Genome Sequencing & Assembly

Michael Schatz

April 21, 2013
CSHL Genome Access

Outline

I. Assembly theory

- I. Assembly by analogy
- 2. De Bruijn and Overlap graph
- 3. Coverage, read length, errors, and repeats

2. Genome assemblers

- I. ALLPATHS-LG, SOAPdenovo, Celera Assembler
- 2. Assemblathon

3. Applications

- I. Whole Genome Alignment with MUMmer
- Gene Finding

Outline

I. Assembly theory

- I. Assembly by analogy
- 2. De Bruijn and Overlap graph
- 3. Coverage, read length, errors, and repeats

2. Genome assemblers

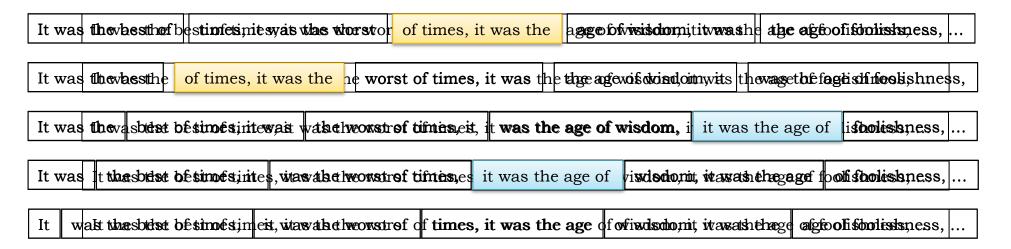
- I. ALLPATHS-LG, SOAPdenovo, Celera Assembler
- 2. Assemblathon

3. Applications

- I. Whole Genome Alignment with MUMmer
- 2. Gene Finding

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
 - Text printed on 5 long spools



- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

It was the best of age of wisdom, it was best of times, it was it was the age of it was the age of it was the worst of of times, it was the of times, it was the of wisdom, it was the the age of wisdom, it the best of times, it the worst of times, it times, it was the age times, it was the worst was the age of wisdom, was the age of foolishness, was the best of times, was the worst of times, wisdom, it was the age worst of times, it was

