
Molecular Biology, Computers & Unix 
Michael Schatz 
 
 
 
 
 
Aug 29, 2012 
QB Bootcamp Lecture 1 



Schatz Lab Overview 

Computation 

Modeling 

Human Genetics 

Plant Genomics 

Sequencing 



Milestones in Molecular Biology 

 
Versuche über Pflanzen-Hybriden. Verh. Naturforsch (Experiments in Plant Hybridization) 
Mendel, G. (1866). Ver. Brünn 4: 3–47 (in English in 1901, J. R. Hortic. Soc. 26: 1–32). 

http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization 

Observations of 29,000 pea plants and 7 traits 



Milestones in Molecular Biology 

Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid 
Watson JD, Crick FH (1953). Nature 171: 737–738. 

The origin and behavior of mutable loci in maize 
McClintock, B (1950) Proceedings of the National Academy of Sciences. 36:344–55. 



Milestones in Molecular Biology 

1977 
1st Complete Organism 
Bacteriophage φX174 

5375 bp 

Radioactive Chain Termination  
5000bp / week / person 

 
http://en.wikipedia.org/wiki/File:Sequencing.jpg 

http://www.answers.com/topic/automated-sequencer 

Nucleotide sequence of bacteriophage φX174 DNA 
Sanger, F. et al. (1977) Nature. 265: 687 - 695 



Milestones in Molecular Biology 

1995  
Fleischmann et al. 

1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2000  
Myers et al. 

1st Large WGS Assembly. 
Celera Assembler. 116 Mbp 

2001 
 Venter et al. / IHGSC  

Human Genome 
Celera Assembler. 2.9 Gbp 

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. 
"The machine was so revolutionary that it could decode in a single day the same amount 
of genetic material that most DNA labs could produce in a year. " J. Craig Venter 



Milestones in Molecular Biology 

2004 
454/Roche 

Pyrosequencing 
Current Specs (Titanium):  
1M 400bp reads / run =  

1Gbp / day 

2007 
Illumina 

Sequencing by Synthesis 
Current Specs (HiSeq 2000):  

2.5B 100bp reads / run =  
60Gbp / day 

2008 
ABI / Life Technologies 

SOLiD Sequencing 
Current Specs (5500xl):  
5B 75bp reads / run =  

30Gbp / day 



Milestones in Molecular Biology 
There is tremendous interest to sequence: 
 

•  What is your genome sequence?  
•  How does your genome compare to my genome? 

•  Where are the genes and how active are they? 
•  How does gene activity change during development? 
•  How does splicing change during development? 

•  How does methylation change during development? 
•  How does chromatin change during development? 
•  How does is your genome folded in the cell? 
•  Where do proteins bind and regulate genes? 

•  What virus and microbes are living inside you? 
•  How has the disease mutated your genome? 
•  What drugs should we give you? 

•  … 



Sequencing Centers 

Next Generation Genomics: World Map of High-throughput Sequencers 
http://pathogenomics.bham.ac.uk/hts/ 

Worldwide capacity exceeds 15 Pbp/year 



DNA Data Tsunami 

"Will Computers Crash Genomics?"  
Elizabeth Pennisi (2011) Science. 331(6018): 666-668.  

Sequencing capacity is growing at ~5x per year! 
Similar exponential rises across biology: Imaging, mass spec, spike trains, etc… 



Modern Biology Challenges 
The foundations of biology will continue to be 
observation, experimentation, and interpretation 
–  Technology will continue to push the frontier 
–  Measurements will be made digitally over large populations,    

at extremely high resolution, and for diverse applications 
 
 

Rise in Quantitative and Computational Demands 
 

1.  Experimental design: selection, collection & metadata 

2.  Observation: measurement, storage, transfer, computation 

3.  Integration: multiple samples, assays, analyses 

4.  Discovery: visualizing, interpreting, modeling 

Ultimately limited by the human capacity to execute 
extremely complex experiments and interpret results 



Outline 

Part 1: Overview & Fundamentals 
•  Overview of Computer Systems 
•  Unix and Scripting Primer 

 
Part 2: Sequence Analysis Theory 
 
Part 3: Genomics Resources 
 
Part 4: Example Analysis 
 



How do we draw conclusions? 

