Sequence Alignment & Computational Thinking
Michael Schatz

Sept 3,2013
QB Bootcamp Lecture 2

Outline

Part |: Overview & Fundamentals

Part 2: Sequence Analysis Theory
* Intro to alignment and algorithms

* Understanding Bowtie

Part 3: Genomics Resources
Part 4: Unix Primer

Part 5: Example Analysis

Milestones in Molecular Biology

There is tremendous interest to sequence:

* What is your genome sequence?
* How does your genome compare to my genome?

* Where are the genes and how active are they?
* How does gene activity change during development!?
* How does splicing change during development?

* How does methylation change during development?
* How does chromatin change during development!?

* How does is your genome folded in the cell?

* Where do proteins bind and regulate genes?

* What virus and microbes are living inside you!?
* How has the disease mutated your genome!?
* What drugs should we give you?

Sequencing Centers

e e

Next Generation Genomics: World Map of High-throughput Sequencers
http://pathogenomics.bham.ac.uk/hts/

Sequence Alighment

* A very common problem in computational biology is to find
occurrences of one sequence in another sequence

— Genome Assembly

— Gene Finding

— Comparative Genomics

— Functional analysis of proteins
— Motif discovery

— SNP analysis

— Phylogenetic analysis
— Primer Design
— Personal Genomics

Personal Genomics

How does your genome compare to the reference?

Creates magical
technology

Searching for GATTACA
* Where is GATTACA in the human genome!

* Strategy |:Brute Force

1203 45 6 7 8 9 101 12[3145].

T G A. T T A C A G A T T A C C ..

G A T T A C A

No match at offset |

Searching for GATTACA
* Where is GATTACA in the human genome!

* Strategy |:Brute Force

1203 45 6 7 8 9 101 12[3145].

T G A. T T A C A G A T T A C C ..

G A T T A C A

Match at offset 2

Searching for GATTACA
* Where is GATTACA in the human genome!

* Strategy |:Brute Force

1203 45 6 7 8 9 101 12[3145].

T G A. T T A C A G A T T A C C ..

G A T T A C A ..

No match at offset 3...

Searching for GATTACA
* Where is GATTACA in the human genome!

* Strategy |:Brute Force

1203 45 6 7 8 9 101 12[3145].

T G A. T T A C A G A T T A C C

G A T T A C A

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

e Brute Force:

— At every possible offset in the genome:
* Do all of the characters of the query match?

* Analysis
— Simple, easy to understand
— Genome length = n [3B]
— Query length =m [7]
— Comparisons: (n-m+1) * m [21B]

* Overall runtime: O(nm)
[How long would it take if we double the genome size, read length?]
[How long would it take if we double both?]

e-value

2e+08 4e+08 6e+08

0e+00

Expected Occurrences

The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence

— | in 4 bases are G, | in 16 positions are GA, | in 64 positions are GAT, ...

— 1 in 16,384 should be GATTACA

— E=n/(4™) [183,105 expected occurrences]
[How long do the reads need to be for a significant match?]

Evalue and sequence length E-value and sequence length
cutoff 0.1 cutoff 0.1
~ MW human (3B)
| fly (130M)
HW human (3B) < ’
® fly (130M) o | E. coli (5M)
W E. coli (5M)

1e+03

e-value

1e-01

1e-05

1e-09

seq len seq len

Brute Force Reflections

Why check every position!?
— GATTACA can't possibly start at position |5 [WHY?]

1203405 6 7 8 9 101 12[3145].

T G A. T T A C A G A T T A C C

G A T T A C A

— Improve runtime to O(n + m) [3B + 7]
* If we double both, it just takes twice as long
e Knuth-Morris-Pratt, 1977
* Boyer-Moyer, 1977, 1991

— For one-off scans, this is the best we can do (optimal performance)
* We have to read every character of the genome, and every character of the query
* For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book

* What if we need to check many queries?
* We don't need to check every page of the phone book to find 'Schatz’

* Sorting alphabetically lets us immediately skip 96% (25/26) of the book
without any loss in accuracy

* Sorting the genome: Suffix Array (Manber & Myers, 1991)

— Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

Searching the Index

* Strategy 2:Binary search

Searching for GATTACA

Compare to the middle, refine as higher or lower

Lo=I;Hi=1I5;

Lo
$

Sequence

ACAGATTACC...

ACC...

AGATTACC...

ATTACAGATTACC...

