Next-gen sequence analysis Michael Schatz

Introduction to Computational Biology
Oct 24, 2013

Schatz Lab Overview

Outline

I. Rise of DNA Sequencing
2. Alignment and the BWT
3. Genetics of Autism

Cost per Genome

http://www.genome.gov/sequencingcosts/

Illumina Sequencing by Synthesis

1. Prepare

2. Attach

3. Amplify

4. Image

5. Basecall

Inside the NY Genome Center

Sequencing Capacity: 16 HiSeq $2500 @ 600 \mathrm{Gbp} / \mathrm{II}$ day $=872 \mathrm{Gbp} /$ day

Sequencing Centers

Worldwide capacity exceeds $15 \mathrm{Pbp} /$ year

Next Generation Genomics: World Map of High-throughput Sequencers http://omicsmaps.com

Milestones in Molecular Biology

There is tremendous interest to sequence:

- What is your genome sequence?
- How does your genome compare to my genome?
- Where are the genes and how active are they?
- How does gene activity change during development?
- How does splicing change during development?
- How does methylation change during development?
- How does chromatin change during development?
- How does is your genome folded in the cell?
- Where do proteins bind and regulate genes?
- What virus and microbes are living inside you?
- How has the disease mutated your genome?
- What drugs should we give you?

Outline

I. Rise of DNA Sequencing
2. Alignment and the BWT
3. Genetics of Autism

Personal Genomics

How does your genome compare to the reference?

Creates magical_ technology _-

- - -

Short Read Applications

- Genotyping: Identify Variations

- *-seq: Classify \& measure significant peaks

Seed-and-Extend Alignment

Theorem: An alignment of a sequence of length m with at most k differences must contain an exact match at least $s=m /(k+l)$ bp long
(Baeza-Yates and Perleberg, I996)

- Proof: Pigeonhole principle
- I pigeon can't fill 2 holes
- Seed-and-extend search
- Use an index to rapidly find short exact alignments to seed longer in-exact alignments
- BLAST, MUMmer, Bowtie, BWA, SOAP, ...
- Specificity of the depends on seed length

- Guaranteed sensitivity for k differences
- Also finds some (but not all) lower quality alignments <- heuristic

Exact Matching Review \& Overview

Where is GATTACA in the human genome?

*** These are general techniques applicable to any search problem ***

Algorithmic challenge

How can we combine the speed of a suffix tree ($\mathrm{O}(|\mathrm{q}|)$ exact match) with the size of a brute force analysis (n bytes)?

What would such an index look like?

Fast gapped-read alignment with Bowtie 2

Ben Langmead and Steven Salzberg (2012) Nature Methods. 9, 357-359

Burrows-Wheeler Transform

- Reversible permutation of the characters in a text

- $\operatorname{BWT}(\mathrm{T})$ is the index for T

A block sorting lossless data compression algorithm.
Burrows M,Wheeler DJ (1994) Digital Equipment Corporation. Technical Report I24

Burrows-Wheeler Transform

- Recreating T from BWT(T)
- Start in the first row and apply LF repeatedly, accumulating predecessors along the way

[Decode this BWT string: ACTGA\$TTA]

BWT Exact Matching

- $\operatorname{LFc}(r, c)$ does the same thing as LF(r) but it ignores r ' s actual final character and "pretends" it's c:

$$
\operatorname{LFc}(5, g)=8
$$

\$acaacg
atcg\$ac
acaacg \$
acg \$aca

Rank: 2 g acoaac

BWT Exact Matching

- Start with a range, (top, bot) encompassing all rows and repeatedly apply LFc: top $=\operatorname{LFc}($ top, qc); bot $=\operatorname{LFc}($ bot, qc) $\mathrm{qc}=$ the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

Algorithm Overview

1. Split read into segments
```
Read
Read (reverse complement)
CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTGG
```

Policy: extract 16 nt seed every 10 nt
Seeds

```
+, 0: CCAGTAGCTCTCAGCC
,0: TACAGGCCTGGGTAAA
+,10: TCAGCCTTATTTTACC -, 10: GGTANAATAAGGCTGA
+20: TTTACCCAGGCCTGTA
                                    ,20: GGCTGAGAGCTACTGG
```

2. Lookup each segment and prioritize

Seeds

+ , 0: CCAGTAGCTCTCAGCC
+, 10: TCAGCCTTATTTTACC
+ , 20: TTTACCCAGGCCTGTA
- 0: TACAGGCCTGGGTAAA
- 10: GGTAAAATAAGGCTGA
-, 20: GGCTGAGAGCTACTGG

3. Evaluate end-to-end match

Ext	SIMD dynamic programming aligner	SAM alignments			
SA:684, chr12:1955		r1	$\begin{array}{ll} 0 & \text { chr12 } \\ 36 M & * \end{array}$	$\begin{array}{ll} 2 & 1936 \\ 0 & 0 \end{array}$	0
SA:624, chr2:462 \rightarrow		\rightarrow	CCAGTAGCTC IIIIIIIIII	CTCAGCCTT IIIIIIIII	ATTTTACCCAGGCCTGTA IIIIIIIIIIIIIIIIII
SA:211: chr $4: 762$			AS:i:0 ${ }^{\text {a }}$	XS:i:-2	XN:i:0
SA:213: chr12:1935			XM:i NM:i:0 M	$\begin{aligned} & \text { X0:i:0 } \\ & \text { MD:z:36 } \end{aligned}$	XG:i:0 YT:Z:UU
SA: 652: chr12:1945	+10		YM:i:0		

Genotyping

- Sequencing instruments make mistakes
- Quality of read decreases over the read length
- A single read differing from the reference is probably just an error, but it becomes more likely to be real as we see it multiple times
- Often framed as a Bayesian problem of more likely to be a real variant or chance occurrence of N errors
- Accuracy improves with deeper coverage

Outline

I. Rise of DNA Sequencing
2. Alignment and the BWT
3. Genetics of Autism

Unified Model of Autism

Sporadic Autism: 1 in 100

> Prediction: De novo mutations of high penetrance contributes to autism, especially in low risk families with no history of autism.

