Whole Genome Assembly and Alignment Michael Schatz

Nov 5, 2013 SBU Graduate Genetics

Outline

- I. *-seq review
- 2. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 3. Genome assemblers
 - I. ALLPATHS-LG
 - 2. Celera Assembler
- 4. Whole Genome Alignment with MUMmer

Stories from the Supplement

Lior Pachter Department of Mathematics and Molecular & Cell Biology UC Berkeley

November 1, 2013 Genome Informatics, CSHL

First *Seq assay: ChIP-Seq

Most popular *Seq assay: RNA-Seq

9

What is a *Seq assay?

Sequencing Assays

- 1. Gregory E. Crawford et al., "Genome-wide Mapping of DNase Hypersensitive Sites Using Massively Parallel Signature Sequencing (MPSS)," Genome Research 16, no. 1 (January 1, 2006): 123–131, doi:10.1101/gr.4074106.
- 2. David S. Johnson et al., "Genome-Wide Mapping of in Vivo Protein-DNA Interactions," Science 316, no. 5830 (June 8, 2007): 1497– 1502, doi:10.1126/science.1141319.
- 3. Tarjei S. Mikkelsen et al., "Genome-wide Maps of Chromatin State in Pluripotent and Lineage-committed Cells," Nature 448, no. 7153 (August 2, 2007): 553–560, doi:10.1038/nature06008.
- 4. Nathan A. Baird et al., "Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers," PLoS ONE 3, no. 10 (October 13, 2008): e3376, doi:10.1371/journal.pone.0003376.
- 5. Leighton J. Core, Joshua J. Waterfall, and John T. Lis, "Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters," Science 322, no. 5909 (December 19, 2008): 1845–1848, doi:10.1126/science.1162228.
- 6. Thomas A. Down et al., "A Bayesian Deconvolution Strategy for Immunoprecipitation-based DNA Methylome Analysis," Nature Biotechnology 26, no. 7 (July 2008): 779–785, doi:10.1038/nbt1414.
- 7. Ali Mortazavi et al., "Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq," Nature Methods 5, no. 7 (July 2008): 621–628, doi:10.1038/nmeth.1226.
- 8. Alayne L. Brunner et al., "Distinct DNA Methylation Patterns Characterize Differentiated Human Embryonic Stem Cells and Developing Human Fetal Liver," Genome Research 19, no. 6 (June 1, 2009): 1044–1056, doi:10.1101/gr.088773.108.
- Melissa J. Fullwood et al., "An Oestrogen-receptor- α -bound Human Chromatin Interactome," Nature 462, no. 7269 (November 5, 2009): 58–64, doi:10.1038/nature08497.
- Jay R. Hesselberth et al., "Global Mapping of protein-DNA Interactions in Vivo by Digital Genomic Footprinting," Nature Methods 6, no. 4 (April 2009): 283–289, doi:10.1038/nmeth.1313.
- Nicholas T. Ingolia et al., "Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling," Science 324, no. 5924 (April 10, 2009): 218–223, doi:10.1126/science.1168978.
- 12. Gemma C. Langridge et al., "Simultaneous Assay of Every Salmonella Typhi Gene Using One Million Transposon Mutants," Genome Research (October 13, 2009), doi:10.1101/gr.097097.109.
- 13. Erez Lieberman-Aiden et al., "Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome," Science 326, no. 5950 (October 9, 2009): 289–293, doi:10.1126/science.1181369.
- Ryan Lister et al., "Human DNA Methylomes at Base Resolution Show Widespread Epigenomic Differences," Nature 462, no. 7271 (November 19, 2009): 315–322, doi:10.1038/nature08514.
- 15. Andrew M. Smith et al., "Quantitative Phenotyping via Deep Barcode Sequencing," Genome Research (July 21, 2009), doi:10.1101/

Outline

- I. *-seq review
- 2. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 3. Genome assemblers
 - I. ALLPATHS-LG
 - 2. Celera Assembler
- 4. Whole Genome Alignment with MUMmer

Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

It	was	thevb	esthef	bes tinfes ini	esyais ula	s woers tor	of times,	it was the	a zgeot o	fv ivsitschom ij	t itvæas h	e athe affo	ofistolistanes	s,
It	was	theve	esthe	of times,	t was th	ne wors	st of times	s, it was th	e talgee agge	wisowiad,oi	nwit s th	newaget befe	glishinioolishi	ness,
T+ -	woo	fb er	abdet	bhtimedinit	woit ut	hamorat	of tifotion of	t it was the	ore of	mindom	it was	the ore of	itheliebnes	
11	was	uuwa	SULLEL	Destinestin	waa wa		al minudher	s, it was un	t age of	wisuom, 1	It was		13000105131163	,,
It	was	t the	sbielse	besime sinit	es, was a	ihe houstre	of times,es	it was the	e age of	vi sciscio ni	t, iteasat	tehæg age f fo	otistoolistynes	ss,
It	W	alst tilhæ	esbtelset	b£\$im€\$im	eist, vitasva	1. het here outstre	of of times	s, it was the	e age of o	vfiædsahomi	t, ivtavsatsh	nthæge øligfe	ofistoolistsnes	s,

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

N50 size

Def: 50% of the genome is in contigs as large as the N50 value


```
N50 size = 30 \text{ kbp}
```

```
(300k+100k+45k+45k+30k = 520k \ge 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Milestones in Genome Assembly

Nature Vol. 265 February 24 1977

articles

Nucleotide sequence of bacteriophage $\Phi X174 DNA$

F. Sanger, G. M. Air^{*}, B. G. Barrell, N. L. Brown⁺, A. R. Coulson, J. C. Fiddes, C. A. Hutchison III^{*}, P. M. Slocombe⁴ & M. Smith^{*} MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB: 2011, UK

A DNA sequence for the genume of bacteriphage 0X/T4	strand DNA of GNA has the same sequence as the mRNA and in
of approximately. 5375 meteriotic has been determined	certain conditions, will bird riboteness to that a protected
using the rapid and simple 'pha and minus' method. The	fragment can be isolated and sequenced. Only one major title
production of the proteins of the names responsible for the	as found By comparison with the atmins easil sequence data it
production of the proteins of the name known genes of the	initiation of the gene G proteint ¹⁰ (positions 21:062-2:413).
proteins and RNAs. Two pairs of genes are coded by the	At this stage sequencing techniques using primod synthesis
proteins and RNAs. Two pairs of genes are coded by the	with DNA polymerars were being developed ¹¹ and Schort
proteins and RNAs. Two pairs of genes are coded by the	Part of the ribotene binding sticl. This was used to prime into
proteins and RNAs are afforded trading.	are of the ribotene binding sticl.
This genome of bacteriophage Φ X174 is a single-stranded,	the intercistronic region between the <i>F</i> and <i>G</i> genes, using DNA
invalue DNA of approximately 5400 molecilides coding for	polymerase and ¹⁴ P-labelled triphosphare's. The ribo-substitu-
known proteins. The order of these genes, as determined by	tion technique ¹⁶ facilitated the sequence determination of the
genetic techniques ¹⁻¹ , is $A = C - D = E - E - E - E$. Genes F. G	labelled DNA produced. This decaracleotide-printed system
and H code for structural proteins of the virus capsid, and gene	was also used to develop the plus and minus method'. Suitable
1 (as defined by sequence work) codes for a small basic rortein	synthetic primers are, however, difficult to prepare and as

1977. Sanger *et al.* Ist Complete Organism 5375 bp

2000. Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

1995. Fleischmann *et al.* 1st Free Living Organism TIGR Assembler. 1.8Mbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li *et al.* Ist Large SGS Assembly. SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

Novel genomes

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Assembling a Genome

2. Construct assembly graph from overlapping reads

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Why are genomes hard to assemble?

- **I.** Biological:
 - (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Typical contig coverage

Imagine raindrops on a sidewalk

Histogram of balls in each bin Total balls: 1000 Empty bins: 361

Balls in Bins Ix

Histogram of balls in each bin Total balls: 2000 Empty bins: 142

Balls in Bins 2x

Histogram of balls in each bin Total balls: 4000 Empty bins: 17

Balls in Bins 4x

Histogram of balls in each bin Total balls: 8000 Empty bins: 1

Balls in Bins 8x

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
 - Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
 - Recommend 100x coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"
 - Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $I \le k \le 6$ CACACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	<i>Alu</i> sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ту I -copia, Ту3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
 - Large plant genomes tend to be even worse
 - Wheat: I6 Gbp; Pine: 24 Gbp

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing

- Circularize long molecules (1-10kbp), shear into fragments, & sequence
- Mate failures create short paired-end reads

10kbp

- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^k \left(\frac{G - X\Delta}{G}\right)^{n-k} \qquad A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^k}{k!}e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^k}{k!}e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k\ln 2$$

The fragment assembly string graph Myers, EW (2005) Bioinformatics. 21 (suppl 2): ii79-85.

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
 - Coverage gaps: especially extreme GC regions
 - Conflicts: sequencing errors, repeat boundaries
- Iteratively resolve longest, 'most unique' contigs
 - Both overlap graph and de Bruijn assemblers initially collapse repeats into single copies
 - Uniqueness measured by a statistical test on coverage

Outline

- I. *-seq review
- 2. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 3. Genome assemblers
 - I. ALLPATHS-LG
 - 2. Celera Assembler
- 4. Whole Genome Alignment with MUMmer

Assembly Algorithms

Genome assembly with ALLPATHS-LG Iain MacCallum

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage (x)	Required
Fragment	180*	≥ 100	45	yes
Short jump	3,000	\geq 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no**
Fosmid jump	40,000	≥ 26	1	no**

*See next slide.

**For best results. Normally not used for small genomes. However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

Given a crystal ball, we could stack reads on the chromosomes they came from (with homologous chromosomes separate), then let each column 'vote':

chromosome

But we don't have a crystal ball....

<u>ALLPATHS-LG.</u> For every K-mer, examine the stack of all reads containing the K-mer. Individual reads may be edited if they differ from the overwhelming consensus of the stack. If a given base on a read receives conflicting votes (arising from membership of the read in multiple stacks), it is not changed. (K=24)

To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:

More than one closure allowed (but rare).

Unipath: unbranched part of genome – squeeze together perfect repeats of size $\geq K$

Adjacent unipaths overlap by K-1 bases

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number CN = 1)

II. Form neighborhood around each seed

and are extended by other unipaths

Genome assembly with the Celera Assembler

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

Single Molecule Sequencing Technology

SMRT Sequencing Data

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	I.4%

TTGTAAGCAGTTGAAAACTATGTGT <mark>G</mark> GATTTAG <mark>A</mark> ATAAAGAACATG <mark>A</mark> AAG
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
-AGGAGG <mark>GGAAAGGGGGGG</mark> GAATATCT-ATAAAAGATTACAAATTAGA-TGA
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
ATCCAGT <mark>G</mark> GAAAATATA <mark>AT</mark> TTATGC <mark>A</mark> ATCCA <mark>G</mark> GAACTTATTCACAATTAG

Sample of 100k reads aligned with BLASR requiring >100bp alignment

PacBio Error Correction: HGAP

- With 50-100x of Pacbio coverage, virtually all of the errors can be eliminated
 - Works well for Microbial genomes: single contig per chromosome routinely achieved
 - Difficult to scale up for use with eukaryotic genomes

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data Chin, CS et al. (2013) Nature Methods. 10: 563-569

Hybrid Sequencing

Illumina Sequencing by Synthesis

High throughput (60Gbp/day) High accuracy (~99%) Short reads (~100bp)

Pacific Biosciences

SMRT Sequencing

Lower throughput (IGbp/day) Lower accuracy (~85%) Long reads (5kbp+)

Hybrid Error Correction: PacBioToCA http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads to long reads
 - 2. Trim long reads at coverage gaps
 - 3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280

Enhanced PacBio Error Correction

PacBioToCA fails in complex regions

- I. Simple Repeats Kmer Frequency Too High to Seed Overlaps
- 2. Error Dense Regions Difficult to compute overlaps with many errors

3. Extreme GC – Lacks Illumina Coverage

Assembly complexity of long read sequencing