ATTACC...

C...

CAGATTACC...

CC...

GATTACAGATTACC...

O |V O|IN|oc|lunn | hNMh|wW]|DN

GATTACC...

TACAGATTACC...

TACC...

TGATTACAGATTACC...

TTACAGATTACC...

TTACC...

Searching the Index
* Strategy 2:Binary search

* Compare to the middle, refine as higher or lower
Lo

-9
« Searching for GATTACA | | ACAGATTACC. . ¢
« Lo=1;Hi=15Mid=(1+15/2=8 2| ACC... 3

* Middle = Suffix[8] = CC j 2:222;}“ j
5| ATTACC... 10
6| C... 15

7 | CAGATTACC... 7
8| CC... 14

9 | GATTACAGATTACC... 2

10 | GATTACC... 9

Il | TACAGATTACC... 5
12 | TACC... 12

13 | TGATTACAGATTACC... I

14 | TTACAGATTACC... 4

Hi I5 | TTACC... I

=

Searching the Index
* Strategy 2:Binary search

* Compare to the middle, refine as higher or lower
Lo

-'d
« Searching for GATTACA | | ACAGATTACC. . ¢
e Lo=I;Hi=15Mid=(1+I5)/2=8 2] ACC. 3

* Middle = Suffix[8] = CC 3 | AGATTACC... 8

= Higher: Lo = Mid + | 4 | ATTACAGATTACC... 3
5 | ATTACC... 10
6| C... 15

7 | CAGATTACC... 7
8| CC... 14

9 | GATTACAGATTACC... 2

10 [GATTACC... 9

Il [TACAGATTACC... 5
12 | TACC... 12

13 | TGATTACAGATTACC... I

14 | TTACAGATTACC... 4

I_j) I5 | TTACC... I

Searching the Index
* Strategy 2:Binary search

* Compare to the middle, refine as higher or lower

Sequence

* Searching for GATTACA
* Lo=I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher:Lo = Mid + |

e Lo=9;Hi=15;

-» 9 | GATTACAGATTACC... 2
10 | GATTACC... 9
Il | TACAGATTACC... 5
12 | TACC... 12
I3 | TGATTACAGATTACC... | |
14 | TTACAGATTACC... 4

I;Ii) I5 | TTACC... I

Searching the Index
* Strategy 2:Binary search

* Compare to the middle, refine as higher or lower

Sequence

* Searching for GATTACA
* Lo=I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher:Lo = Mid + |

Lo =9;Hi=I5Mid= (9+15)2 = |2
» Middle = Suffix[12] = TACC

9 | GATTACAGATTACC...
10 | GATTACC...

vl | O | N

1 | TACAGATTACC...

12 | TACC... 12
I3 | TGATTACAGATTACC... | |
14 | TTACAGATTACC... 4

Hi I5 | TTACC... I

Searching the Index

Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo = I;Hi=15Mid = (I1+15)/2=8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

Lo = 9;Hi = 15;Mid = (9+15)/2 = 12
Middle = Suffix[12] = TACC

=> Lower: Hi = Mid - |

Lo=9;Hi=11I;

Sequence

GATTACAGATTACC...

10

GATTACC...

TACAGATTACC...

Searching the Index
Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo = I;Hi=15Mid = (I1+15)/2=8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

Lo =9;Hi = 15;Mid = (9+15)/2 =12
Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

Lo =9;Hi= I1;Mid = (9+11)/2= 10
Middle = Suffix[10] = GATTACC

#

Sequence

GATTACAGATTACC...

10

GATTACC...
TACAGATTACC...

O N

Searching the Index
Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Sequence

Searching for GATTACA
* Lo=I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher:Lo = Mid + |

e Lo=9;Hi=15Mid = (9+15)/2=12
* Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

1)

GATTACAGATTACC... 2

e Lo=9Hi=1I;Mid=09+11)/2=10
* Middle = Suffix[10] = GATTACC
=> Lower: Hi = Mid - |

e Lo=9;Hi=09;

Searching the Index
Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Sequence

Searching for GATTACA
* Lo=I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher:Lo = Mid + |

e Lo=9;Hi=15Mid = (9+15)/2=12
* Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

GATTACAGATTACC...

e Lo=9Hi=1I;Mid=09+11)/2=10
* Middle = Suffix[10] = GATTACC
=> Lower: Hi = Mid - |

e Lo=9;Hi=9;Mid=(9+9)/2=9
* Middle = Suffix[9] = GATTACA...
=> Match at position 2!

