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Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 
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times, it was the age 

It was the best of  

of times, it was the 

best of times, it was 
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it was the age of 
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the age of wisdom, it 

age of wisdom, it was 
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wisdom, it was the age 

it was the age of 

was the age of foolishness, 

the worst of times, it 

 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 
Model the assembly problem as a graph problem 



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 
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was the age of 
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of wisdom, it was 

wisdom, it was the 

After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 



The full tale 
… it was the best of times it was the worst of times … 

… it was the age of wisdom it was the age of foolishness … 
… it was the epoch of belief it was the epoch of incredulity … 
… it was the season of light it was the season of darkness … 
… it was the spring of hope it was the winder of despair … 

it was the winter of despair 

worst 

best 

of times 

epoch of 
belief 

incredulity 

spring of hope 

foolishness 

wisdom 

light 

darkness 

age of 

season of 



Milestones in Genome Assembly 

2000. Myers et al. 
1st Large WGS Assembly. 

Celera Assembler. 116 Mbp 

1995. Fleischmann et al. 
1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2010. Li et al. 
1st Large SGS Assembly. 
SOAPdenovo 2.2 Gbp 

1977. Sanger et al. 
1st Complete Organism 

5375 bp 

2001. Venter et al., IHGSC 
Human Genome 

Celera Assembler/GigaAssembler. 2.9 Gbp 

1998. C.elegans SC 
1st Multicellular Organism 

BAC-by-BAC Phrap. 97Mbp 

Like Dickens, we must computationally reconstruct a genome from short fragments 



Assembly Applications 
•  Novel genomes 

 

•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 



Assembling a Genome 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 

2. Construct assembly graph from overlapping reads 
…AGCCTAGGGATGCGCGACACGT 

       GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC 
          CAACCTCGGACGGACCTCAGCGAA… 



Why are genomes hard to assemble? 

1.  Biological:  
–  (Very) High ploidy, heterozygosity, repeat content 

2.  Sequencing:  
–  (Very) large genomes, imperfect sequencing 

3.  Computational:  
–  (Very) Large genomes, complex structure 

4.  Accuracy:  
–  (Very) Hard to assess correctness 
 



Ingredients for a good assembly 

Current challenges in de novo plant genome sequencing and assembly 
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243 

Coverage 

High coverage is required 
–  Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads 

–  Biased coverage will also fragment 
assembly 

Lander Waterman Expected Contig Length vs Coverage
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Read Length 

Reads & mates must be longer 
than the repeats 
–  Short reads will have false overlaps 

forming hairball assembly graphs 
–  With long enough reads, assemble 

entire chromosomes into contigs 

Quality 

Errors obscure overlaps 
–  Reads are assembled by finding 

kmers shared in pair of reads 
–  High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs 



Second Generation Sequencing 

2004 
454/Roche 

Pyrosequencing 
Current Specs (Titanium):  
1M 400bp reads / run =  

1Gbp / day 

2007 
Illumina 

Sequencing by Synthesis 
Current Specs (HiSeq 2000):  

2.5B 100bp reads / run =  
60Gbp / day 

2008 
ABI / Life Technologies 

SOLiD Sequencing 
Current Specs (5500xl):  
5B 75bp reads / run =  

30Gbp / day 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.youtube.com/watch?v=l99aKKHcxC4 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 



Typical contig coverage 
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Imagine raindrops on a sidewalk 

Coverage 



Balls in Bins 1x 



Balls in Bins 2x 



Balls in Bins 3x 



Balls in Bins 4x 



Balls in Bins 5x 



Balls in Bins 6x 



Balls in Bins 7x 



Balls in Bins 8x 



Coverage and Read Length 
Idealized Lander-Waterman model 
•  Reads start at perfectly random 

positions 

•  Contig length is a function of 
coverage and read length 
–  Short reads require much higher 

coverage to reach same expected 
contig length 

•  Need even high coverage for 
higher ploidy, sequencing errors, 
sequencing biases 
–  Recommend 100x coverage 

Lander Waterman Expected Contig Length vs Coverage
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Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  



Two Paradigms for Assembly 

Short read assemblers 
•  Repeats depends on word length 
•  Read coherency, placements lost 
•  Robust to high coverage 

Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  

de#Bruijn#Graph#

GTT 

GTC 

TTA 

TCC 

AGT AAG 

GAA 

TAA 

AGA 

ATA 

Long read assemblers 
•  Repeats depends on read length 
•  Read coherency, placements kept 
•  Tangled by high coverage 

Overlap#Graph#

Y 

Z 
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D 
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B 

A 
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W 



Unitigging / Unipathing 

•  After simplification and correction, compress graph 
down to its non-branching initial contigs 
–  Aka “unitigs”, “unipaths”  
–  Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats 

Errors 



Errors in the graph 

(Chaisson, 2009) 

Clip Tips Pop Bubbles 

was the worst of 

worst of times, it 

the worst of times, 

the worst of tymes, 

was the worst of times, 

was the worst of tymes, 

the worst of times, it 

was the worst of times, 

was the worst of tymes, 

times, it was the age 

tymes, it was the age 

was the worst of it was the age 

times, 

tymes, 



Repetitive regions 

•  Over 50% of mammalian genomes are repetitive 
–  Large plant genomes tend to be even worse 
–  Wheat: 16 Gbp; Pine: 24 Gbp 

Repeat Type Definition / Example Prevalence 

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6 
CACACACACACACACACACA 

2% 

SINEs (Short Interspersed Nuclear 
Elements) 

Alu sequence (~280 bp) 
Mariner elements (~80 bp) 

13% 

LINEs (Long Interspersed Nuclear 
Elements) 

~500 – 5,000 bp 21% 

LTR (long terminal repeat) 
retrotransposons 

Ty1-copia, Ty3-gypsy, Pao-BEL 
(~100 – 5,000 bp) 

8% 

Other DNA transposons 3% 

Gene families & segmental duplications 4% 



Repeats and Coverage Statistics A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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Repeats and Read Length 

•  Explore the relationship between read length and contig N50 size 
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000 
–  Contig/Read length relationship depends on specific repeat composition 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0 250 500 750 1000 

C
on

ti
g 

N
50

 S
iz

e 
(M

bp
) 

Read Length 

Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Yersinia pestis         
4.70Mbp 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21. 

Repeats 



Scaffolding 
•  Initial contigs (aka unipaths, unitigs) terminate at 

–  Coverage gaps: especially extreme GC regions 
–  Conflicts: sequencing errors, repeat boundaries 

•  Iteratively resolve longest, ‘most unique’ contigs 
–  Both overlap graph and de Bruijn assemblers initially collapse 

repeats into single copies 
–  Uniqueness measured by a statistical test on coverage 



N50 size 
Def: 50% of the genome is in contigs as large as the N50 value 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



Break 
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Assembly Algorithms 

ALLPATHS-LG SOAPdenovo Celera Assembler 

Broad’s assembler 
(Gnerre et al. 2011) 

 
De bruijn graph 

Short + PacBio (patching) 
 

Easy to run if you have 
compatible libraries 

  
http://www.broadinstitute.org/

software/allpaths-lg/blog/ 

BGI’s assembler 
(Li et al. 2010) 

 
De bruijn graph 

Short reads 
 

Most flexible, but requires a 
lot of tuning 

 
http://soap.genomics.org.cn/

soapdenovo.html 

JCVI’s assembler 
(Miller et al. 2008) 

 
Overlap graph 

Medium + Long reads 
 

Supports Illumina/454/PacBio 
Hybrid assemblies 

 
http://wgs-assembler.sf.net 



Genome assembly with ALLPATHS-LG 
 Iain MacCallum 



How ALLPATHS-LG works 

assembly 

reads 

unipaths 

corrected reads 

doubled reads 

localized data 

local graph assemblies 

global graph assembly 



ALLPATHS-LG sequencing model 

*See next slide. 
 
**For best results.  Normally not used for small genomes.   
   However essential to assemble long repeats or duplications. 
 
Cutting coverage in half still works, with some reduction in 
quality of results.   
 
All: protocols are either available, or in progress. 



Error correction 

Given a crystal ball, we could stack reads on the chromosomes they came from 
(with homologous chromosomes separate), then let each column ‘vote’: 

A 

C 
C 
C 

C 
C 
C 
C 
C 

chromosome 

change to C  

But we don’t have a crystal ball.... 