Greedy Reconstruction

```
It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

times, it was the worst

times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

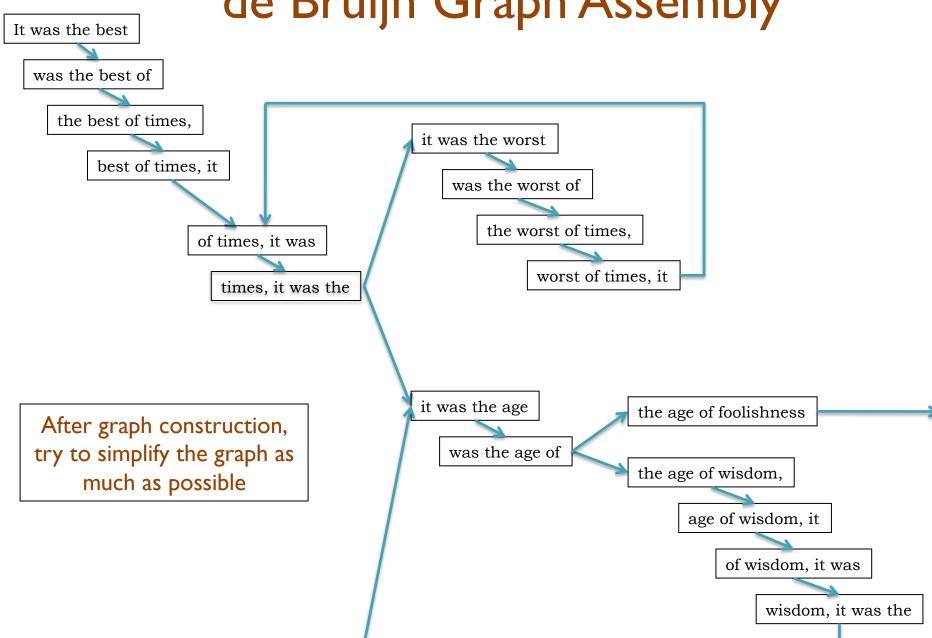
de Bruijn Graph Construction

- $D_k = (V,E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

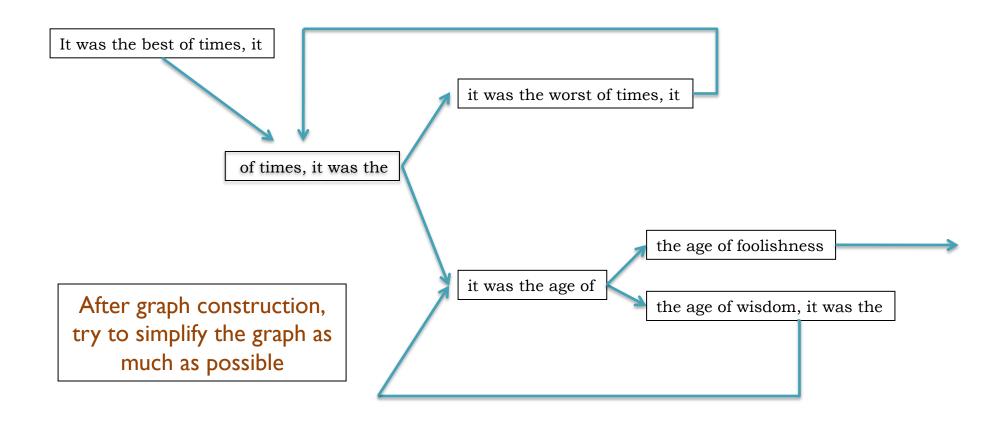
- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

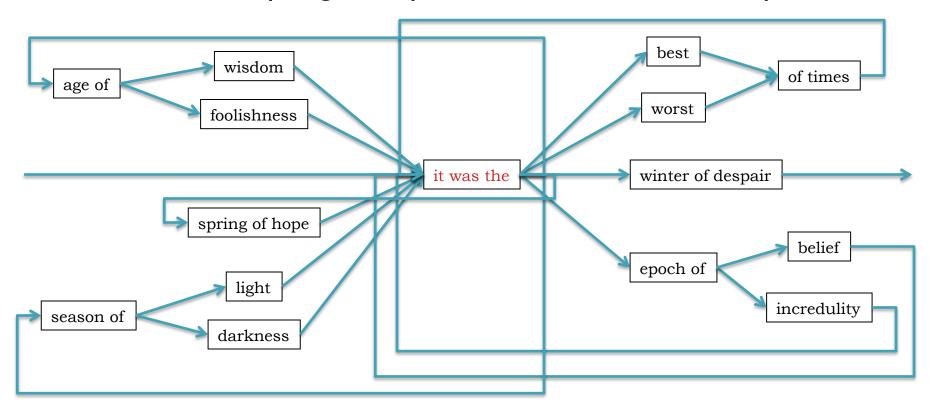


de Bruijn Graph Assembly

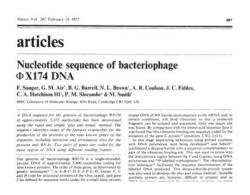


The full tale

- ... it was the best of times it was the worst of times ...
- ... it was the age of wisdom it was the age of foolishness ...
- ... it was the epoch of belief it was the epoch of incredulity ...
- ... it was the season of light it was the season of darkness ...
- ... it was the spring of hope it was the winder of despair ...



Milestones in Genome Assembly



1977. Sanger et al.

1st Complete Organism
5375 bp

2000. Myers et al.

Ist Large WGS Assembly.

Celera Assembler. I 16 Mbp

1995. Fleischmann *et al.*1st Free Living Organism
TIGR Assembler. 1.8Mbp

2001. Venter et al., IHGSC Human Genome Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al. 1st Large SGS Assembly. SOAPdenovo 2.2 Gbp

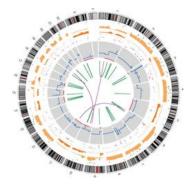
Like Dickens, we must computationally reconstruct a genome from short fragments

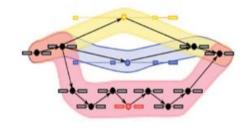
Assembly Applications

Novel genomes

Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly





— ...

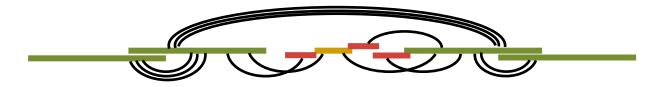
Assembling a Genome

I. Shear & Sequence DNA

2. Construct assembly graph from overlapping reads

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links



Why are genomes hard to assemble?

1. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

(Very) large genomes, imperfect sequencing

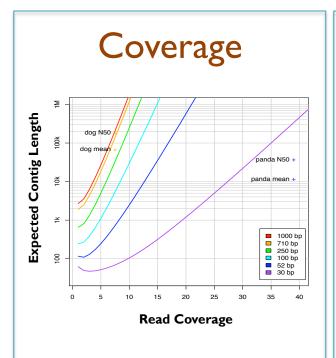
3. Computational:

(Very) Large genomes, complex structure

4. Accuracy:

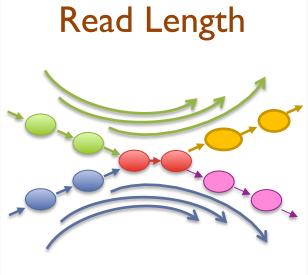
(Very) Hard to assess correctness

Ingredients for a good assembly



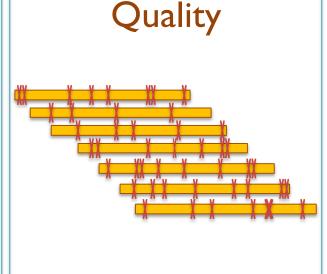
High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly



Reads & mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs



Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243

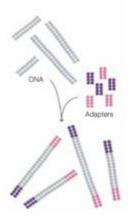
Second Generation Sequencing

2004
454/Roche
Pyrosequencing
Current Specs (Titanium):
IM 400bp reads / run =
IGbp / day

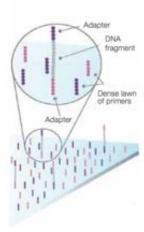
2007
Illumina
Sequencing by Synthesis
Current Specs (HiSeq 2000):
2.5B 100bp reads / run =
60Gbp / day

2008
ABI / Life Technologies
SOLiD Sequencing
Current Specs (5500xl):
5B 75bp reads / run =
30Gbp / day

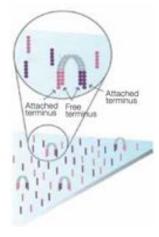
Illumina Sequencing by Synthesis



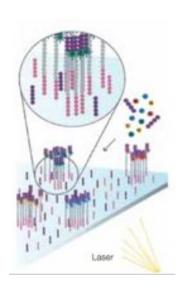
1. Prepare



2. Attach



3. Amplify



4. Image

5. Basecall

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing

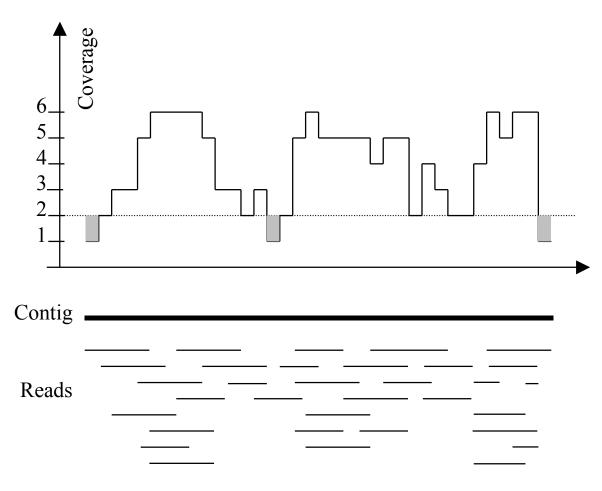
- Circularize long molecules (I-10kbp), shear into fragments, & sequence
