  Failing to align a low-quality

base is better than failing to
align a high-quality base

Exact Matching Review & Overview
Where is GATTACA in the human genome?

BLAST, MAQ, ZOOM,
RMAP, CloudBurst

Seed-and-extend

Hash Table
(>15 GB)

MUMmer, MUMmerGPU

Tree Searching

Suffix Tree
 (>51 GB)

Vmatch, PacBio Aligner

Binary Search

Suffix Array
(>15 GB)

Brute Force
(3 GB)

Naive

Slow & Easy

BANANA!
BAN!!
 ANA!
 NAN!
 ANA!

*** These are general techniques applicable to any search problem ***

Expected Occurrences
 The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence

–  1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT
–  1 in 16,384 should be GATTACA
–  E=(n-m+1)/(4m) [183,105 expected occurrences]

0 5 10 15 20 25 30

0e
+0

0
2e

+0
8

4e
+0

8
6e

+0
8

Evalue and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

0 5 10 15 20 25 30

1e
−0

9
1e
−0

5
1e
−0

1
1e

+0
3

1e
+0

7

E−value and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

[Challenge Question: What is the expected distribution & variance?]

1. Brute Force

•  Brute Force:
–  At every possible offset in the genome:

•  Do all of the characters of the query match?

•  Analysis
–  Simple, easy to understand
–  Genome length = n [3B]
–  Query length = m [7]
–  Comparisons: (n-m+1) * m [21B]

•  Overall runtime: O(nm)
 [How long would it take if we double the genome size, read length?]

 [How long would it take if we double both?]

Brute Force in Matlab

query = 'GATTACA';!
genome = 'TGATTACAGATTACC';!
!
nummatches=0;!
!
% At every possible offset!
for offset=1:length(genome)-length(query)+1!

!% Do all of the characters match?!
!if (genome(offset:offset+length(query)-1) == query)!
!! !disp(['Match at offset ', num2str(offset)])!
!! !nummatches = nummatches+1;!
!else!
!! !%Uncomment to see every non-match!
!! !%disp(['No match at offset ', num2str(offset)])!
!end!

end!
!
disp(['Found ', num2str(nummatches),' matches of ', query, ' in genome of length ',

num2str(length(genome))])!
!
!
disp(['Expected number of occurrences: ', num2str((length(genome)-length(query)+1)/

(4^length(query)))])!
!

2. Suffix Arrays
•  What if we need to check many queries?

•  We don't need to check every page of the phone book to find 'Schatz'
•  Sorting alphabetically lets us immediately skip 96% (25/26) of the book

without any loss in accuracy

•  Sorting the genome: Suffix Array (Manber & Myers, 1991)

–  Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

•  Strategy 2: Binary search
•  Compare to the middle, refine as higher or lower

•  Searching for GATTACA
•  Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
•  Middle = Suffix[8] = CC

 => Higher: Lo = Mid + 1

•  Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
•  Middle = Suffix[12] = TACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
•  Middle = Suffix[10] = GATTACC

 => Lower: Hi = Mid - 1

•  Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
•  Middle = Suffix[9] = GATTACA…

 => Match at position 2!

Lo
Hi

Binary Search Analysis
•  Binary Search

 Initialize search range to entire list
 mid = (hi+lo)/2; middle = suffix[mid]
 if query matches middle: done
 else if query < middle: pick low range
 else if query > middle: pick hi range

 Repeat until done or empty range [WHEN?]

•  Analysis
•  More complicated method
•  How many times do we repeat?

•  How many times can it cut the range in half?
•  Find smallest x such that: n/(2x) ≤ 1; x = lg2(n) [32]

•  Total Runtime: O(m lg n)
•  More complicated, but much faster!
•  Looking up a query loops 32 times instead of 3B

 [How long does it take to search 6B or 24B nucleotides?]

Binary Search in Matlab
%% create our “sorted” list of 100 numbers!
seq=1:100;!
query=33;!
!