•  Comparison & Correlations: How does X compare to Y? 

 

•  Modeling & Predictions: How will X respond to Y? 

 

X Y 

Exomes of kids with autism Exomes of kids that do not 

Genomes of Europeans Genomes of non-Europeans, mammals, … 

Gene expression in mutants Gene expression in wild type 

Firing patterns of mutant fly neurons Firing patterns of wild type 

X Y 

Mutant tomatoes Increased temperatures 

Human Microbiome Probiotic treatments 

Gene expression in mice Knockout of transcription factor 

Firing rate in flies Decreased sodium levels 



How do we DRAW conclusions? 

-902.473!
242.817!

-872.453!
73.9297!
236.169!
46.7525!
975.014!
716.563!

-533.971!
-120.282!

725.12!
-736.76!
176.156!
189.224!
1847.46!

-159.099!
-56.4754!
-973.626!

1181.9!
-315.455!
-1480.43!
215.293!

-747.505!
682.577!

…!

Histogram Scatterplot Heatmap 

Data and data transformations are ubiquitous in science 
Data are too numerous and transformations are too complex to do by hand 
==> Mendel: 100k observations, 10 years 
==> HiSeq 2000: 600B observations, 10 days 
==> Make friends with your computational tools 
 



What is a computer? 
[hardware] 

Processor 
Arithmetic, logic 

# cores, clock speed 

Display 
Human Interface 

Network 
Computer Interface 

Home: 10Mb/s, CSHL: 1Gb/s 

RAM 
Working Storage – 8 GB 
(small, fast, expensive) 

Hard Drive 
Permanent Storage – 1TB 

(big, slow, cheap) 



What is a computer? 
[software] 

Operating System 
Mission Control 

Windows, Mac, Unix, iOS 

Office Applications 
Presentations, Documents 
Simple statistics and plots Files / Data 

Papers, sequences, 
measurements 

Scientific Applications 
Specialized Analysis 

Commercial 

Code / Scripts 
Research Applications 

Academic 



How does scientific software operate? 

•  The software we need to run is very specialized, there is no ‘analyze genome’ 
button in Excel 
•  Data files are huge, so probably wouldn’t want one anyways 

•  It takes a lot of work (and time/money) to create a graphical interface to 
software, so most scientific software uses a ‘command line’ interface 
•  Important to become comfortable using command line tools 

•  Scientific analyses tend to use workflows consisting of several applications 
where the output of one phase becomes the input to the next 
•  Develop a workflow for dataset X, apply again to dataset Y 

Input: 

Raw data, 
Parameters 

Program 
A 

Output 1: 
Intermediate 

Result 

Program 
B 

Output 2: 
Final Result 



Where is the command line? 

•  Your Mac has a very powerful command line interface hidden just beneath the 
graphical environment 
•  This command line interface is (basically) the same as that used by our 

scientific cluster BlueHelix 
•  Big data files are stored on our central storage system BlueArc 

•  This environment has a universe of programs you can use to manipulate files 
and data in novel ways 
•  Learning to use this environment is a lot like learning a new language 
•  http://korflab.ucdavis.edu/Unix_and_Perl/index.html 



File Hierarchy 
Files are stored in nested directories (folders) that form a tree 
•  The top of the tree is called the root, and is spelled ‘/’ 

•  Your home directory (on mac) is at  
 /Users/username 
 

•  Command line tools are at 
/bin/ 
/usr/bin/ 
/usr/local/bin/ 
 

•  A few special directories have shortcuts 
~ = home directory 
~bob= bob’s home directory 
.   = current working directory 
..  = parent directory 
-  = last working directory 

 



Working with the shell 

Command Effect 

Left/Right arrow Edit your current command 

Up/Down arrow Scroll back and forth through your command history 

Control-r Search backwards through your command history 

history What commands did I just run? 

Control-c Cancel the command 

Control-u Clear the current line 

Control-a, Control-e Jump to the beginning and end of the line 

•  The shell is interactive and will attempt to complete your command as soon 
as you press enter 

$ pwd!
/Users/mschatz!
!
$ echo “Hello, World”!