- Mate failures create short paired-end reads

10kbp



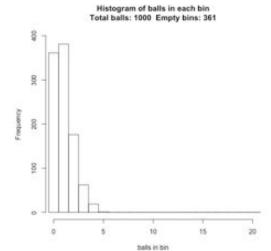
Coverage

Typical contig coverage

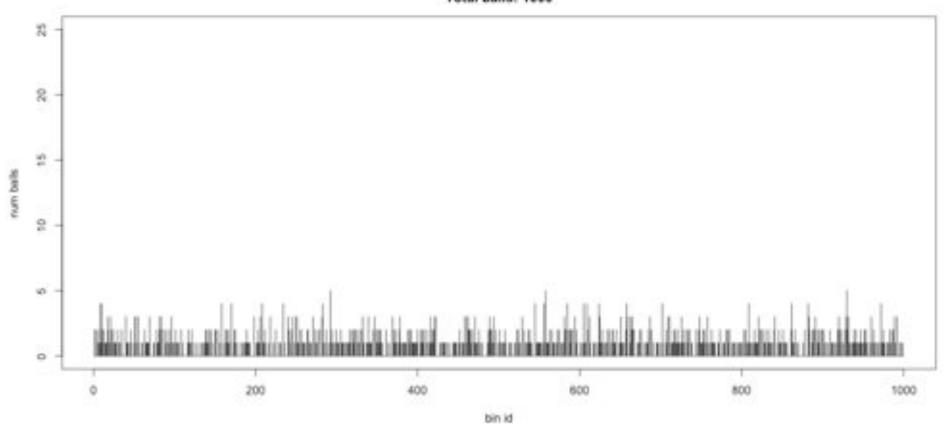


Imagine raindrops on a sidewalk

Balls in Bins Ix

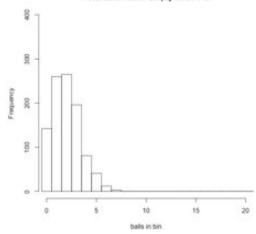


Balls in Bins Total balls: 1000

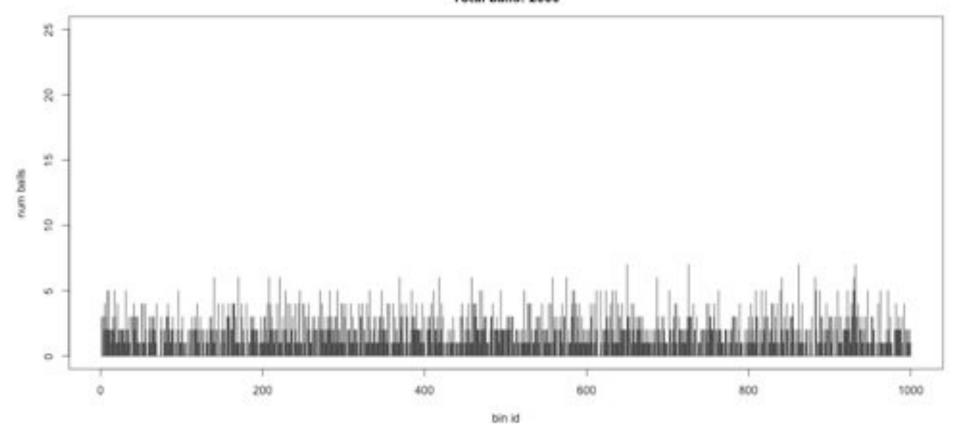


Histogram of balls in each bin Total balls: 2000 Empty bins: 142

Balls in Bins 2x

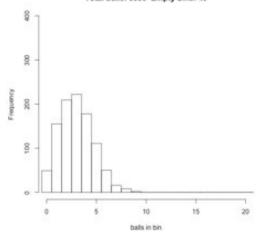


Balls in Bins Total balls: 2000

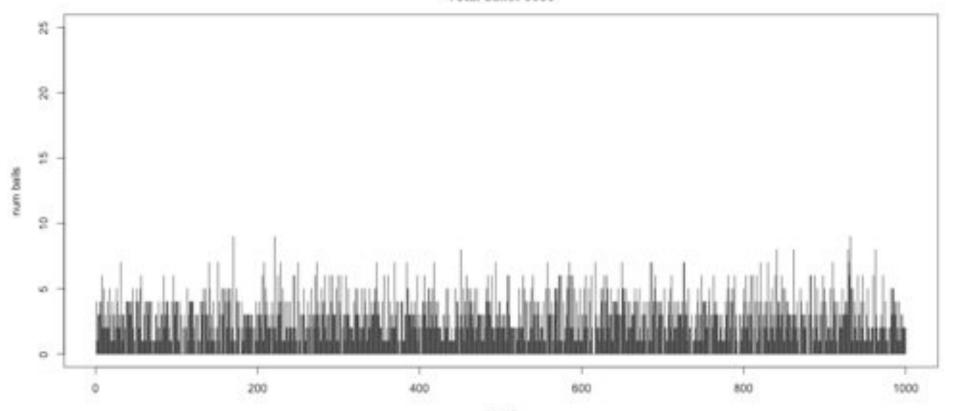


Histogram of balls in each bin Total balls: 3000 Empty bins: 49

Balls in Bins 3x



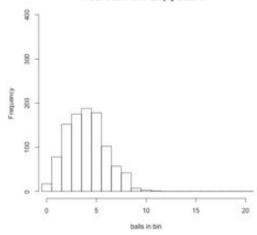
Balls in Bins Total balls: 3000



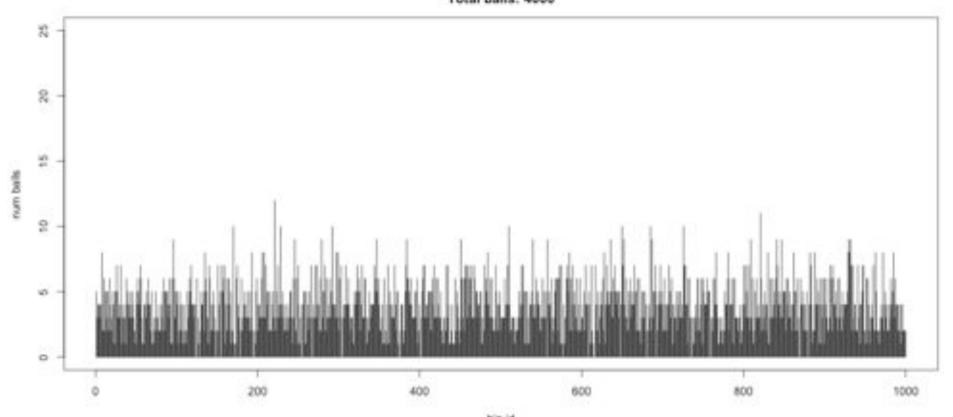
bin id

Histogram of balls in each bin Total balls: 4000 Empty bins: 17

Balls in Bins 4x



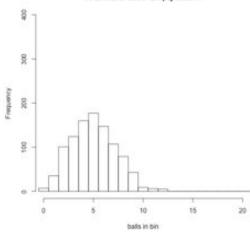
Balls in Bins Total balls: 4000



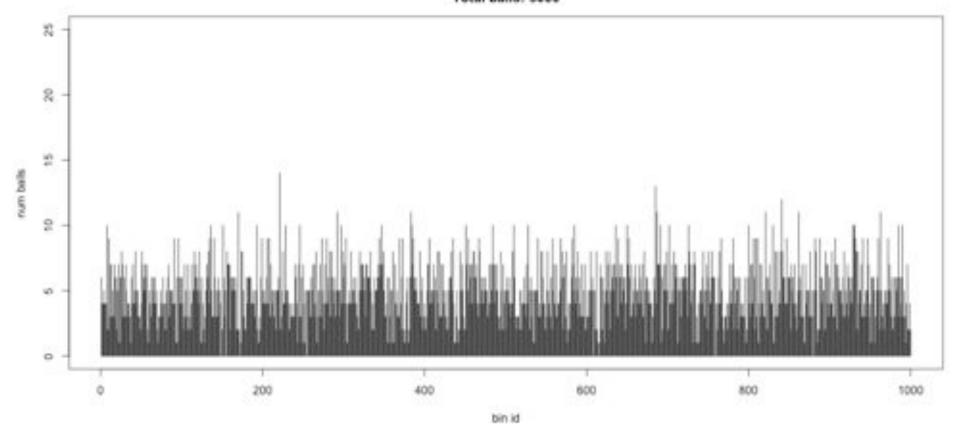
bin id

Histogram of balls in each bin Total balls: 5000 Empty bins: 7

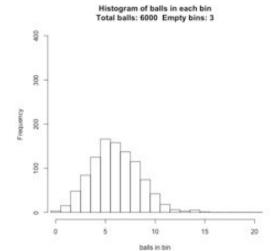
Balls in Bins 5x



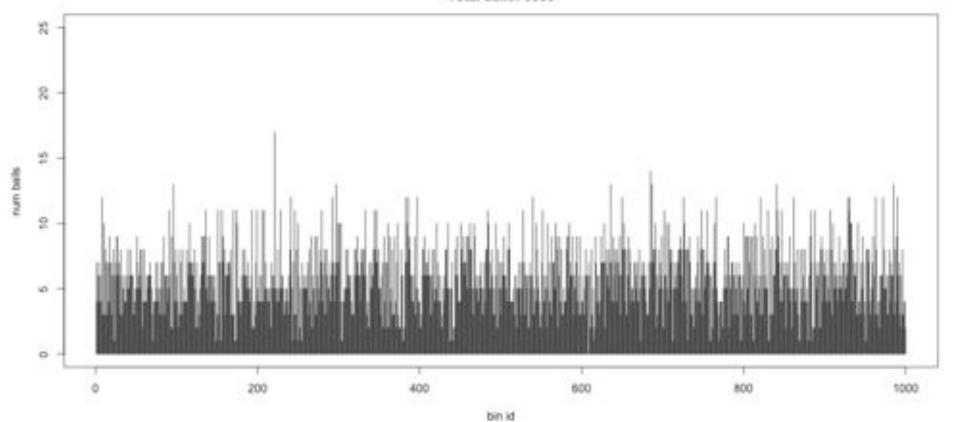
Balls in Bins Total balls: 5000



Balls in Bins 6x

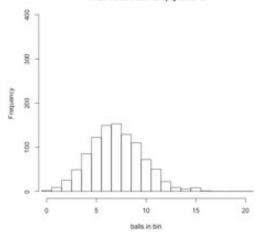


Balls in Bins Total balls: 6000

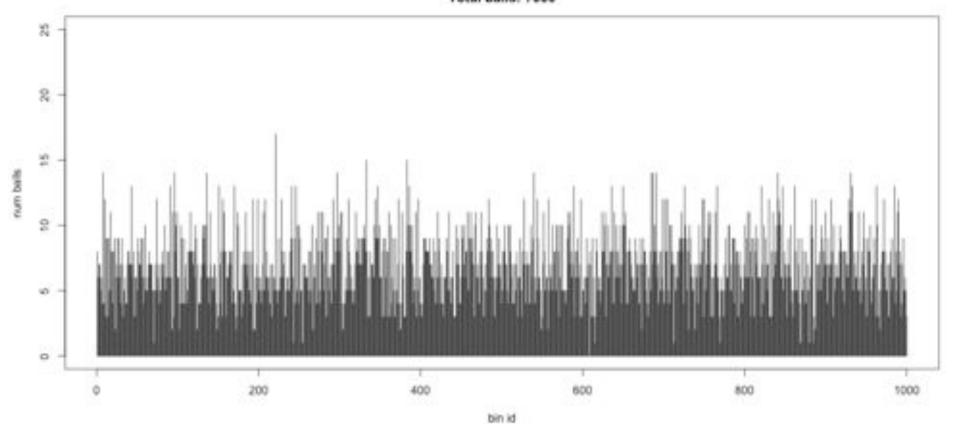


Histogram of balls in each bin Total balls: 7000 Empty bins: 2

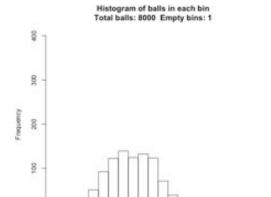
Balls in Bins 7x



Balls in Bins Total balls: 7000



Balls in Bins 8x



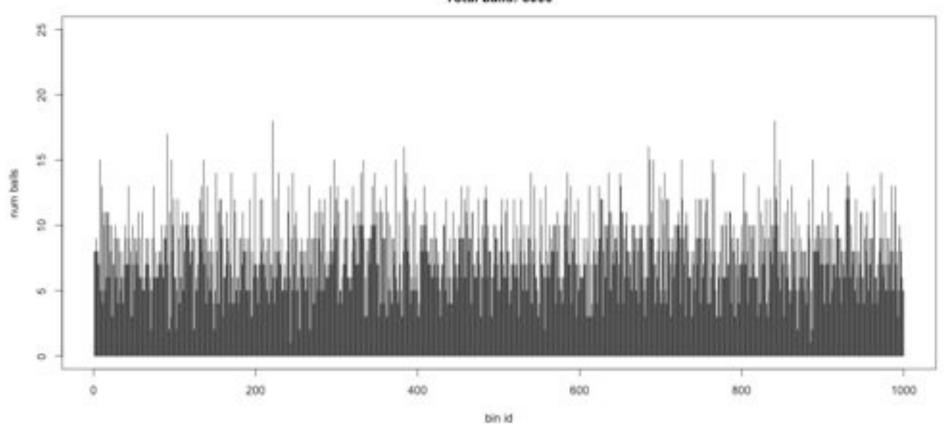
10

balls in bin

15

20

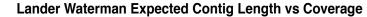
Balls in Bins Total balls: 8000

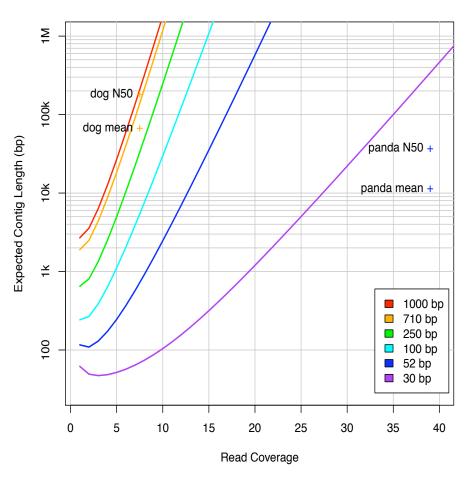


Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
 - Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
 - Recommend 100x coverage

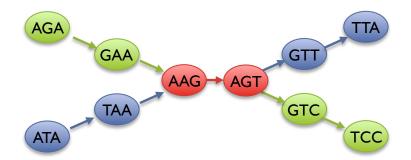




Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

Two Paradigms for Assembly

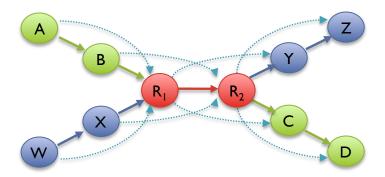
de Bruijn Graph



Short read assemblers

- Repeats depends on word length
- Read coherency, placements lost
- Robust to high coverage

Overlap Graph



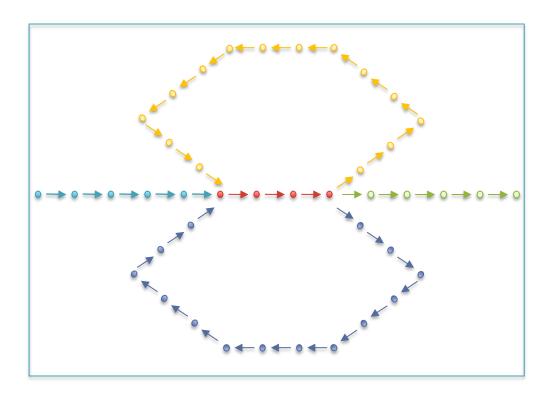
Long read assemblers

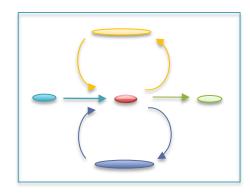
- Repeats depends on read length
- Read coherency, placements kept
- Tangled by high coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.

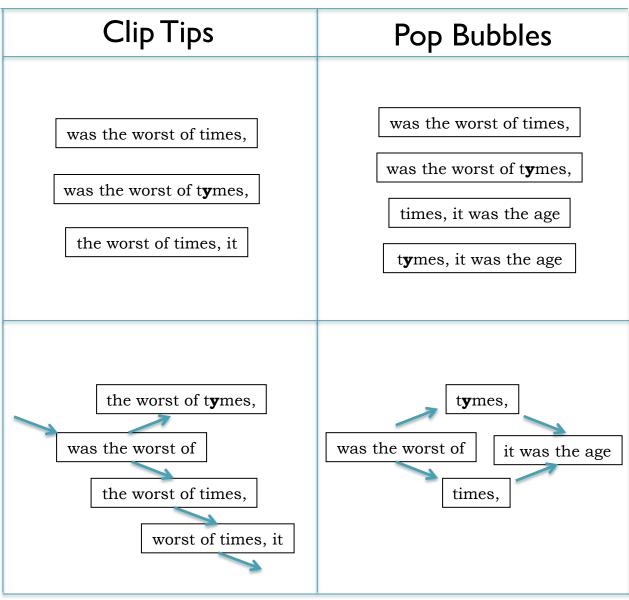
Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"
 - Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats





Errors in the graph



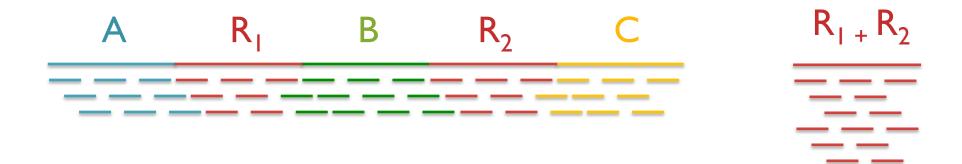
(Chaisson, 2009)

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $1 \le k \le 6$ CACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ty I-copia, Ty 3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
 - Large plant genomes tend to be even worse
 - Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

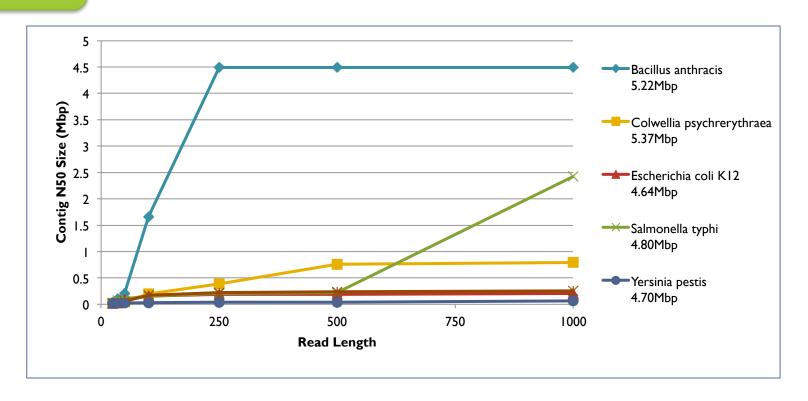


- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat
 - Requires an accurate genome size estimate