%% initialize search range!
lo=1;!
hi=length(seq);!

steps=0;!
!
%% search!
while (lo<=hi)!

 steps = steps+1;!
 mid=floor((lo+hi)/2);!
 middle=seq(mid);!

 disp(['Step ', num2str(steps), ' checking seq[', num2str(mid), ']=', num2str(middle)])!
 if (query == middle)!
 disp(['Found at ', num2str(mid), ' in ', num2str(steps), ' steps'])!
 break!

 elseif (query < middle)!
 disp(['less than ', num2str(middle)])!
 hi=mid-1;!
 else!

 disp(['greater than ', num2str(middle)])!
 lo=mid+1;!
 end!

end!

Divide and Conquer
•  Selection sort is slow because it rescans the entire list for each element

•  How can we split up the unsorted list into independent ranges?
•  Hint 1: Binary search splits up the problem into 2 independent ranges (hi/lo)
•  Hint 2: Assume we know the median value of a list

n

[How many times can we split a list in half?]

= < > 2 x n/2

= < > = = < > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

QuickSort Analysis
•  QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

•  Analysis (Assume we can find the median in O(n))

 [~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

QuickSort in Matlab

sort(seq) !
!
!
!
!
!

•  The goal of software engineering is to build libraries of
correct reusable functions that implement higher level
ideas
–  Build complex software out of simple components
–  Software tends to be 90% plumbing, 10% research
–  You still need to know how they work

•  Matlab requires an explicit representation of the strings

Binary Search Trees
Trees are useful for storing all kinds of data
•  Nodes contain 1 element indexed by the key
•  Left branch has elements that are smaller, right branch larger
•  Generally very fast to build or search or modify

 14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19
14

29 6

31

39

64

78 50

13

63

61

19

•  Binary search trees are generally very
fast and are on average:
•  O(lg n) search [why?]
•  O(n lg n) construction [why?]

•  But…
•  They may degenerate into O(n)

search (brute force!) if the tree is
unbalanced into a long chain

•  Fortunately, we can rebalance the
tree in constant time

14

29 6

31

39

64

78 50

13

63

61

19

Left Rotate

Trees are useful for storing all kinds of data
•  Nodes contain 1 element indexed by the key
•  Left branch has elements that are smaller, right branch larger
•  Generally very fast to build or search or modify

 14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

Binary Search Trees

>

<

>>

14

29

6

31

39

64

78 50

13

63

61

19

> <

>>

•  Using the tree rotate operators, maintain a balanced binary search tree
•  Height: O(lg(n)), Leaves: O(n/2)
•  Print the sorted the values in linear time O(n) [How?]

•  Red-Black tree
•  Whenever the tree becomes unbalanced, rotate until balanced
•  http://www.youtube.com/watch?v=vDHFF4wjWYU

•  Splay tree
•  Whenever you search for an item, rotate it towards the root
•  http://www.link.cs.cmu.edu/cgi-bin/splay/splay-cgi.pl

Balanced Binary Search Trees

14

29 6

31

39

64

78

50

13 63

61

19

Sorting in Linear Time
•  Can we sort faster than O(n lg n)?

•  No – Not if we have to compare elements to each other
•  Yes – But we have to 'cheat' and know the structure of the data

 Sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Sorting in Linear Time
•  Can we sort faster than O(n lg n)?

•  No – Not if we have to compare elements to each other
•  Yes – But we have to 'cheat' and know the structure of the data

 Sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Sorting in Linear Time
•  Can we sort faster than O(n lg n)?