Hello, World 
 
•  Here are a few shortcuts that will make your life easier 



Working with files and directories 

•  Create directories and copies of the working files 
$ mkdir myfiles!
$ cd myfiles/!
$ cp ../At_* .!
$ ls -l!
total 111648!
-rw-r--r--@ 1 mschatz  staff  39322356 Nov  8 01:37 At_genes.gff!
-rw-r--r--@ 1 mschatz  staff  17836225 Nov  8 01:37 At_proteins.fasta!

 
•  Rename files 
$ mv At_genes.gff Arabidopsis_genes.gff!

 
•  See how long the files are 
$ wc -l *!
  531497 Arabidopsis_genes.gff!
  214021 At_proteins.fasta!
  745518 total!

•  Clean up!
$ cd ..!
$ rm -rf myfiles/!

WARNING!!! Always double check rm 



Editing Files 

•  You can open files from the shell using “regular” applications by their extension 
$ cp At_genes.gff At_genes.gff.txt!
$ open At_genes.gff.txt!
$ open .!
$ open /Applications/Microsoft\ Office\ 2011/Microsoft\ Word.app/!

•  It is often helpful (or necessary) to edit files within the terminal!
$ nano At_genes.gff!
!
!
Basic nano commands 
•  Type to make edits 
•  Arrows to move 
•  Control-O to save 
•  Control-X to exit 
•  Control-G for help 
 
Advanced text editors: 
•  vi  
•  emacs 



Working with text files 
•  Display the first few lines of a file 
$ head -5 At_proteins.fasta !
>AT1G51370.2 | Symbols:  | F-box family protein | chr1:19049283-19050416 FORWARD!
MVGGKKKTKICDKVSHEEDRISQLPEPLISEILFHLSTKDSVRTSALSTKWRYLWQSVPGLDLDPYASSNTNTIVSFVES!
FFDSHRDSWIRKLRLDLGYHHDKYDLMSWIDAATTRRIQHLDVHCFHDNKIPLSIYTCTTLVHLRLRWAVLTNPEFVSLP!
CLKIMHFENVSYPNETTLQKLISGSPVLEELILFSTMYPKGNVLQLRSDTLKRLDINEFIDVVIYAPLLQCLRAKMYSTK!
NFQIISSGFPAKLDIDFVNTGGRYQKKKVIEDILIDISRVRDLVISSNTWKEFFLYSKSRPLLQFRYISHLNARFYISDL!
!

•  Show the first few proteins names in the file 
$ grep '>' At_proteins.fasta | head -5!
>AT1G51370.2 | Symbols:  | F-box family protein | chr1:19049283-19050416 FORWARD!
>AT1G50920.1 | Symbols:  | GTP-binding protein-related | chr1:18874223-18876238 FORWARD!
>AT1G36960.1 | Symbols:  | similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G25600.1) | chr1:14017237-14017949 FORWARD!
>AT1G44020.1 | Symbols:  | DC1 domain-containing protein | chr1:16719132-16721096 REVERSE!
>AT1G15970.1 | Symbols:  | methyladenine glycosylase family protein | chr1:5486538-5488488 REVERSE!

•  Count how many proteins are present, excluding hypothetical proteins 
$ grep '>' At_proteins.fasta | wc -l!
   32825!
$ grep '>' At_proteins.fasta | grep -v 'hypothetical' | wc -l!
   31267!



Working with text files 2 
•  Create a file of just hypothetical proteins 
$ grep '>' At_proteins.fasta | grep 'hypothetical' > hypotheticals!
$ wc -l hypotheticals !
    1558 hypotheticals!
!

•  Count hypotheticals per chromosome 
$ cut -f4 -d'|' hypotheticals | head -3!
 chr1:11437249-11439801 FORWARD!
 chr1:5167349-5168146 REVERSE!
 chr1:16717096-16717944 FORWARD!
!
$ cut -f4 -d'|' hypotheticals | cut -f1 -d':' | head -3!
 chr1!
 chr1!
 chr1!
!
$ cut -f4 -d'|' hypotheticals | cut -f1 -d':' | sort | uniq -c!
 382  chr1!
 234  chr2!
 260  chr3!
 204  chr4!
 384  chr5!
   9  chrC!
  84  chrM!
   1 CAB12631.1 (PTHR11061! What happened here? 