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^k \left(\frac{G - X\Delta}{G}\right)^{n-k} \qquad A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^k}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^k}{k!} e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k \ln 2$$

Repeats

Repeats and Read Length



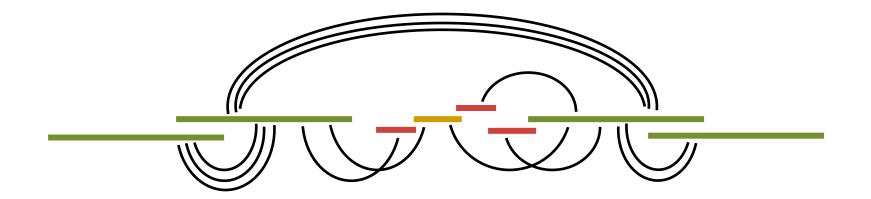
- Explore the relationship between read length and contig N50 size
 - Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000
 - Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads.

Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21.

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC regions
 - Conflicts: sequencing errors, repeat boundaries
- Iteratively resolve longest, 'most unique' contigs
 - Both overlap graph and de Bruijn assemblers initially collapse repeats into single copies
 - Uniqueness measured by a statistical test on coverage



N50 size

Def: 50% of the genome is in contigs as large as the N50 value

N50 size = 30 kbp
$$(300k+100k+45k+45k+30k = 520k >= 500kbp)$$

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Break

Outline

I. Assembly theory

- I. Assembly by analogy
- 2. De Bruijn and Overlap graph
- 3. Coverage, read length, errors, and repeats

2. Genome assemblers

- I. ALLPATHS-LG, SOAPdenovo, Celera Assembler
- 2. Assemblathon

3. Applications

- I. Whole Genome Alignment with MUMmer
- 2. Gene Finding

Assembly Algorithms

ALLPATHS-LG

B(2) D(1) E(2) G(1)

Broad's assembler (Gnerre et al. 2011)

De bruijn graph
Short + PacBio (patching)

Easy to run if you have compatible libraries

http://www.broadinstitute.org/ software/allpaths-lg/blog/

SOAPdenovo

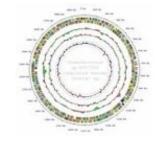
BGI's assembler (Li et al. 2010)

De bruijn graph Short reads

Most flexible, but requires a lot of tuning

http://soap.genomics.org.cn/ soapdenovo.html

Celera Assembler



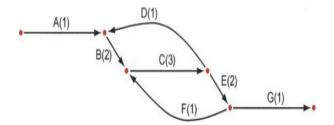
JCVI's assembler (Miller et al. 2008)

Overlap graph

Medium + Long reads

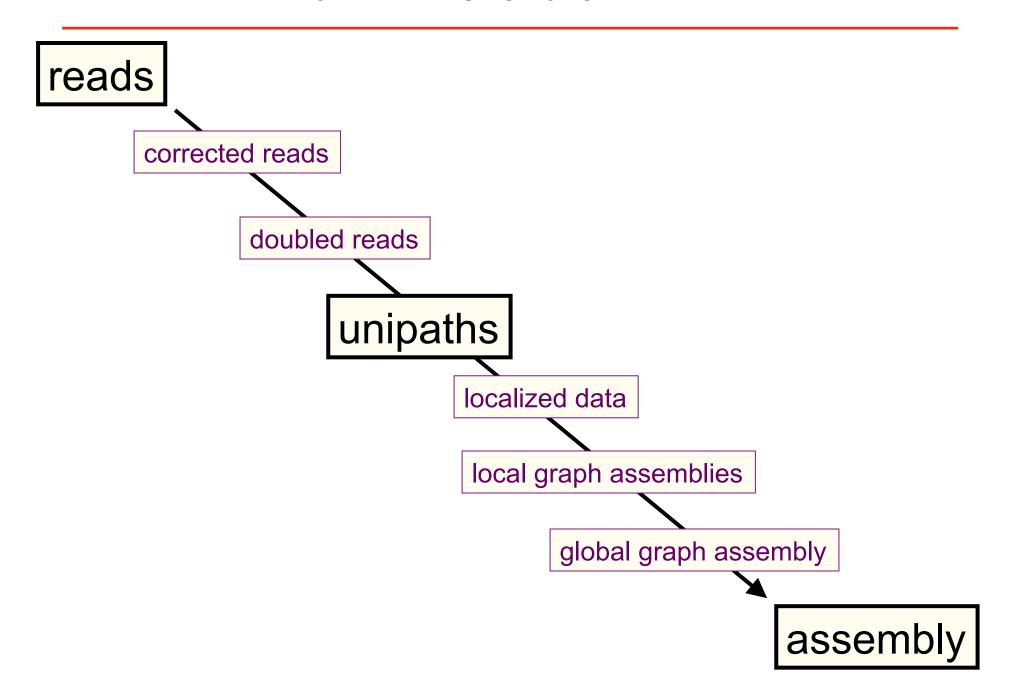
Supports Illumina/454/PacBio Hybrid assemblies

http://wgs-assembler.sf.net



Genome assembly with ALLPATHS-LG lain MacCallum

How ALLPATHS-LG works



ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage (x)	Required
Fragment	180*	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no**
Fosmid jump	40,000	≥ 26	1	no**

^{*}See next slide.

**For best results. Normally not used for small genomes.

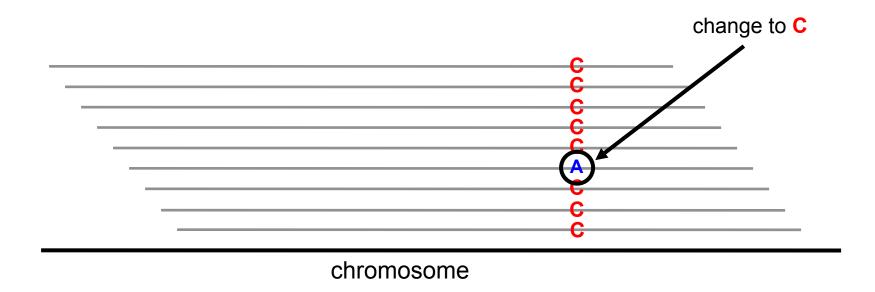
However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

Error correction

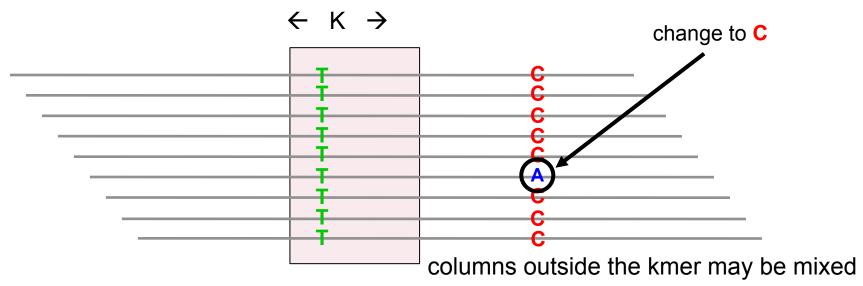
Given a crystal ball, we could stack reads on the chromosomes they came from (with homologous chromosomes separate), then let each column 'vote':



But we don't have a crystal ball....

Error correction

<u>ALLPATHS-LG.</u> For every K-mer, examine the stack of all reads containing the K-mer. Individual reads may be edited if they differ from the overwhelming consensus of the stack. If a given base on a read receives conflicting votes (arising from membership of the read in multiple stacks), it is not changed. (K=24)