•  No – Not if we have to compare elements to each other
•  Yes – But we have to 'cheat' and know the structure of the data

 Sort these numbers into ascending order:

14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

6,13,14,19,29,31,39,50,61,63,64,78

for(i = 1 to 100) { cnt[i] = 0; }
for(i = 1 to n) { cnt[list[i]]++; }
for(i = 1 to l00) { while (cnt[i] > 0){print i; cnt[i]--}} [3B instead of 94B]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

3. Hashing
•  Where is GATTACA in the human genome?

–  Build an inverted index (table) of every kmer in the genome

AAAAAAA

AAAAAAC

AAAAAAG

…

GATTAAT

GATTACA

GATTACC

…

TTTTTTG

TTTTTTT

2

5000

32000000

…

…

…

…

•  How do we access the table?
–  We can only use numbers to index

•  table[GATTACA] <- error, does not compute

–  Encode sequences as numbers
•  Simple: A = 0, C = 1, G = 2, T = 3

•  GATTACA = 2 0 3 3 0 1 0

•  Smart: A = 002, C = 012, G = 102, T = 112
–  GATTACA = 10 00 11 11 00 01 002 = 915610

–  Running time
•  Construction: O(n)
•  Lookup: O(1) + O(z)
•  Sorts the genome mers in linear time

Hash Tables and Hash Functions
•  Number of possible sequences of length k = 4k

–  47 = 16,384 (easy to store)
–  420 = 1,099,511,627,776 (impossible to directly store in RAM)

•  There are only 3B 20-mers in the genome
⇒  Even if we could build this table, 99.7% will be empty
⇒  But we don't know which cells are empty until we try

•  Use a hash function to shrink the possible range
–  Maps a number n in [0,R] to h in [0,H]

»  Use 128 buckets instead of 16,384, or 1B instead of 1T
–  Division: hash(n) = H * n / R;

»  hash(GATTACA) = 128 * 9156 / 16384 = 71
–  Modulo: hash(n) = n % H

»  hash(GATTACA) = 9156 % 128 = 68

[What properties do we want in a hash functions?]

Hash Table Lookup
•  By construction, multiple keys have the same hash value

–  Store elements with the same key in a bucket chained together
•  A good hash evenly distributes the values: R/H have the same hash value

–  Looking up a value scans the entire bucket
•  Slows down the search as a function of the hash table load
•  Warning: This complexity is usually hidden in the hash table code

GATTACA: 2

CGGACAT:349

GATTACA:5000

…

00

01

…

68

…

126

127

h(TGATTAC)

h(GATTACA)

h(ATTACAG)

[How many elements do we expect per bucket?]

ATTACAG: 3

GGCATCA:928

…

Variable Length Queries
•  Where are GATTACA and GATTACCA in the human genome?

•  s = min(length of all queries)
•  Build an inverted index of all s-mers (seeds) in the genome

•  GATTACA => 2, 5000, 32000000, …
•  GATTACC => 5500, 10101, 1000000, …

•  Seed-and-extend to find end-to-end exact matches
•  Check every occurrence of the qry seed (first s characters)

•  ~1 in 4 are GATTACCA, 1 in 4 are GATTACCC, etc
•  The specificity of the seed depends on length(q) & s

•  Works best if max(length) =~ min(length)
•  Works best if e-value(m) is << 1

Theorem: An alignment of a sequence of length m
with at most k differences must contain
an exact match at least s=m/(k+1) bp long

(Baeza-Yates and Perleberg, 1996)

8	
 2	

9	

10bp	
 read	

1	
 difference	

1	

x	
 |s|	

7	

9	

8	

7	

6	

6	

5	

5	

9	

8	

7	

6	

4	

3	

10	

5	

Proof: Pigeon hole principle
K=2 pigeons (differences) can't fill all K+1 pigeon holes (seeds)

–  Search Algorithm
–  Use an index to rapidly find short exact

 alignments to seed longer in-exact alignments
–  RMAP, CloudBurst, …

–  Length s seeds can also seed some lower quality alignments
–  Won't have perfect sensitivity, but avoids very short seeds

Seed-and-Extend Alignment

4. Suffix Trees (Optional)
Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…

CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Suffix Tree = Tree of suffixes (indexes all substrings of a sequence)
•  1 Leaf ($) for each suffix, path-label to leaf spells the suffix
•  Nodes have at least 2 and at most 5 children (A,C,G,T,$)

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  GATTACA

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  GATTACA
•  Matches at position 2