L

Binary Search Analysis

* Binary Search
Initialize search range to entire list
mid = (hi+lo)/2; middle = suffix[mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range
Repeat until done or empty range

* Analysis
* More complicated method
* How many times do we repeat!

* How many times can it cut the range in half?
* Find smallest x such that: n/(2¥) < I;x = Ig,(n)

* Total Runtime: O(m Ig n)
* More complicated, but much faster!
* Looking up a query loops 32 times instead of 3B

[WHEN?]

[32]

[How long does it take to search 6B or 24B nucleotides?]

Fast gapped-read alignment with
Bowtie 2

Ben Langmead and Steven Salzberg (2012) Nature Methods. 9, 357-359

In-exact alighment

* Where is GATTACA approximately in the human genome!
— And how do we efficiently find them?

* |t depends...

— Define 'approximately’
* Hamming Distance, Edit distance, or Sequence Similarity
* Ungapped vs Gapped vs Affine Gaps

* Global vs Local
* All positions or the single 'best"?

— Efficiency depends on the data characteristics & goals
* Smith-Waterman: Exhaustive search for optimal alignments

* BLAST: Hash-table based homology searches
* Bowtie: BWT alignment for short read mapping

Searching for GATTACA
* Where is GATTACA approximately in the human genome!

Match Score: | /7

Searching for GATTACA
* Where is GATTACA approximately in the human genome!

Match Score: 7/7

Searching for GATTACA
* Where is GATTACA approximately in the human genome!

Match Score: | /7

Searching for GATTACA
* Where is GATTACA approximately in the human genome!

1203 45 6 7 8 9 101 12[3145].

T G A. T T A C A G A T T A C C

G A T T A C A

Match Score: 6/7 <-We may be very interested in these imperfect matches
Especially if there are no perfect end-to-end matches

Similarity metrics

* Hamming distance

— Count the number of substitutions to transform one string into

another
GATTACA GATTTTTACA
x| | || | XXXXXX
GATCACA GATTACA
1 6

e Edit distance

— The minimum number of substitutions, insertions, or deletions to
transform one string into another

GATTACA GATTTTTACA
1] |1 1xxX]]|
GATCACA GATT---ACA

1 3

Seed-and-Extend Alignment

10bp read
X 1 difference
Theorem: An alignment of a sequence of length m -
with at most k differences must contain
an exact match at least s=m/(k+1) bp long > —
(Baeza-Yates and Perleberg, 1996)
3 %
: . 4 *
— Proof: Pigeonhole principle
— | pigeon can't fill 2 holes 5 *
6 *
— Seed-and-extend search 7 %
— Use an index to rapidly find short exact 3 .
alignments to seed longer in-exact alignments
— BLAST, MUMmer, Bowtie, BWA, SOARP ... 9 *
10

— Specificity of the depends on seed length
— Guaranteed sensitivity for k differences
— Also finds some (but not all) lower quality alignments <- heuristic

O 00 N O

Algorithm Overview

1. Split read into segments

Read Read (reverse complement)

CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTGG

Policy: extract 16 nt seed every 10 nt

Seeds
+, 0: CCAGTAGCTCTCAGCC -, 0: TACAGGCCTGGGTAAA
+, 10: TCAGCCTTATTTTACC -, 10:
+, 20: TTTACCCAGGCCTGTA -, 20: GGCTGAGAGCTACTGG

2. Lookup each segment and prioritize

—_— .

Seeds Ungapped Seed alignments (as B ranges)

+, 0: CCAGTAGCTCTCAGCC alignment with { [211, 212], [212, 214] }
FM Index

+, 10: TCAGCCTTATTTTACC { [653, 654], [651, 653] }

+, 20: TTTACCCAGGCCTGTA s g { [684, 685] }
-, 0: TACAGGCCTGGGTAAA a s {1}

-, 10: == {}

-, 20: GGCTGAGAGCTACTGG __° ° { [624, 625] }

3. Evaluate end-to-end match

Extension candidates SIMD dynamic SAM alignments

SA:684, chrl2:1955 programming ri 0 chrlz 1936 °
aligner 36M x 0 0

SA:624, chr2:462 _ CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA
m —> IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SA:211: chr4:762 AS:i:@ XS:i:-2 XN:i:0

. . . XM:1:0 X0:1:0 XG:i:0
SA:213: chrl2:1935 NM:i:0 MD:Z:36 YT:Z:UU
SA:652: chrl2:1945 YM:i:0

Questions?

http://schatzlab.cshl.edu

Suffix Array Construction

* How can we store the suffix array?
[How many characters are in all suffixes combined?]