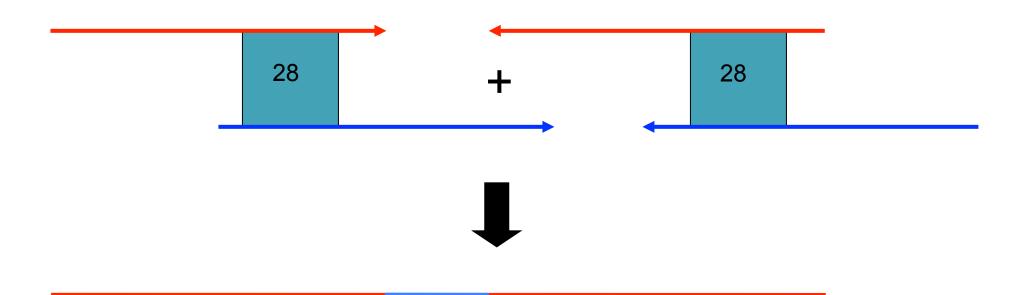


columns inside the kmer are homogeneous

Two calls at Q20 or better are enough to protect a base

Read doubling

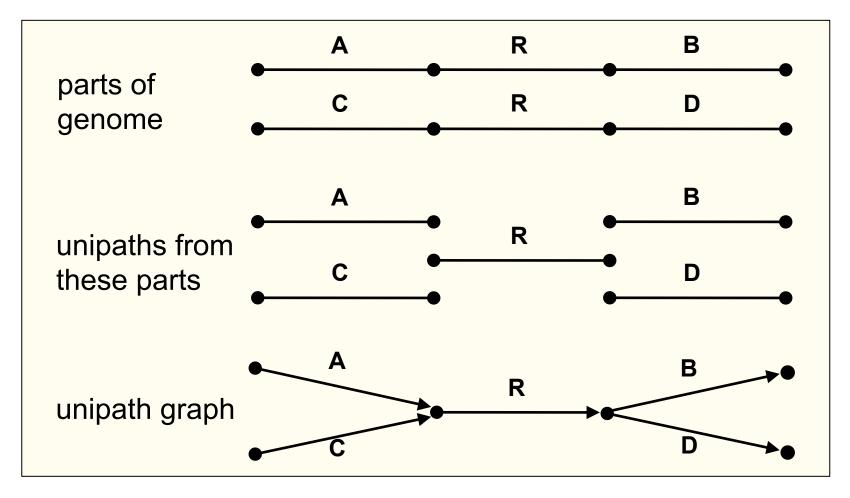
To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:



More than one closure allowed (but rare).

Unipaths

Unipath: unbranched part of genome – squeeze together perfect repeats of size ≥ K

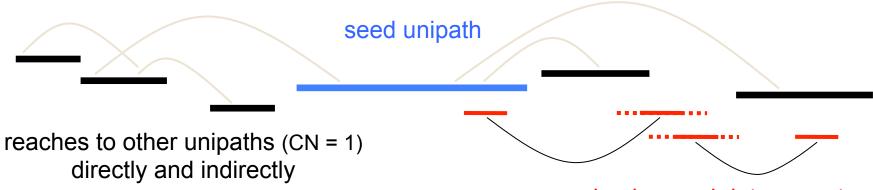


Adjacent unipaths overlap by K-1 bases

Localization

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number CN = 1)

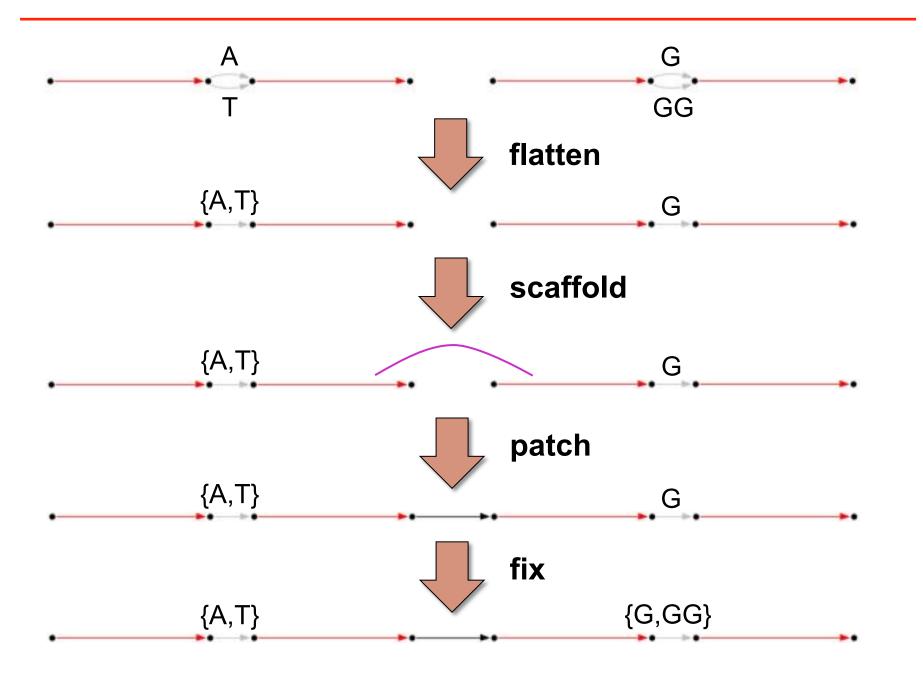
II. Form neighborhood around each seed



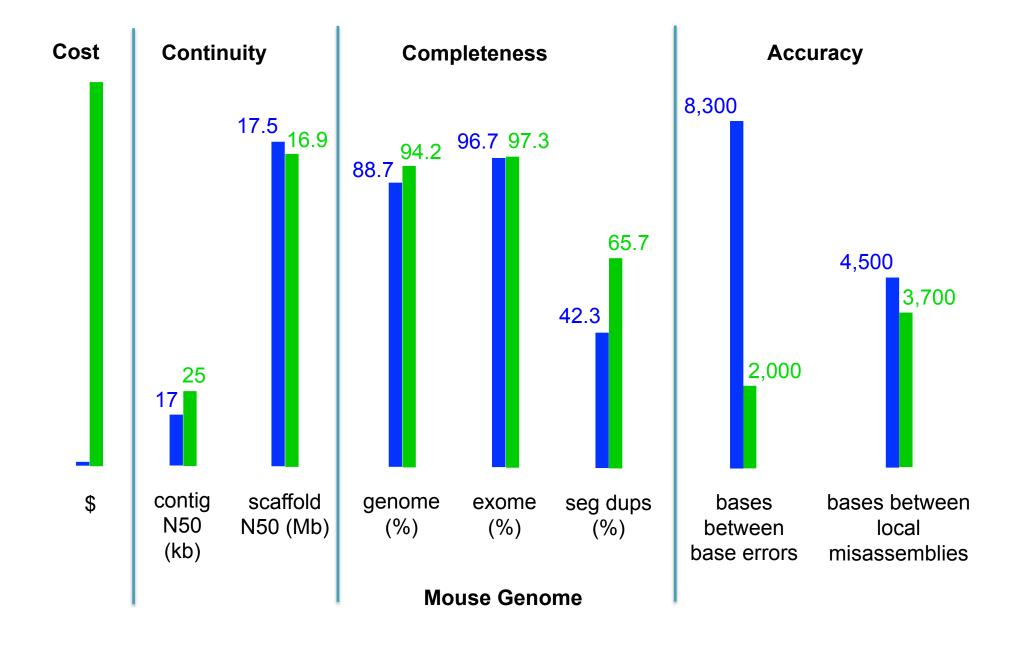
read pairs reach into repeats

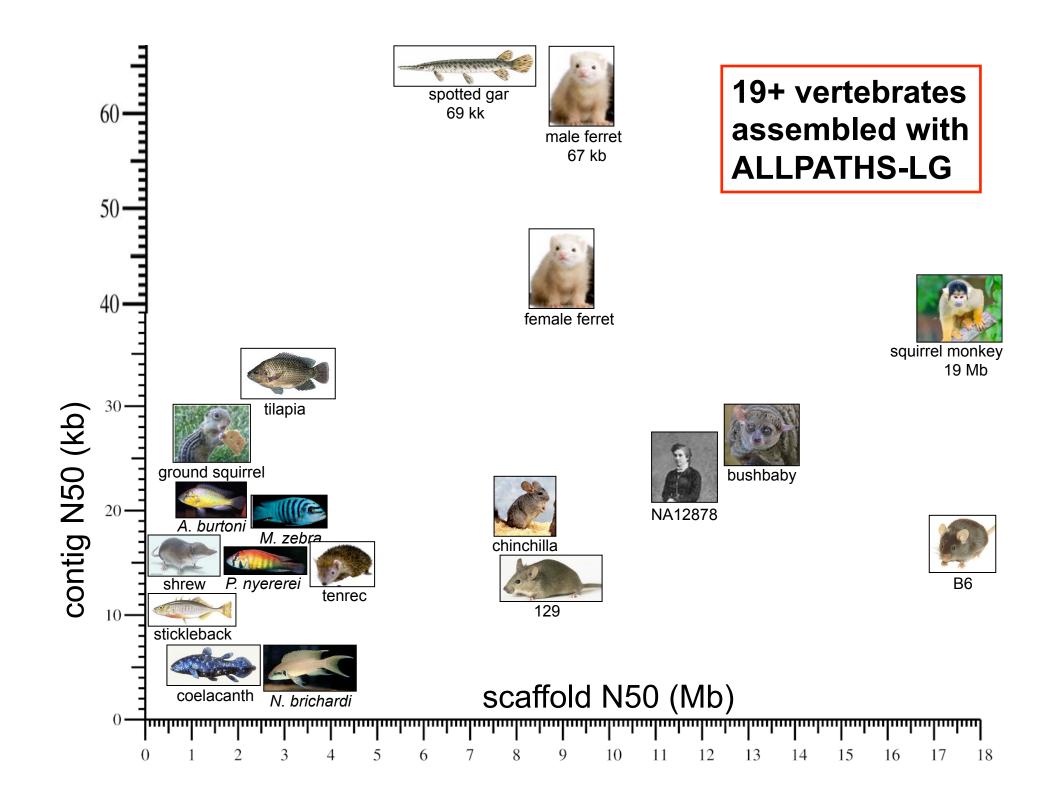
and are extended by other unipaths

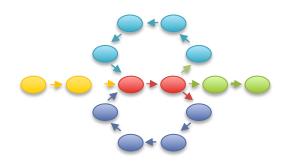
Create assembly from global assembly graph



Large genome recipe: ALLPATHS-LG vs capillary

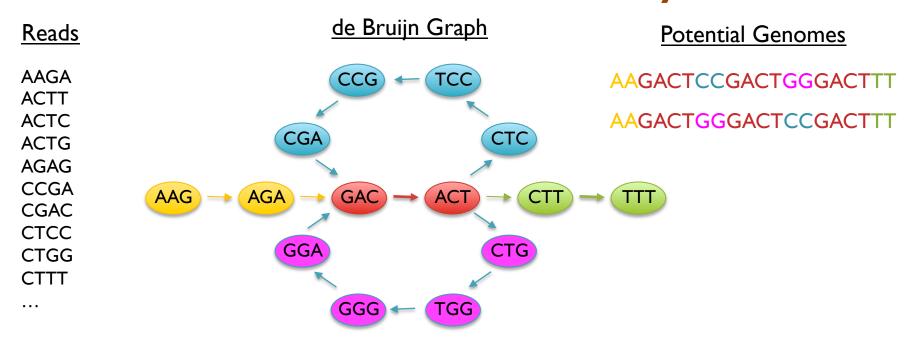






Genome assembly with SOAPdenovo

Short Read Assembly

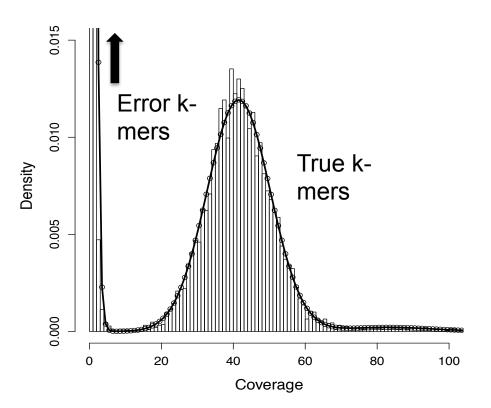


- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 - Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

Error Correction with Quake

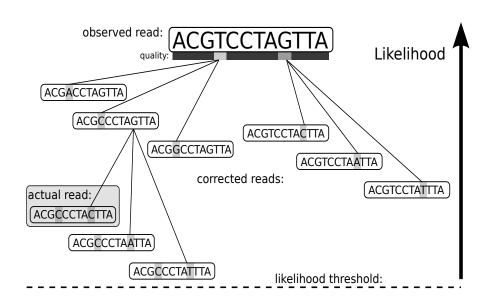
I. Count all "Q-mers" in reads

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically determines threshold for trusted k-mers



2. Correction Algorithm

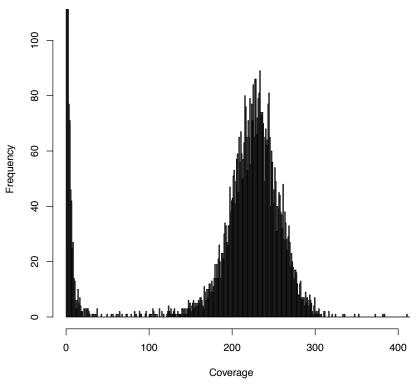
- Considers editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/nucleotide substitution rate



Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg SL (2010) *Genome Biology.* 11:R116

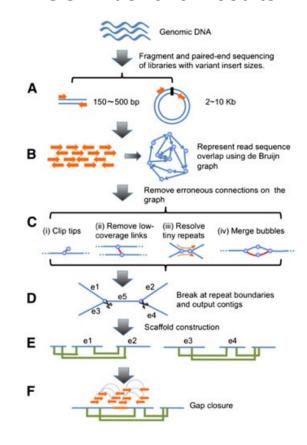
Illumina Sequencing & Assembly

Quake Results 2x76bp @ 275bp 2x36bp @ 3400bp

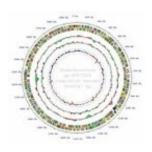


Validated	51,243,281	88.5%
Corrected	2,763,380	4.8%
Trim Only	3,273,428	5.6%
Removed	606,251	1.0%

SOAPdenovo Results



	#≥ I00bp	N50 (bp)
Scaffolds	2,340	253,186
Contigs	2,782	56,374
Unitigs	4,151	20,772

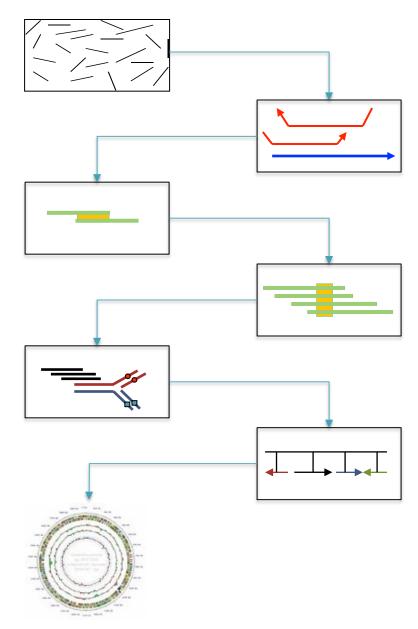


Genome assembly with the Celera Assembler

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences



Hybrid Sequencing

IlluminaSequencing by Synthesis

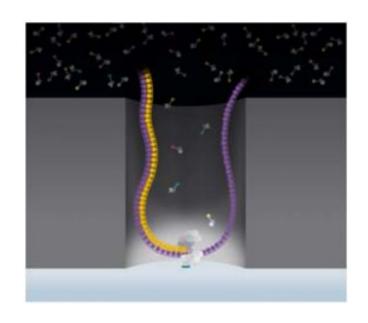
High throughput (60Gbp/day)
High accuracy (~99%)
Short reads (~100bp)

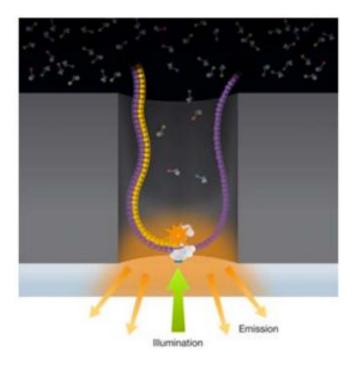
Pacific BiosciencesSMRT Sequencing

Lower throughput (600Mbp/day)
Lower accuracy (~85%)
Long reads (2-5kbp+)

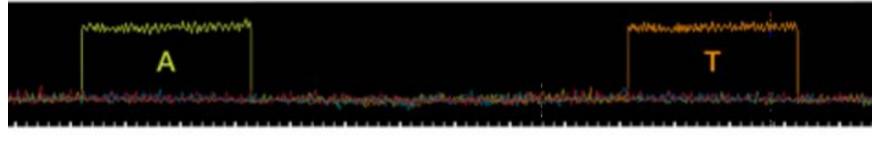
SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).





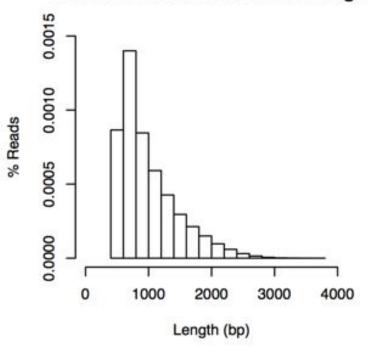
Intensity



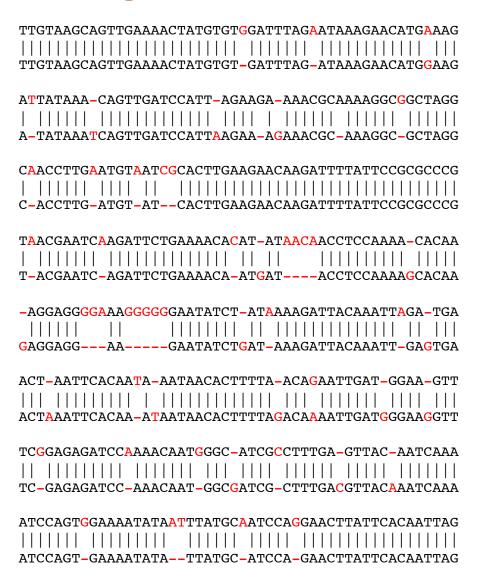
Time

SMRT Sequencing Data

PacBio Pre-Correction Read Length



Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%



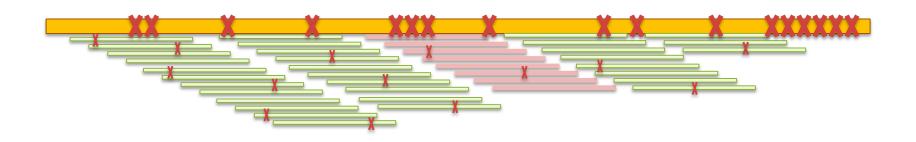
Sample of 100k reads aligned with BLASR requiring >100bp alignment

PacBio Error Correction

http://wgs-assembler.sf.net