WalkTree
 cur = ST.Root;
 qrypos = 0;
 while (cur)
 edge = cur.getEdge(q[qrypos]);
 dist = matchstrings(edge, qry, qrypos)
 if (qrypos+dist == length(qry))
 print "end-to-end match"
 else if (dist == length(edge))
 cur=cur.getNode(edge[0]);
 qrypos+=dist
 else
 print "no match"

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  GACTACA

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  GACTACA
•  Fell off tree – no match

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  ATTAC

Suffix Trees Searching

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

AGATTACC…

C…

C

GATTAC
T

…
AGATTACC…
CC…

AGATTACC…

C…

GATTACAGATTACC…

AGATTACC…

C…

AGATTACC…

C…

•  Look up a query by "walking" along the edges of the tree
•  ATTAC
•  Matches at 3 and 10

•  Query Lookup in 2 phases:
1.  Walk along edges to find matches
2.  Walk subtree to find positions

DepthFirstPrint(Node cur)
if cur.isLeaf

 print cur.pos
else

 foreach child in cur.children
 DepthFirstPrint(child)

[What is the running time of DFP
 => How many nodes does the tree have?]

Suffix Tree Properties & Applications
Properties
•  Number of Nodes/Edges: O(n)
•  Tree Size: O(n)
•  Max Depth: O(n)
•  Construction Time: O(n)

•  Tricky to implement, prove efficiency
•  Brute force algorithm requires O(n2)

Applications
•  Sorting all suffixes: O(n) [HOW?]
•  Check for query: O(m)
•  Find all z occurrences of a query O(m + z)
•  Find maximal exact matches O(m)
•  Longest common substring O(m)

•  Used for many string algorithms in linear time
•  Many can be implemented on suffix arrays using a little extra work

Break

Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead
(langmead@umiacs.umd.edu)

Indexing
•  Genomes and reads are too large for direct

approaches like dynamic programming
–  Genome indices can be big. For human:

•  Large indices necessitate painful compromises
1.  Require big-memory machine
2.  Use secondary storage

> 35 GBs > 12 GBs > 12 GBs

3.  Build new index each run
4.  Subindex and do multiple passes

Burrows-Wheeler Transform

•  Reversible permutation of the characters in a text

•  BWT(T) is the index for T

Burrows-Wheeler
Matrix BWM(T)

BWT(T) T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Rank: 2

Rank: 2

LF Property
implicitly encodes
Suffix Array

Burrows-Wheeler Transform

•  Recreating T from BWT(T)
– Start in the first row and apply LF repeatedly,

accumulating predecessors along the way

Original T

[Decode this BWT string: ACTGA$TTA]

BWT Exact Matching
•  LFc(r, c) does the same thing as LF(r) but it

ignores r’s actual final character and
“pretends” it’s c:

Rank: 2 Rank: 2

L

F

LFc(5, g) = 8

g

BWT Exact Matching
•  Start with a range, (top, bot) encompassing all

rows and repeatedly apply LFc:
top = LFc(top, qc); bot = LFc(bot, qc)
qc = the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

[Search for TTA this BWT string: ACTGA$TTA]

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G ATA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

Bowtie algorithm

Query:
A AT G T TA C G G C G A C C A C C G A G AT C TA

Reference

BWT(Reference)

BWT Short Read Mapping
1.  Trim off very low quality bases & adapters from ends of

sequences

2.  Execute depth-first-search of the implicit suffix tree
represented by the BWT

1.  If we fail to reach the end, back-track and resume search
2.  BWT enables searching for good end-to-end matches entirely in RAM

1.  100s of times faster than competing approaches

3.  Report the "best" n alignments

1.  Best = fewest mismatches/edit distance, possibly weighted by QV
2.  Some reads will have millions of equally good mapping positions
3.  If reads are paired, try to find mapping that satisfies both

SNP calling
Beware of (Systematic) Errors

Identification and correction of systematic error in high-throughput sequence data
Meacham et al. (2011) BMC Bioinformatics. 12:451

A closer look at RNA editing.
Lior Pachter (2012) Nature Biotechnology. 30:246-247

•  Distinguishing SNPs from sequencing error typically a likelihood test of the coverage
–  Probability of seeing the data from a heterozygous SNP versus from sequencing error
–  However, some sequencing errors are systematic!