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2013) In preparation

Preliminary Rice Assemblies

Assembly	Contig NG50
HiSeq Fragments 50x 2x100bp @ 180	3,925
MiSeq Fragments 23x 459bp 8x 2x251bp @ 450	6,332
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18,248

In collaboration with McCombie & Ware labs @ CSHL

Improved Gene Reconstruction

FOXP2 assembled in a single contig in the PacBio parrot assembly

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280

P5-C3 Chemistry Read Lengths

Read Length (bp)

De novo assembly of Arabidopsis

http://blog.pacificbiosciences.com/2013/08/new-data-release-arabidopsis-assembly.html

A. thaliana Ler-0 sequenced at PacBio

- Sequenced using the latest P4 enzyme and C2 chemistry
- Size selection using an 8 Kb to 50 Kb elution window on a BluePippin[™] device from Sage Science
- Total coverage >100x

Genome size:	124.6 Mb	
GC content:	33.92%	
Raw data:	II Gb	
Assembly coverage:	15x over 9kbp	

Sum of Contig Lengths:	149.5Mb
Number of Contigs:	1788
Max Contig Length:	12.4 Mb
N50 Contig Length:	8.4 Mb

Assembly Complexity of Long Reads

Assembly Summary

Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical
 - Reads
 - -> unitigs
 - -> mates

-> scaffolds

-> optical / physical / genetic maps

-> chromosomes

Extensive error correction is the key to getting the best assembly possible from a given data set

Outline

- I. *-seq review
- 2. Assembly theory
 - I. Assembly by analogy
 - 2. De Bruijn and Overlap graph
 - 3. Coverage, read length, errors, and repeats
- 3. Genome assemblers
 - I. ALLPATHS-LG
 - 2. Celera Assembler
- 4. Whole Genome Alignment with MUMmer

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy amp@umics.umd.edu

WGA visualization

- How can we visualize *whole* genome alignments?
- With an alignment dot plot T $-N \times M$ matrix G• Let i = position in genome A• Let j = position in genome B• Fill cell (*i*,*j*) if A_i shows similarity to B_j A

 A perfect alignment between A and B would completely fill the positive diagonal

- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

http://mummer.sf.net/manual/ AlignmentTypes.pdf

Seed-and-extend with MUMmer

How can quickly align two genomes?

- I. Find maximal-unique-matches (MUMs)
 - Match: exact match of a minimum length
 - Maximal: cannot be extended in either direction without a mismatch
 - Unique
 - occurs only once in both sequences (MUM)
 - occurs only once in a single sequence (MAM)
 - occurs one or more times in either sequence (MEM)
- 2. Cluster MUMs
 - using size, gap and distance parameters
- 3. Extend clusters
 - using modified Smith-Waterman algorithm

Seed and Extend visualization

FIND all MUMs CLUSTER consistent MUMs EXTEND alignments

WGA example with **nucmer**

- Yersina pestis CO92 vs. Yersina pestis KIM
 - High nucleotide similarity, 99.86%
 - Two strains of the same species
 - Extensive genome shuffling
 - Global alignment will not work
 - Highly repetitive
 - Many local alignments

WGA Alignment

nucmer -maxmatch CO92.fasta KIM.fasta

-maxmatch Find maximal exact matches (MEMs)

delta-filter -m out.delta > out.filter.m

-m Many-to-many mapping

show-coords -r out.delta.m > out.coords

-r Sort alignments by reference position

dnadiff out.delta.m Construct catalog of sequence variations

mummerplot --large --layout out.delta.m --large Large plot --layout Nice layout for multi-fasta files --x11 Default, draw using x11 (--postscript, --png)

*requires gnuplot

Resources

- Assembly Competitions
 - Assemblathon: <u>http://assemblathon.org/</u>
 - GAGE: <u>http://gage.cbcb.umd.edu/</u>
- Assembler Websites:
 - ALLPATHS-LG: <u>http://www.broadinstitute.org/software/allpaths-lg/blog/</u>
 - SOAPdenovo: http://soap.genomics.org.cn/soapdenovo.html
 - Celera Assembler: <u>http://wgs-assembler.sf.net</u>
- Tools:
 - MUMmer: <u>http://mummer.sourceforge.net/</u>
 - Quake: http://www.cbcb.umd.edu/software/quake/
 - AMOS: <u>http://amos.sf.net</u>

Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus James Gurtowski Srividya Ramakrishnan Hayan Lee Rob Aboukhalil Mitch Bekritsky Charles Underwood Tyler Gavin **Alejandro Wences Greg Vurture Eric Biggers** Aspyn Palatnick

<u>CSHL</u> Hannon Lab Gingeras Lab Iossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Ware Lab Wigler Lab

IT Department

<u>NBACC</u> Adam Phillippy Sergey Koren SFARE SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

National Human Genome Research Institute