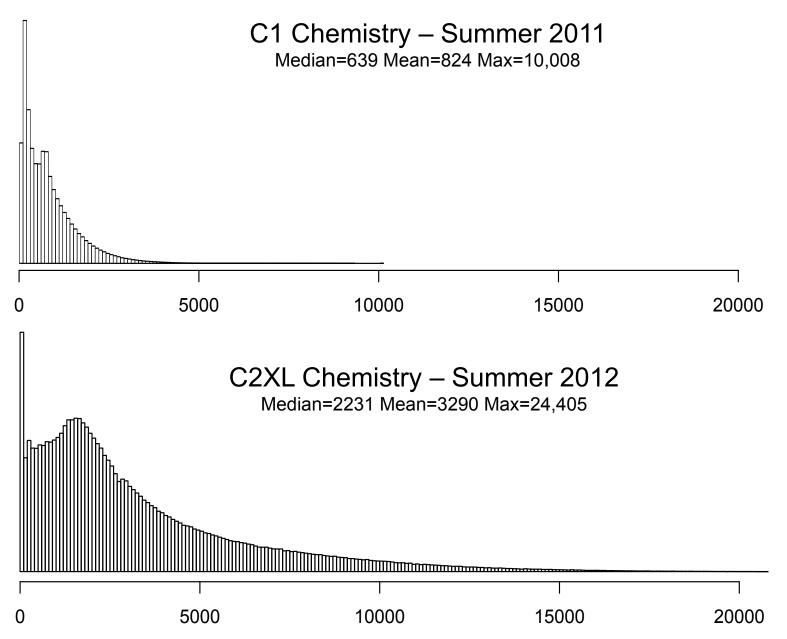
- I. Correction Pipeline
 - I. Map short reads to long reads
 - 2. Trim long reads at coverage gaps
 - 3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned



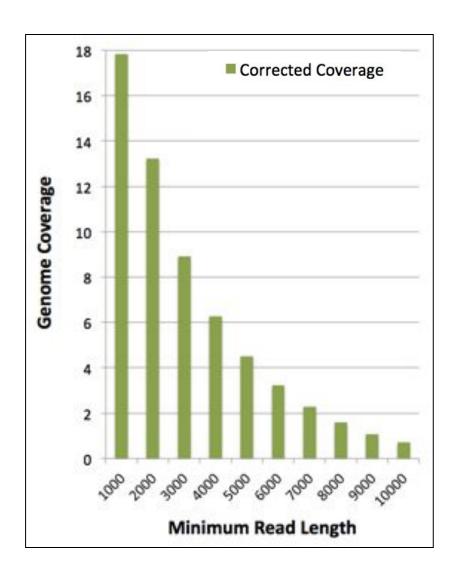
Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

PacBio Long Read Rice Sequencing



Preliminary Rice Assemblies

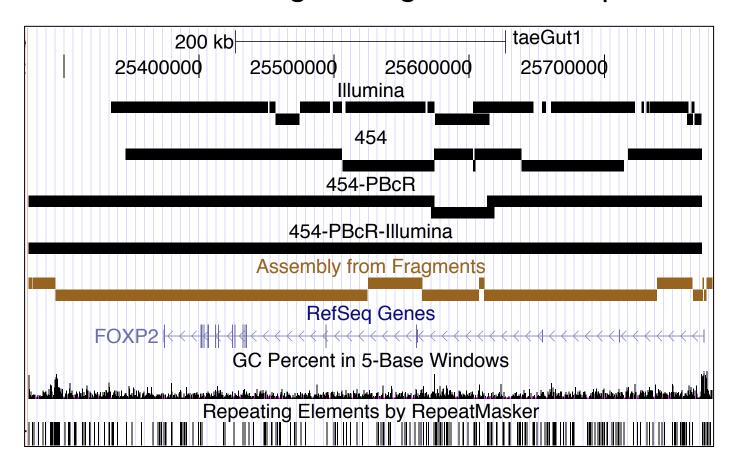
Assembly	Contig NG50
HiSeq Fragments 50x 2x100bp @ 180	3,925
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6,332
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18,248
PBeCR Reads 7x @ 3500 ** MiSeq for correction	50,995
PBeCR + Illumina Shred 7x @ 3500 ** MiSeq for correction 5x @ 3000bp shred	59,695



In collaboration with McCombie & Ware labs @ CSHL

Improved Gene Reconstruction

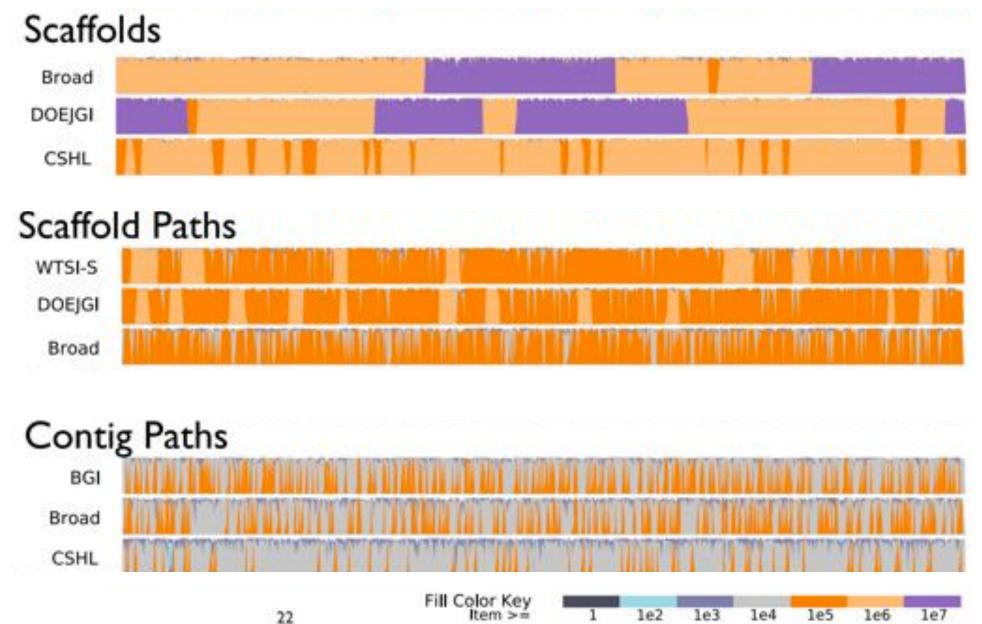
FOXP2 assembled in a single contig in the PacBio parrot assembly



Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

- Attempt to answer the question:
 "What makes a good assembly?"
- Organizers provided simulated sequence data
 - Simulated 100 base pair Illumina reads from simulated diploid organism
- 41 submissions from 17 groups
- Results demonstrate trade-offs assemblers must make

Assembly Results



Final Rankings

ID	Overall	CPNG50	SPNG50	Struct.	CC50	Subs.	Copy. Num.	Cov. Tot.	Cov.
BGI	36	☆					☆	☆	☆
Broad	37	☆	*	*	☆				
WTSI-S	46		☆	☆	*	☆			
CSHL	52	*							☆
BCCGSC	53							☆	☆
DOEJGI	56		\$	☆	☆	*			
RHUL	58								
WTSI-P	64							☆	
EBI	64						☆		
CRACS	64					\$			

- SOAPdenovo and ALLPATHS came out neck-and-neck followed closely behind by SGA, Celera Assembler, ABySS
 - My recommendation for "typical" short read assembly is to use ALLPATHS
 - Celera Assembler if you have 454 or PacBio reads

Break

Outline

I. Assembly theory

- I. Assembly by analogy
- 2. De Bruijn and Overlap graph
- 3. Coverage, read length, errors, and repeats

2. Genome assemblers

- I. ALLPATHS-LG, SOAPdenovo, Celera Assembler
- 2. Assemblathon

3. Applications

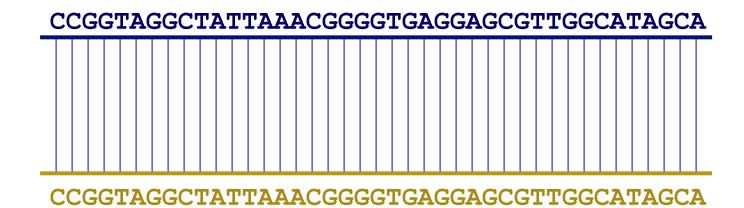
- I. Whole Genome Alignment with MUMmer
- 2. Gene Finding with Glimmer

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy

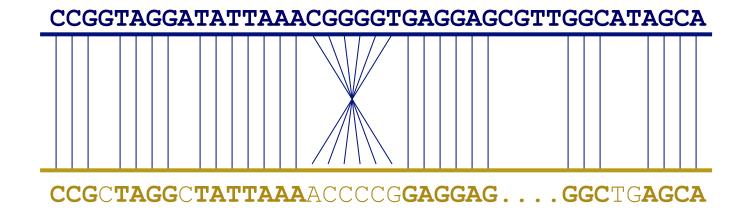
Goal of WGA

 For two genomes, A and B, find a mapping from each position in A to its corresponding position in B



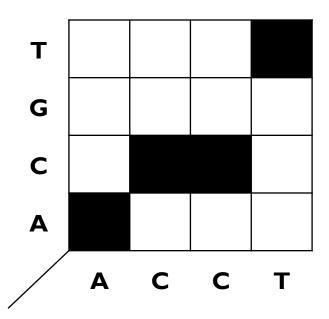
Not so fast...

• Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

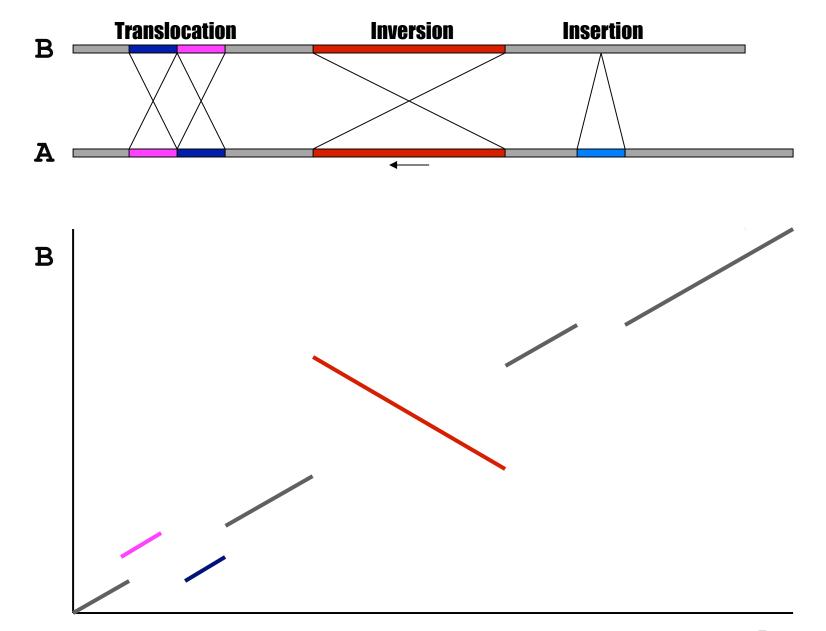


WGA visualization

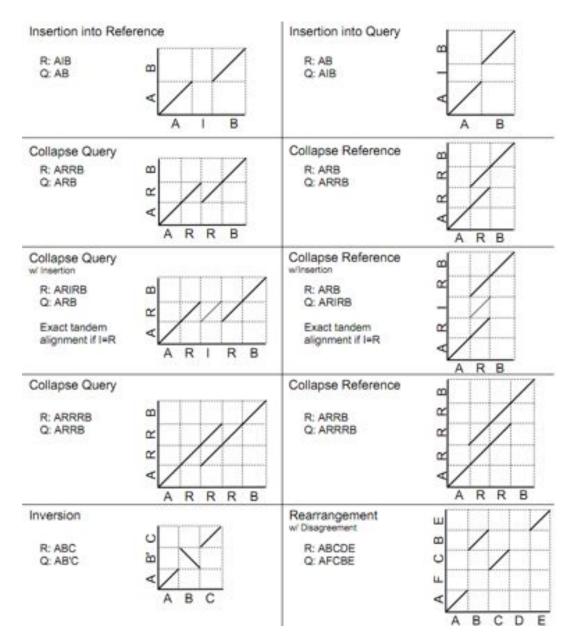
- How can we visualize whole genome alignments?
- With an alignment dot plot
 - $-N \times M$ matrix
 - Let *i* = position in genome *A*
 - Let j = position in genome B
 - Fill cell (i,j) if A_i shows similarity to B_i



 A perfect alignment between A and B would completely fill the positive diagonal



SV Types



- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

http://mummer.sf.net/manual/ AlignmentTypes.pdf

Seed-and-extend with MUMmer

How can quickly align two genomes?

- Find maximal-unique-matches (MUMs)