(A) Plot of sequencing depth across a one megabase region of A/J chromosome 17 clearly shows both a region of 3-fold increased copy
number (30.6–31.1 Mb) and a region of decreased copy number (at 31.3 Mb).

Simpson J T et al. Bioinformatics 2010;26:565-567

•  Identify CNVs through increased depth of coverage & increased heterozygosity
–  Segment coverage levels into discrete steps
–  Be careful of GC biases and mapping biases of repeats

CNV calling
Beware of (Systematic) Errors

Structural Variations

SVs tend to be flanked by repeats, making it hard
to localize
•  Longer reads are the key to resolving them

Circos plot of high confidence SVs specific to
esophageal cancer sample
•  Red: SV links
•  Orange: 375 cancer genes
•  Blue: 4950 disease genes

Sample Separation: 2kbp

Mapped Separation: 1kbp

Exact Matching Review
•  E-value depends on length of genome and inversely on query length

•  E = (n-m+1)/4m

BLAST, MAQ, ZOOM,
RMAP, CloudBurst

Seed-and-extend

Hash Table
(>15 GB)

MUMmer, MUMmerGPU

Tree Walking & DFS

Suffix Tree
 (>51 GB)

Vmatch, PacBio Aligner

Binary Search

Suffix Array
(>15 GB)

Brute Force
(3 GB)

Naive

Slow & Easy

BANANA!
BAN!!
 ANA!
 NAN!
 ANA!

Algorithms Summary
•  Algorithms choreograph the dance of data inside the machine

•  Algorithms add provable precision to your method
•  A smarter algorithm can solve the same problem with much less work

•  Techniques
•  Binary search: Fast lookup in any sorted list
•  Divide-and-conquer: Split a hard problem into an easier problem
•  Recursion: Solve a problem using a function of itself
•  Randomization: Avoid the demon
•  Hashing: Storing sets across a huge range of values
•  Indexing: Focus on the search on the important parts

•  Different indexing schemes have different space/time features

•  Data Structures
•  Primitives: Integers, Numbers, Strings
•  Lists / Arrays / Multi-dimensional arrays
•  Trees
•  Hash Table

Algorithmic Complexity

0 50 100 150 200

1
10

10
0

10
00

10
00

0

Algorithm Runtimes

n

ru
nt

im
e

2^n
n^2
n log n
n
log(n)

0 50 100 150 200

0
20

00
40

00
60

00
80

00
10

00
0

Algorithm Runtimes

n

ru
nt

im
e

2^n
n^2
n log n
n
log(n)

What is the runtime as a function of the input size?

Next Time

•  In-exact alignment

–  Smith & Waterman (1981) Identification of Common Molecular Subsequences. J. of
Molecular Biology. 147:195-197.

•  Sequence Homology
–  Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment

search tool. J of Molecular Biology. 215 (3): 403–410.

•  Whole Genome Alignment
–  A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, and S.L. Salzberg

(1999) Alignment of Whole Genomes. Nucleic Acids Research (27):11 2369-2376.

Thank You!

http://schatzlab.cshl.edu
@mike_schatz

Supplemental

BWM
$GATTTACA!
A$GATTTAC!
ACA$GATTT!
ATTTACA$G!
CA$GATTTA!
GATTTACA$!
TACA$GATT!
TTACA$GAT!
TTTACA$GA!

Cyclic Rotations
GATTTACA$!
ATTTACA$G!
TTTACA$GA!
TTACA$GAT!
TACA$GATT!
ACA$GATTT!
CA$GATTTA!
A$GATTTAC!
$GATTTACA!

Original: GATTTACA

BWT: ACTGA$TTA