Error correction 

ALLPATHS-LG. For every K-mer, examine the stack of all reads containing the 
K-mer. Individual reads may be edited if they differ from the overwhelming 
consensus of the stack. If a given base on a read receives conflicting votes 
(arising from membership of the read in multiple stacks), it is not changed. 
(K=24) 
 

!   K   " 

T 
T 
T 
T 
T 
T 
T 
T 
T 

columns inside the kmer are homogeneous 

A 

C 
C 
C 

C 
C 
C 
C 
C 

columns outside the kmer may be mixed 

Two calls at Q20 or better are enough to protect a base 

change to C  



Read doubling 

+ 
28 28 

More than one closure allowed (but rare). 

To close a read pair (red), we require the existence of another read pair (blue), 
overlapping perfectly like this:  



Unipath: unbranched part of genome – squeeze together 
perfect repeats of size ≥ K 

Unipaths 

R A B 

R C D 
parts of 
genome 

R 
A B 

C D 
unipaths from 
these parts 

R 
A B 

C D 
unipath graph 

Adjacent unipaths overlap by K-1 bases 



Localization 

reaches to other unipaths (CN = 1)  
directly and indirectly   

read pairs reach into repeats 

and are extended by other 
unipaths       

I. Find ‘seed’ unipaths, evenly spaced across genome 
(ideally long, of copy number CN = 1) 

seed unipath 
 

II. Form neighborhood around each seed 



Create assembly from global assembly graph 

A 

T 

G 

GG 

{A,T} G 

flatten 

{A,T} G 

scaffold 

{A,T} G 

patch 

fix 
{A,T} {G,GG} 



Large genome recipe: ALLPATHS-LG vs capillary 

Completeness 

genome 
(%) 

88.7 
94.2 

exome 
(%) 

96.7 97.3 

seg dups 
(%) 

42.3 

65.7 

Accuracy 

bases 
between 

base errors 

bases between 
local 

misassemblies 

8,300 

2,000 

4,500 
3,700 

Continuity 

contig 
N50 
(kb) 

17 
25 

scaffold 
N50 (Mb) 

17.5 16.9 

Cost 

$ 

Mouse Genome 



19+ vertebrates 
assembled with 
ALLPATHS-LG 

scaffold N50 (Mb) 

co
nt

ig
 N

50
 (k

b)
 

B6 

129 

bushbaby 

tenrec 

ground squirrel 

N. brichardi 

NA12878 

coelacanth 

stickleback 

shrew 

A. burtoni 

P. nyererei 

M. zebra 

female ferret 

tilapia 

spotted gar 
    69 kk 

male ferret 
     67 kb 

squirrel monkey 
            19 Mb 

chinchilla 



Genome assembly with SOAPdenovo 



Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph 
–  Human genome: >3B nodes, >10B edges 

•  The new short read assemblers require tremendous computation 
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



Histogram of cov
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1. Count all “Q-mers” in reads 
•  Fit coverage distribution to mixture model 

of errors and regular coverage 
•  Automatically determines threshold for 

trusted k-mers 

2. Correction Algorithm 
•  Considers editing erroneous kmers into 

trusted kmers in decreasing likelihood 
•  Includes quality values, nucleotide/nucleotide 

substitution rate 

Error Correction with Quake 

Quake: quality-aware detection and correction of sequencing reads. 
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. 11:R116  



Illumina Sequencing & Assembly 
2x76bp @ 275bp 

2x36bp @ 3400bp  

Validated 51,243,281 88.5% 

Corrected 2,763,380 4.8% 

Trim Only 3,273,428 5.6% 

Removed 606,251 1.0% 

k−mer counts

Coverage

Fr
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y

0 100 200 300 400

0
20

40
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80
10
0

# ≥ 100bp N50 (bp) 

Scaffolds 2,340 253,186 

Contigs 2,782 56,374 

Unitigs 4,151 20,772 

Quake Results SOAPdenovo Results 



Genome assembly with the  
Celera Assembler 



Celera Assembler 

1.  Pre-overlap 
–  Consistency checks 
 

2.  Trimming 
–  Quality trimming & partial overlaps 

3.  Compute Overlaps 
–  Find high quality overlaps 

4.  Error Correction 
–  Evaluate difference in context of 

overlapping reads 

5.  Unitigging 
–  Merge consistent reads 

6.  Scaffolding 
–  Bundle mates, Order & Orient 

7.  Finalize Data 
–  Build final consensus sequences 

 

http://wgs-assembler.sf.net 



Hybrid Sequencing 

Illumina 
Sequencing by Synthesis 

 
High throughput (60Gbp/day) 

High accuracy (~99%) 
Short reads (~100bp) 

Pacific Biosciences 
SMRT Sequencing 

 
Lower throughput (600Mbp/day) 

Lower accuracy (~85%) 
Long reads (2-5kbp+) 

  



SMRT Sequencing 

Time 

In
te

ns
ity

 

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf 

Imaging of fluorescently phospholinked labeled nucleotides as they are 
incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW). 