S:1+2+3+---+n:Zz’:n<n;l>ZO(nQ) N j
=1 - 10

15

* Hopeless to explicitly store 4.5 billion billion characters 7
14

* Instead use implicit representation 2
* Keep | copy of the genome, and a list of sorted offsets i

* Storing 3 billion offsets fits on a server (12GB) :

* Searching the array is very fast, but it takes time to construct !

* This time will be amortized over many, many searches 4

* Run it once "overnight" and save it away for all future queries I

TGATTACAGATTACC

Sorting

Quickly sort these numbers into ascending order:
14,29,6,31,39,64,78,50, 13,63,61, 19

[How do you do it?]

6,14,29,31,39,64,78,50, 13,63,61, 19
6,13,14,29,31,39,64,78,50,63,61, 19
6,13,14,19,29,31, 39, 64,78,50,63,6
6,13,14,19,29,31, 39, 64,78,50,63,6
6,13,14,19,29,31, 39, 64,78,50,63,6
6,13,14,19,29,31, 39,50, 64,78,63,61
6,13,14,19,29,31,39,50,61, 64,78, 63
6,13, 14,19,29,31,39,50,61,63, 64,78
6,13, 14,19,29,31,39,50,61,63, 64,78
6,13,14,19,29,31,39,50,61,63, 64,78
6,13,14,19,29,31,39,50,61,63, 64,78
6,13,14,19,29,31,39,50,61,63, 64,78

http://en.wikipedia.org/wiki/Selection_sort

Selection Sort Analysis

* Selection Sort (Input: list of n numbers)
for pos =1 ton
// find the smallest element in [pos, n]
smallest = pos
for check = pos+| to n
if (list[check] < list[smallest]): smallest = check

I/l move the smallest element to the front
tmp = list[smallest]

list[pos] = list[smallest]

list[smallest] = tmp

* Analysis
- 1
T=n+(n-1)+Mn-2)++3+2+1=) i= @ = O(n?)
* Outerloop: pos =1ton =
* Inner loop: check = pos to n
* Running time: Outer * Inner = O(n?) [4.5 Billion Billion]

[Challenge Questions: Why is this slow? / Can we sort any faster?]

Divide and Conquer

* Selection sort is slow because it rescans the entire list for each element
* How can we split up the unsorted list into independent ranges!?
* Hint |: Binary search splits up the problem into 2 independent ranges (hi/lo)
* Hint 2: Assume we know the median value of a list

= =] = <A>'<A> 8::/8
A AL A AN T
M MW MW M MM

[How many times can we split a list in half?]

QuickSort Analysis

* QuickSort(Input: list of n numbers) -
Il see if we can quit -

if (length(list)) <= 1): return list " I

/1 split list into lo & hi I -
pivot = median(list) |
lo = {}; hi = {}; - " -
for (i = | to length(list)) "
if (list[i] < pivot): append(lo, list[i]) = 0
else: aPPend(hi’ IiSt[i]) http://en.wikipedia.org/wiki/Quicksort
/I recurse on sublists

return (append(QuickSort(lo), QuickSort(hi))

* Analysis (Assume we can find the median in O(n))

[0(1) ifn <1
T(n) = { O(n) +2T(n/2) else () ()
T(n) = n+2(g) +4(%) +-~-+n(%) =y 22? =Y n=0(nlgn) [~94B]

1=0 1=0

QuickSort Analysis

* QuickSort(Input: list of n numbers)

Il see if we can quit . - -
if (length(list)) <= 1): return list s o
/1 split list into lo & hi I . i
pivot = median(list) .
lo = {};hi = {}; - i I .
for (i = | to length(list)) . of
if (list[i] < pivot): append(lo, list[i]) " |
else: aPPend(hi’ IiSt[i]) http://en.wikipedia.org/wiki/Quicksort

/I recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

* Analysis (Assume we can find the median in O(n))

[0(1) ifn <1
T(n) = { O(n) +2T(n/2) else () ()
T(n) = n+2(g) +4(%) +-~-+n(%) =y 22? =Y n=0(nlgn) [~94B]

1=0 1=0