Working with compressed archives 
•  Data files are huge! Compress them with gzip to save space 
 

$ ls -l At_genes.gff!
-rw-r--r--@ 1 mschatz  staff  39322356 Jul  9  2009 At_genes.gff!
!
$ gzip At_genes.gff ! ! ! ! ! ! ! ! ! ! ! !!
$ ls -l At_genes.gff.gz !
-rw-r--r--@ 1 mschatz  staff  4601740 Jul  9  2009 At_genes.gff.gz!
$ echo "scale=4; 1-4601740/39322356" | bc!
.8830!
!
$ gzcat At_genes.gff.gz | grep –c mRNA! ! ! ! !  ! ! !!
$ gunzip At_genes.gff.gz ! ! ! ! ! ! ! ! ! ! !!
!

!
!

•  Use tar to compress and bundle a set of files 
$ du -h Arabidopsis/!
 95M! Arabidopsis/!
$ tar czvf Arabidopsis.tar.gz Arabidopsis/! ! ! ! ! ! !!
$ ls -lh Arabidopsis.tar.gz !
-rw-r--r--  1 mschatz  staff    25M Aug 27 14:27 Arabidopsis.tar.gz!
$ tar xzvf Arabidopsis.tar.gz! ! ! ! ! ! ! ! !!
!

Save 88% of the space! 

Save 73% of the space! 

du recursively prints the 
sizes of directories 

Stream through the compressed file 
Or unzip it 



Monitoring Processes 

•  Unix systems can run many commands and by many users at once 
•  Especially useful for commands that run for a long time 
•  Especially useful for servers that have special resources 

$ ps!
 PID TTY           TIME CMD!
60820 ttys000    0:00.30 /bin/bash!
!
$ ps aux | head -3!
USER       PID  %CPU %MEM      VSZ    RSS   TT  STAT STARTED      TIME COMMAND!
root     21527   1.7  0.1  3129268   5692   ??  Ss   11Jul12 679:00.75 /
Library/Application Support/iStat local/iStatLocalDaemon!
mschatz  62928   1.6  1.4  2986576 119648   ??  S    31Jul12 895:05.37 /
System/Library/CoreServices/SystemUIServer.app/Contents/MacOS/SystemUIServer!

•  Monitor use of the system 
!
$ top!

(press q to quit) 
 



Background Processes 

•  Any number of processes can run in the background 
•  Use the ampersand (&) to launch a process into the background 
•  Alternatively use control-z to pause a process, then use ‘bg’ 

!
$ du -a /!
(control-c to cancel)!
!
$ du -a / | sort -nrk1 > ~/filesizes.txt !
(control-z to stop)!
$ bg!
$ du –a / | sort –nrk1 > ~/filesizes.txt.2 &!

•  List running jobs associated with this shell 
$ jobs!
$ fg %1!
(control-z to stop)!
$ bg!

•  Kill off run-away commands!
$ ps!

$ kill 61110! ! ! ! ! ! !61110 is the process id I want to kill 
$ kill -9 61110 ! ! ! ! ! !kill -9 for really stubborn processes 
 
 



Working with remote servers 

•  Use SSH to connect to a remote server 
$ ssh mschatz@bhdev1.cshl.edu!

•  The server runs UNIX, and the standard commands are available 
$ ls –l | sort –nrk5 | head -3!
$ who!

 
•  There are special lab directories for CSHL users (> 1PB of storage total) 
$ df –h /data/schatz* /data/wig*!

•  Your lab may have special commands available 
$ ls /data/schatz/software/bin/!
$ /data/schatz/software/bin/samtools!

•  Typing out the full path for every command is a pain, edit your bashrc!
$ nano ~/.bashrc!