SMRT Sequencing Data 
TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG!
||||||||||||||||||||||||| ||||||| |||||||||||| |||!
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG!
!
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG!
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||!
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG!
!
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG!
| |||||| |||| ||  ||||||||||||||||||||||||||||||||!
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG!
!
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA!
| ||||||| |||||||||||||| || ||    |||||||||| |||||!
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA!
!
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA!
 ||||||   ||     |||||||| || |||||||||||||| || |||!
GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA!
!
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT!
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||!
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT!
!
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA!
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||!
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA!
!
ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG!
||||||| |||||||||  |||||| ||||| ||||||||||||||||||!
ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG!
!

Sample of 100k reads aligned with BLASR requiring >100bp alignment 

Match 83.7% 

Insertions 11.5% 

Deletions 3.4% 

Mismatch 1.4% 



1.  Correction Pipeline 
1.  Map short reads to long reads 
2.  Trim long reads at coverage gaps 
3.  Compute consensus for each long read 

2.  Error corrected reads can be easily assembled, aligned 

PacBio Error Correction 

Hybrid error correction and de novo assembly of single-molecule sequencing reads. 
Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280 

http://wgs-assembler.sf.net 



PacBio Long Read Rice Sequencing Original Raw Read Length Histogram
n=3659007 median=639 mean=824 max=10008
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C1 Chemistry – Summer 2011 
Median=639 Mean=824 Max=10,008 

C2XL Chemistry – Summer 2012 
Median=2231 Mean=3290 Max=24,405 

Raw Read Length Histogram
n=1284131 median=2331 mean=3290 max=24405
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Assembly Contig NG50 

HiSeq Fragments 
50x 2x100bp @ 180 
 

3,925 

MiSeq Fragments 
23x 459bp   
8x 2x251bp @ 450 
 

6,332 

“ALLPATHS-recipe” 
50x 2x100bp @ 180 
36x 2x50bp @ 2100 
51x 2x50bp @ 4800  
 

18,248 
 

PBeCR Reads 
7x @ 3500 ** MiSeq for correction 

50,995 
 

PBeCR + Illumina Shred 
7x @ 3500 ** MiSeq for correction 
5x @ 3000bp shred 

59,695 

Preliminary Rice Assemblies 

In collaboration with McCombie & Ware labs @ CSHL 



Improved Gene Reconstruction 

Scale
chr1A:

RepeatMasker

200 kb taeGut1
25400000 25500000 25600000 25700000

Illumina

454

454-PBcR

454-PBcR-Illumina
Assembly from Fragments

RefSeq Genes

GC Percent in 5-Base Windows

Repeating Elements by RepeatMasker

FOXP2
GC Percent

FOXP2 assembled in a single contig in the PacBio parrot assembly 

Hybrid error correction and de novo assembly of single-molecule sequencing reads. 
Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280 



•  Attempt to answer the question: 
  “What makes a good assembly?” 

•  Organizers provided simulated sequence data 
–  Simulated 100 base pair Illumina reads from simulated 

diploid organism 

•  41 submissions from 17 groups 

•  Results demonstrate trade-offs assemblers must make 



Assembly Results 



Final Rankings 

•  SOAPdenovo and ALLPATHS came out neck-and-neck followed closely behind by SGA, 
Celera Assembler, ABySS 
–  My recommendation for “typical” short read assembly is to use ALLPATHS 
–  Celera Assembler if you have 454 or PacBio reads 



Break 



Outline 

1.  Assembly theory 
1.  Assembly by analogy 
2.  De Bruijn and Overlap graph 
3.  Coverage, read length, errors, and repeats 

2.  Genome assemblers 
1.  ALLPATHS-LG,  SOAPdenovo, Celera Assembler 
2.  Assemblathon 

3.  Applications 
1.  Whole Genome Alignment with MUMmer 
2.  Gene Finding with Glimmer 



Whole Genome Alignment 
with MUMmer 

 

Slides Courtesy of Adam M. Phillippy 
 



Goal of WGA 
•  For two genomes, A and B, find a mapping from 

each position in A to its corresponding 
position in B 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 



Not so fast... 
•  Genome A may have insertions, deletions, 

translocations, inversions, duplications or SNPs 
with respect to B (sometimes all of the above) 

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA 



WGA visualization 
•  How can we visualize whole genome alignments? 