Familial Autism: 90\% concordance in twins

A unified genetic theory for sporadic and inherited autism
Zhao et al. (2007) PNAS. I04(3I)I283I-I 2836.

Exome-Capture and Sequencing

Sequencing of 343 families from the Simons Simplex Collection

- Parents plus one child with autism and one non-autistic sibling
- Enriched for higher-functioning individuals

Families prepared and captured together to minimize batch effects

- Exome-capture performed with NimbleGen SeqCap EZ Exome v2.0 targeting 36 Mb of the genome.
- $\sim 80 \%$ of the target at $>20 x$ coverage with $\sim 93 \mathrm{bp}$ reads

De novo gene disruptions in children on the autism spectrum lossifov et al. (2012) Neuron. 74:2 285-299

Variation Detection Complexity

True distribution

SNPs + Short Indels

High precision and sensitivity
..TTTAGAATAG-CGAGTGC...
 AGAATAGGCGAG

"Long" Indels (>5bp)
Reduced precision and sensitivity

Analysis confounded by sequencing errors, localized repeats, allele biases, and mismapped reads

Scalpel: Haplotype Microassembly

DNA sequence micro-assembly pipeline for accurate detection and validation of de novo mutations (SNPs, indels) within exome-capture data.

Features

1. Combine mapping and assembly
2. Exhaustive search of haplotypes
3. De novo mutations

NRXN1 de novo SNP (auSSC12501 chr2:50724605)

SCALPEL: Micro-assembly approach to accurately detect de novo and transmitted indel mutations within exome-Capture data
Narzisi, G, O'Rawe, J, lossifov, I, Lee, Y,Wang, Z,Wu, Y, Lyon, G,Wigler, M, Schatz, MC (2013) In preparation

Scalpel Pipeline

Extract reads mapping within the exon including (1) well-mapped reads, (2) softclipped reads, and (3) anchored pairs

Decompose reads into overlapping k-mers and construct de Bruijn graph from the reads

Find end-to-end haplotype paths spanning the region

Align assembled sequences to reference to detect mutations

Simulation Analysis

Indel size distribution (length $>5 \mathrm{bp}$)

True distribution

Scalpel

Simulated 10,000 indels in a exome from a known log-normal distribution

Revised Analysis of the SSC

Constructed database of > IM transmitted and de novo indels Many new gene candidates identified, population analysis underway

De novo mutation discovery and validation

Concept: Identify mutations not present in parents.

Challenge: Sequencing errors in the child or low coverage in parents lead to false positive de novos


```
Ref: . . TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA. . .
Father: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...
Mother: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA... 
Sib: ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA...
Aut(1): ...TCAGAACAGCTGGATGAGATCTTAGCCAACTACCAGGAGATTGTCTTTGCCCGGA....
Aut(2): ...TCAGAACAGCTGGATGAGATCTTACC------CCGGGAGATTGTCTTTGCCCGGA....
```

6bp heterozygous deletion at chr 13:25280526 ATPI2A

De novo Genetics of Autism

- In 343 family quads so far, we see significant enrichment in de novo likely gene killers in the autistic kids
- Overall rate basically I:I (432:396)
- 2:I enrichment in nonsense mutations
- 2 :I enrichment in frameshift indels
- 4:I enrichment in splice-site mutations
- Most de novo originate in the paternal line in an age-dependent manner (56:I8 of the mutations that we could determine)
- Observe strong overlap with the 842 genes known to be associated with fragile X protein FMPR
- Related to neuron development and synaptic plasticity

De novo gene disruptions in children on the autism spectrum
lossifov et al. (2012) Neuron. 74:2 285-299

Summary

I'm interested in answering biological questions by developing and applying novel algorithms and computational systems

- Interesting biological systems: human diseases, foods, biofuels
- Interesting biotechnology: new sequencing technologies
- Interesting computational systems: parallel \& cloud technology
- Interesting algorithms: assembly, alignment, interpretation

Also extremely excited to teach the next generation of scientists in the WSBS, URP, and high school programs

Acknowledgements

Schatz Lab

Giuseppe Narzisi
Shoshana Marcus
James Gurtowski
Srividya
Ramakrishnan
Hayan Lee
Rob Aboukhalil
Mitch Bekritsky
Charles Underwood
Tyler Gavin
Alejandro Wences
Greg Vurture
Eric Biggers
Aspyn Palatnick

CSHL
Hannon Lab
Gingeras Lab
Jackson Lab
Iossifov Lab
Levy Lab
Lippman Lab
Lyon Lab
Martienssen Lab
McCombie Lab
Ware Lab
Wigler Lab

IT Department

SFAR

SIMONS FOUNDATION
AUTISM RESEARCH INITIATIVE

U.S. DEPARTMENT OF ENERGY

See you at

Genome Informatics

Oct 30 - Nov 2

http://schatzlab.cshl.edu
@mike_schatz