 
(at the bottom add:  export PATH=~/bin:/data/schatz/software/bin/:$PATH) 
Control-o to save 
 

See: http://intranet.cshl.edu/it/bluehelix/ for details on the shared cluster 



Files and permissions 

•  Every file has an owner and a group, you can only read/write to a file if you 
have permission to do so 

$ pwd!
/Users/mschatz/Desktop/Unix_and_Perl_course/Data/Arabidopsis!
!
$ ls -l!
total 193976!
-rw-r--r--@ 1 mschatz  staff  39322356 Jul  9  2009 At_genes.gff!
-rw-r--r--@ 1 mschatz  staff  17836225 Oct  9  2008 At_proteins.fasta!
-rw-r--r--@ 1 mschatz  staff  30817851 May  7  2008 chr1.fasta!
-rw-r--r--@ 1 mschatz  staff  11330285 Jul 10  2009 intron_IME_data.fasta!

 
•  These files can be read by anyone, but only written by me 

•  Change permissions with ‘chmod’ 
!
$ chmod g+w At_*! ! ! !!
$ man chmod!

 
•  Programs and scripts have the execute bit set 

$ ls -l /bin/ls!
-r-xr-xr-x  1 root  wheel  80688 Feb 11  2010 /bin/ls*!



Programming Basics: Loops 
•  A bash script is just a list of commands 

$ cat simple_script.sh !
#!/bin/sh!
!
echo "Hello, World”!
echo "Shall we play a game?”!
!
$ chmod +x simple_script.sh!
$ ./simple_script.sh!
!

[What does this do?] 



Programming Basics: Loops 
•  A bash script is just a list of commands 

$ cat simple_script.sh !
#!/bin/sh!
!
echo "Hello, World”!
echo "Shall we play a game?”!
!
$ chmod +x simple_script.sh!
$ ./simple_script.sh!
!

•  Things get interesting when we add variables and loops 

$ cat loop_script.sh !
#!/bin/sh!
!
for name in "Mike" "Justin" "Mickey"!
do!
  echo "Hello, $name" >> authors.txt!
  everyone="$name $everyone"!
done!
echo "Hello: $everyone" >> authors.txt!
!
$ chmod +x loop_script.sh!
$ ./loop_script.sh!
$ ./loop_script.sh!
$ ./loop_script.sh!
!
!
!

[What does this do?] 

[What does this do?] 

Use >> to append 



Programming Basics: Conditionals 
•  Conditionals and loops let us work over any number and type of file 
$ cat conditional_script.sh !
#!/bin/sh!
!
for filename in `/bin/ls * | grep –v ”.sh"`!
do!
  type=`echo $filename | cut -f2 -d'.'`!
  echo "Processing $filename, type is $type"!
  echo "=================="!
!
  if [[ $type == "fasta" ]]!
  then!
    protein_count=`grep -c '>' $filename`!
    hypo_count=`grep -c hypothetical $filename`!
    echo "$filename has $protein_count proteins, $hypo_count are hypothetical"!
  elif [[ $type == "gff" ]]!
  then!
    echo "$filename stats"!
    cut -f3 $filename | sort | uniq -c!
  else!
    echo "Unknown file type"!
  fi!
!
  echo "=================="!
  echo!
done!
!
!

[What does this do?] 

The backtics `<cmd>`  
Let us run commands  
inside of other commands 



Programming Basics: Arguments 
•  The shell defines a few special variables to specify input 
$ cat argument_script.sh !
#!/bin/sh!
!
if [[ $# -lt 2 ]]!
then!
  echo "USAGE: argument_script.sh proteinsfile type_1 .. type_n"!
  exit!
fi!
!
echo "Script was run as: $0"!
echo "First argument is: $1"!
echo "Second argument is: $2”!
!
proteinsfile=$1!
shift!
!
while [ $# -gt 0 ]!
do!
  type=$1!
  shift!
  count=`grep '>' $proteinsfile | grep -c $type`!
  echo "There are $count $type proteins in $proteinsfile”!
done!
!
$ ./argument_script.sh At_proteins.fasta F-box GTP-binding hypothetical!
!
!

$# stores number of arguments 

$0 has script name 
$1-$9 have first 9 arguments 

 
Use shift to access arguments  

Loop until there are no more 
types to consider 



Programming Basics: Functions 
•  A function is a reusable block of code 
$ cat function_script.sh !
#!/bin/sh!
!
function log()!
{!
  date=`date`!
  echo "$date :: $*"!
}!
!
function processFasta()!
{!
  file=$1!
  log "Processing fasta: $file"!
  num=`grep -c '>' $file`!
  log "There are $num sequences"!
}!
!
function processGFF()!
{!
  file=$1!
  log "Processing gff: $file"!
  num=`wc -l $file`!
  log "There are $num records"!
}!