•  With an alignment dot plot 
–  N x M matrix 

•  Let i = position in genome A 
•  Let j = position in genome B 
•  Fill cell (i,j) if Ai shows similarity to Bj 

–  A perfect alignment between A and B would completely fill 
the positive diagonal 

T 

G 

C 

A 

A C C T 



B 

A 

B 

A 

Translocation Inversion Insertion 



SV Types 

•  Different structural 
variation types / 
misassemblies will be 
apparent by their 
pattern of breakpoints 

•  Most breakpoints will 
be at or near repeats 

•  Things quickly get 
complicated in real 
genomes 

http://mummer.sf.net/manual/ 
AlignmentTypes.pdf 



Seed-and-extend with MUMmer 
 How can quickly align two genomes? 

 

1.  Find maximal-unique-matches (MUMs) 
#  Match: exact match of a minimum length 
#  Maximal:  cannot be extended in either direction without a mismatch 
#  Unique 

#  occurs only once in both sequences (MUM) 
#  occurs only once in a single sequence (MAM) 
#  occurs one or more times in either sequence (MEM) 

2.  Cluster MUMs 
#  using size, gap and distance parameters 

3.  Extend clusters 
#  using modified Smith-Waterman algorithm 



WGA Alignment 

See manual at http://
mummer.sourceforge.net/manual 

 
nucmer –maxmatch CO92.fasta KIM.fasta 
-maxmatch  Find maximal exact matches (MEMs) 
 
delta-filter –m out.delta > out.filter.m 
-m  Many-to-many mapping 
 
show-coords -r out.delta.m > out.coords 
-r  Sort alignments by reference position 
 
dnadiff out.delta.m 
Construct catalog of sequence variations 
 
mummerplot --large --layout out.delta.m 
--large   Large plot 
--layout Nice layout for multi-fasta files 
--x11   Default, draw using x11 (--postscript, --png) 
*requires gnuplot 





Bacterial Gene Finding with Glimmer 
(also Archaeal and viral gene finding) 

Arthur L. Delcher and Steven Salzberg 
Center for Bioinformatics and Computational Biology 

Johns Hopkins University School of Medicine 
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aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaa
tgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgc
taatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatga
atggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgc
ggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
ctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcgg
ctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
cgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctggg
aatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaag
ctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatga
atggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtc
ttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgg
gatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagc
tgcggctatgctaatgcatgcggctatgctaagctcatgcgg 
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aatgcatgcggctatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaa
tgcatgcggctatgcaagctgggatccgatgactatgctaagctgggatccgatgacaatgcatgcggctatgc
taatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatga
atggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggatccgatgacaatgcatgc
ggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagctgcggctatgctaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
ctgcggctatgctaatgaatggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcgg
ctatgctaatgaatggtcttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatg
cggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatc
cgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcatgcggctatgctaagctggg
aatgcatgcggctatgctaagctgggatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaag
ctgggatccgatgactatgctaagctgcggctatgctaatgcatgcggctatgctaagctcggctatgctaatga
atggtcttgggatttaccttggaatgctaagctgggatccgatgacaatgcatgcggctatgctaatgaatggtc
ttgggatttaccttggaatatgctaatgcatgcggctatgctaagctgggaatgcatgcggctatgctaagctgg
gatccgatgacaatgcatgcggctatgctaatgcatgcggctatgcaagctgggatccgatgactatgctaagc
tgcggctatgctaatgcatgcggctatgctaagctcatgcgg 

 

         Gene! 



Step One 

•  Find open reading frames (ORFs). 
 

…TAGATGAATGGCTCTTTAGATAAATTTCATGAAAAATATTGA… 

Stop 
codon 

Stop 
codon 

Start 
codon 



Step One 

•  Find open reading frames (ORFs). 
 