 - Match: exact match of a minimum length
 - Maximal: cannot be extended in either direction without a mismatch
 - Unique
 - occurs only once in both sequences (MUM)
 - occurs only once in a single sequence (MAM)
 - occurs one or more times in either sequence (MEM)

2. Cluster MUMs

using size, gap and distance parameters

3. Extend clusters

using modified Smith-Waterman algorithm

WGA Alignment

nucmer -maxmatch CO92.fasta KIM.fasta

-maxmatch Find maximal exact matches (MEMs)

delta-filter -m out.delta > out.filter.m

-m Many-to-many mapping

show-coords -r out.delta.m > out.coords

-r Sort alignments by reference position

dnadiff out.delta.m

Construct catalog of sequence variations

mummerplot --large --layout out.delta.m

- --large Large plot
- --layout Nice layout for multi-fasta files
- --x11 Default, draw using x11 (--postscript, --png)
- *requires gnuplot

\					//
				. /	
			1	11	
	-	//			
	. /				
	/				
1.					1

Bacterial Gene Finding with Glimmer

(also Archaeal and viral gene finding)

Arthur L. Delcher and Steven Salzberg
Center for Bioinformatics and Computational Biology
Johns Hopkins University School of Medicine

Gene Prediction: Computational Challenge

ggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatg cgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctggg gatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagc tgcggctatgctaatgcatgcggctatgctaagctcatgcgg

Gene Prediction: Computational Challenge

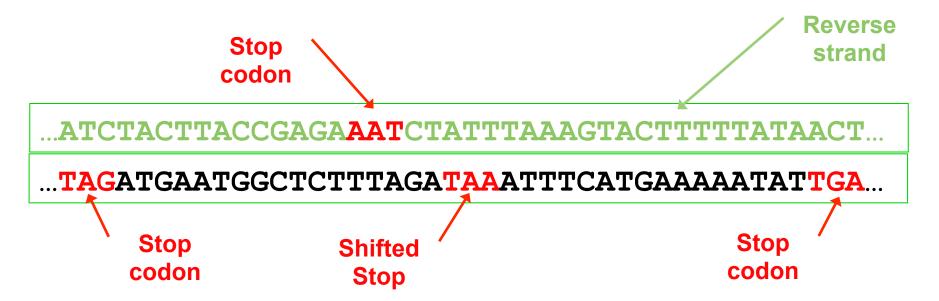
ggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatg tggctatgctaagctgggaatgcatg ctatgctaatgaatggtcttggga Gene! cggctatgctaagctgggatccg gcatgcggctatgcaagctgggatc cgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctggggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagc tgcggctatgctaatgcatgcggctatgctaagctcatgcgg

Step One

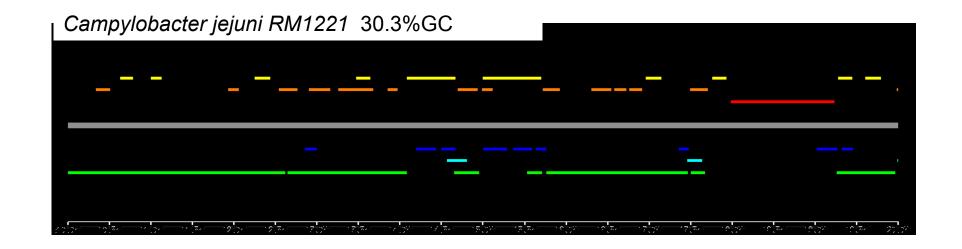
• Find open reading frames (ORFs).

Step One

Find open reading frames (ORFs).



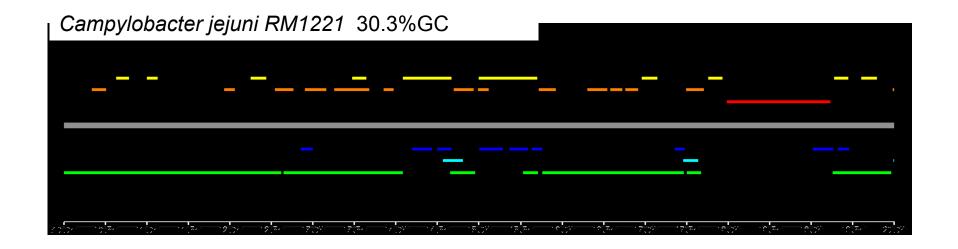
But ORFs generally overlap ...

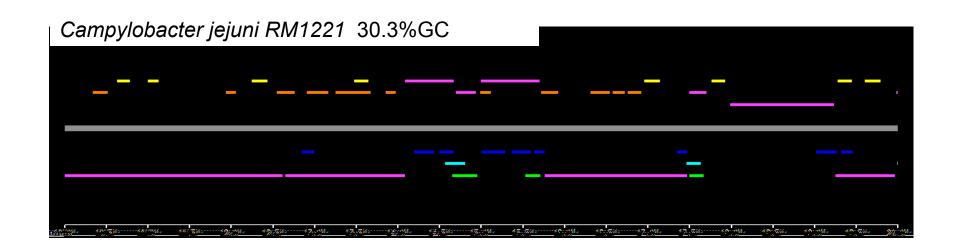


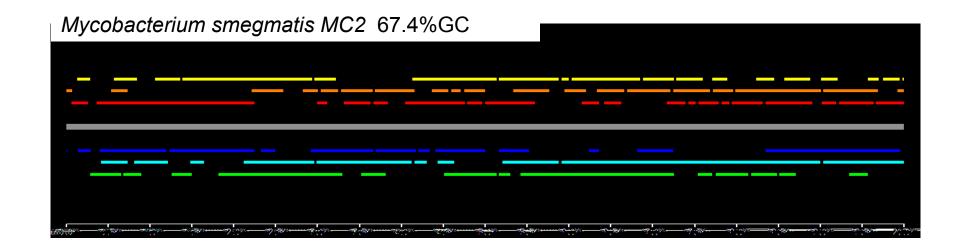
All ORFs longer than 100bp on both strands shown - color indicates reading frame Longest ORFs likely to be protein-coding genes

Note the low GC content

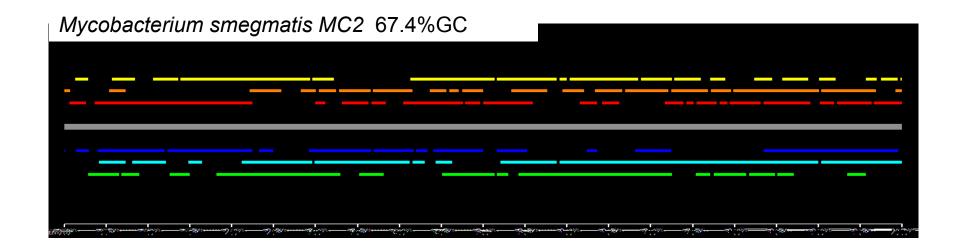
All genes are ORFs but not all ORFs are genes

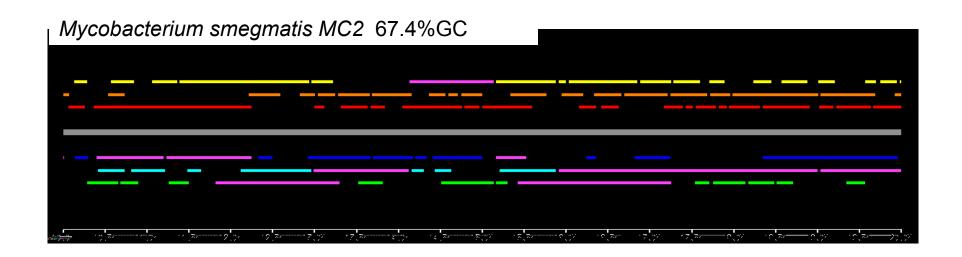






Note what happens in a high-GC genome





The Problem

- Need to decide which orfs are genes.
 - Then figure out the coding start sites
- Can do homology searches but that won't find novel genes
 - Besides, there are errors in the databases
- Generally can assume that there are some known genes to use as training set.
 - Or just find the obvious ones

Probabilistic Methods

- Create models that have a probability of generating any given sequence.
- Train the models using examples of the types of sequences to generate.
- The "score" of an orf is the probability of the model generating it.