!
!
!
!
!
for file in `/bin/ls *`!
do!
  log "Processing $file"!
!
  type=`basename $file | cut -f 2 -d'.'`!
!
  if [[ $type == "fasta" ]]!
  then!
    processFasta $file!
  elif [[ $type == "gff" ]]!
  then!
    processGFF $file!
  else!
    log "Unknown filetype $type"!
  fi!
done!



Programming Resources 
•  Much like learning a new spoken language, computer languages have their own 

syntax and grammar that will be unfamiliar at first, but get easier and easier 
over time 
•  There are many ways to accomplish the same task 
•  You can quickly become a data magician 

 
•  The way to learn a new computer language is to practice speaking it 

•  The ~30 commands you have seen today can be combined together into 
an infinite number of combinations 

•  Lots of good resources available online: 
•  http://www.molvis.indiana.edu/app_guide/unix_commands.html 
•  http://tldp.org/LDP/abs/html/index.html 
•  http://stackoverflow.com/ 
•  http://google.com 

 
WARNING: Computers are very unforgiving 

•  ‘rm –rf /’ <= delete every file on your computer 
•  ‘cp junk.doc thesis.doc’ <= overwrite your thesis with junk.doc 
•  ‘cat results.partial > results.all’ <= oops, should have appended with >> 



Break 



Hardware review 



Unix Review 
Command Output 

man Look up something in the manual (also try Google) 

ls List the files in the current directory 

cd Change to a different directory 

pwd Print the working directory 

mv, cp, rm Move, copy, remove files 

mkdir, rmdir Make or remove directories 

cat, less, head, tail, cat Display (parts) of a text file 

echo Print a string 

sort, uniq Sort a file, get the unique lines 

find, grep Find files named X, or containing X 

chmod Change permissions on a file 

wc Count lines in a file 

jot / seq Output numbers from 1 to X (on Linux use seq) 

| (pipe), > (redirect) Send output to a different program, different file 



Programming Review 

Variables & Arguments 
 

names=Mike!
names="$names Justin"!
names="$names Mickey"!
echo $names!
!
echo "There are $# arguments: $*"!
shift!
echo "The second argument is $1"!

Conditionals 
 

if [[ $type == "fasta" ]]!
then    !

!num=`grep –c ‘>’ $file`!
 !echo "There are $num seqs"!
elif [[ $type == "gff" ]]!
then!

!num=`wc -l $file`!
    echo "There are $num records"!
else!
    echo "Unknown file type"!
fi!

Loops 
 

rm authors.txt!
for name in Mike Justin Mickey!
do!
    echo $name >> authors.txt!

!c=`cat authors.txt | wc -l`!
!while [ $c -gt 0 ]!
!do!
! !echo $name $c!
! !c=`echo $c-1 | bc`!
!done!

done!

Functions 
 

function log()!
{!
  date=`date`!
  echo “$date :: $*”!
}!
!

for name in Mike Justin James!
do!
  log “Processing $name"!
  echo $name >> authors.txt!
  log "Done with $name”!
done!



Scripting Challenges 
1.  Create 1000 files named mutantA.X.txt with X in [1,1000] that contain the 

numbers 1 to X 
  mutantA.1.txt:  1 
  mutantA.2.txt:  1 2 
  mutantA.3.txt:  1 2 3 
  … 

 

2.  Rename 1000 files named mutantA.X.txt to mutantB.X.txt? 
  mutantA.1.txt => mutantB.1.txt 
  mutantA.2.txt => mutantB.2.txt 
  mutantA.3.txt => mutantB.3.txt 
  … 

 

3.  Identify the files in the given directory that contain a specified keyword and 
copy them to a specified directory 

  ./find_special.sh search_directory 976 destination_directory 
  => cp search_directory/mutantB.976.txt destination_directory 
  => cp search_directory/mutantB.977.txt destination_directory 
  => cp search_directory/mutantB.978.txt destination_directory 
  ... 



Questions? 
 

http://schatzlab.cshl.edu 
 