 
 
 
 
 
 
 

•  But ORFs generally overlap … 

…TAGATGAATGGCTCTTTAGATAAATTTCATGAAAAATATTGA… 

Stop 
codon 

Stop 
codon 

…ATCTACTTACCGAGAAATCTATTTAAAGTACTTTTTATAACT… 

Shifted 
Stop 

Stop 
codon 

Reverse 
strand 



Campylobacter jejuni RM1221  30.3%GC 

All ORFs longer than 100bp on both strands shown 
 - color indicates reading frame 

Longest ORFs likely to be protein-coding genes 
 
Note the low GC content 
 
All genes are ORFs but not all ORFs are genes 



Campylobacter jejuni RM1221  30.3%GC 

Campylobacter jejuni RM1221  30.3%GC 



Mycobacterium smegmatis MC2  67.4%GC 

Note what happens in a high-GC genome 



Mycobacterium smegmatis MC2  67.4%GC 

Mycobacterium smegmatis MC2  67.4%GC 



The Problem 
•  Need to decide which orfs are genes. 

– Then figure out the coding start sites 

•  Can do homology searches but that won’t find 
novel genes 
– Besides, there are errors in the databases 

•  Generally can assume that there are some 
known genes to use as training set. 
– Or just find the obvious ones 



Probabilistic Methods 
•  Create models that have a probability of 

generating any given sequence. 

•  Train the models using examples of the types of 
sequences to generate. 

•  The �score� of an orf is the probability of the 
model generating it. 
– Can also use a negative model (i.e., a model of non-

orfs) and make the score be the ratio of the 
probabilities (i.e., the odds) of the two models. 

– Use logs to avoid underflow 



Fixed-Order Markov Models 
•  k th-order Markov model bases the probability of an event 

on the preceding k events. 
•  Example:  With a 3rd-order model the probability of this 

sequence: 
 
 
 

•  would be: 


Context

(G | CTA) (A | TAG) (T | AGA)P P P⋅ ⋅ 

Context
CTAGAT 

Target 

Target 



ATG TGA 

coding segment 
complete mRNA 

ATG GT AG GT AG . . . . . . . . . 
start codon stop codon donor site donor site acceptor 

site 
acceptor 

site 

exon exon exon intron intron 

TGA 

Eukaryotic Gene Syntax 

Regions of the gene outside of the CDS are called UTR�s (untranslated regions), and 
are mostly ignored by gene finders, though they are important for regulatory functions. 



Representing Gene Syntax with ORF Graphs 

After identifying the most promising (i.e., highest-scoring) signals in an input sequence, 
we can apply the gene syntax rules to connect these into an ORF graph: 

An ORF graph represents all possible gene parses (and their scores) for a given set of 
putative signals. A path through the graph represents a single gene parse.  



Conceptual Gene-finding Framework 
TATTCCGATCGATCGATCTCTCTAGCGTCTACG
CTATCATCGCTCTCTATTATCGCGCGATCGTCG
ATCGCGCGAGAGTATGCTACGTCGATCGAATTG 

identify most promising signals, score signals 
and content regions between them; induce an 
ORF graph on the signals 

find highest-scoring path through ORF graph; 
interpret path as a gene parse = gene 
structure 



Other Resources 

Resource URL Description 

Google http://www.google.com Internet Search 

Google Scholar http://scholar.google.com/ Literature Searches 

SeqAnswers http://seqanswers.com/ Bioinformatics Forum 

Wikipedia http://www.wikipedia.org/ Overview on anything 

Circos http://circos.ca/ Circular Genome Plots 

GraphViz http://www.graphviz.org/ Graph Visualization 

EndNote http://endnote.com/ Citation Manager 

R http://www.r-project.org/ Stats & Visualizations 

Weka http://www.cs.waikato.ac.nz/ml/weka/ Data Mining 

IGV http://www.broadinstitute.org/igv/ Read Mapping Viz 

Schatz Lab http://schatzlab.cshl.edu/teaching/ Exercises and Lectures 



Assembly Summary 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

•  Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  
–  Extensive error correction is the key to getting the best assembly possible 

from a given data set 

•  Watch out for collapsed repeats & other misassemblies 
–  Globally/Locally reassemble data from scratch with better parameters & 

stitch the 2 assemblies together 
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