 - Can also use a negative model (i.e., a model of nonorfs) and make the score be the ratio of the probabilities (i.e., the odds) of the two models.
 - Use logs to avoid underflow

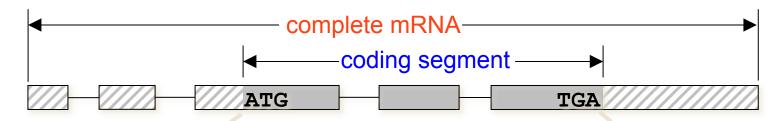
Fixed-Order Markov Models

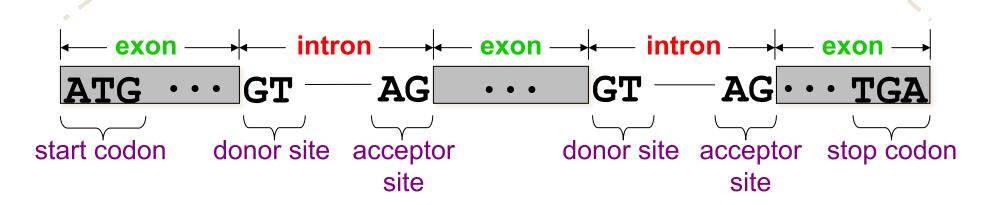
- k^{th} -order Markov model bases the probability of an event on the preceding k events.
- Example: With a 3rd-order model the probability of this sequence:

would be:

$$\cdots P(G \mid CTA) \cdot P(A \mid TAG) \cdot P(T \mid AGA) \cdots$$
Target

Eukaryotic Gene Syntax

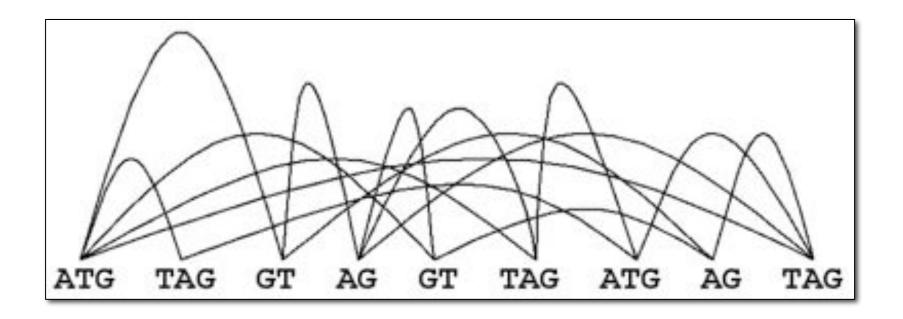




Regions of the gene outside of the CDS are called *UTR*'s (*untranslated regions*), and are mostly ignored by gene finders, though they are important for regulatory functions.

Representing Gene Syntax with ORF Graphs

After identifying the most promising (i.e., highest-scoring) signals in an input sequence, we can apply the gene syntax rules to connect these into an *ORF graph*:



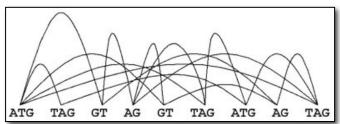
An ORF graph represents all possible *gene parses* (and their scores) for a given set of putative signals. A *path* through the graph represents a single gene parse.

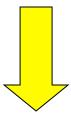
Conceptual Gene-finding Framework

TATTCCGATCGATCGATCTCTAGCGTCTACG CTATCATCGCTCTCTATTATCGCGCGATCGTCG ATCGCGCGAGAGTATGCTACGTCGATCGAATTG



identify most promising signals, score signals and content regions between them; induce an ORF graph on the signals



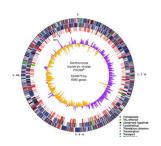


find highest-scoring path through ORF graph; interpret path as a gene parse = gene structure

Other Resources

Resource	URL	Description	
Google	http://www.google.com	Internet Search	
Google Scholar	http://scholar.google.com/	Literature Searches	
SeqAnswers	http://seqanswers.com/	Bioinformatics Forum	
Wikipedia	http://www.wikipedia.org/	Overview on anything	
Circos	http://circos.ca/	Circular Genome Plots	
GraphViz	http://www.graphviz.org/	Graph Visualization	
EndNote	http://endnote.com/	Citation Manager	
R	http://www.r-project.org/	Stats & Visualizations	
Weka	http://www.cs.waikato.ac.nz/ml/weka/	Data Mining	
IGV	http://www.broadinstitute.org/igv/	Read Mapping Viz	
Schatz Lab	http://schatzlab.cshl.edu/teaching/	Exercises and Lectures	

Assembly Summary



Assembly quality depends on

- 1. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

Acknowledgements

Schatz Lab

Giuseppe Narzisi

Shoshana Marcus

James Gurtowski

Alejandro Wences

Hayan Lee

Rob Aboukhalil

Mitch Bekritsky

Charles Underwood

Rushil Gupta

Avijit Gupta

Shishir Horane

Deepak Nettem

Varrun Ramani

Piyush Kansal

Eric Biggers

Aspyn Palatnick

CSHL

Hannon Lab

Gingeras Lab

Iossifov Lab

Levy Lab

Lippman Lab

Lyon Lab

Martienssen Lab

McCombie Lab

Ware Lab

Wigler Lab

IT Department

NBACC

Adam Phillippy

Sergey Koren

SFARI
SIMONS FOUNDATION
AUTISM RESEARCH INITIATIVE

Thank You!

Michael Schatz @mike_schatz

26 Mar

Can you assemble genomes, find mutations, and decode secret messages? Get ready for the #DNA60IFX challenge! bit.ly/16VKqsG Expand

