
Genome Sequencing & Assembly 
Michael Schatz 
 
 
 
 
 
 
March 31, 2014 
CSHL Genome Access 



Outline 

1.  Assembly theory 
1.  Assembly by analogy 
2.  De Bruijn and Overlap graph 
3.  Coverage, read length, errors, and repeats 

2.  Whole Genome Alignment 
1.  Aligning & visualizing with MUMmer 

3.  Genome assemblers 
1.  ALLPATHS-LG: recommended for Illumina-only projects 
2.  Celera Assembler: recommended for PacBio projects 



Outline 

1.  Assembly theory 
1.  Assembly by analogy 
2.  De Bruijn and Overlap graph 
3.  Coverage, read length, errors, and repeats 

2.  Whole Genome Alignment 
1.  Aligning & visualizing with MUMmer 

3.  Genome assemblers 
1.  ALLPATHS-LG: recommended for Illumina-only projects 
2.  Celera Assembler: recommended for PacBio projects 



Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 
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 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 
Model the assembly problem as a graph problem 



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 
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After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 



The full tale 
… it was the best of times it was the worst of times … 

… it was the age of wisdom it was the age of foolishness … 
… it was the epoch of belief it was the epoch of incredulity … 
… it was the season of light it was the season of darkness … 
… it was the spring of hope it was the winder of despair … 

it was the winter of despair 

worst 

best 

of times 

epoch of 
belief 

incredulity 

spring of hope 

foolishness 

wisdom 

light 

darkness 

age of 

season of 



Assembly Complexity 
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Milestones in Genome Assembly 

2000. Myers et al. 
1st Large WGS Assembly. 

Celera Assembler. 116 Mbp 

1995. Fleischmann et al. 
1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2010. Li et al. 
1st Large SGS Assembly. 
SOAPdenovo 2.2 Gbp 

1977. Sanger et al. 
1st Complete Organism 

5375 bp 

2001. Venter et al., IHGSC 
Human Genome 

Celera Assembler/GigaAssembler. 2.9 Gbp 

1998. C.elegans SC 
1st Multicellular Organism 

BAC-by-BAC Phrap. 97Mbp 

Like Dickens, we must computationally reconstruct a genome from short fragments 



Assembly Applications 
•  Novel genomes 

 

•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 



Assembling a Genome 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 

2. Construct assembly graph from overlapping reads 
…AGCCTAGGGATGCGCGACACGT 

       GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC 
          CAACCTCGGACGGACCTCAGCGAA… 



Why are genomes hard to assemble? 

1.  Biological:  
–  (Very) High ploidy, heterozygosity, repeat content 

2.  Sequencing:  
–  (Very) large genomes, imperfect sequencing 

3.  Computational:  
–  (Very) Large genomes, complex structure 

4.  Accuracy:  
–  (Very) Hard to assess correctness 
 



Ingredients for a good assembly 

Current challenges in de novo plant genome sequencing and assembly 
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243 

Coverage 

High coverage is required 
–  Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads 

–  Biased coverage will also fragment 
assembly 

Lander Waterman Expected Contig Length vs Coverage
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Read Length 

Reads & mates must be longer 
than the repeats 
–  Short reads will have false overlaps 

forming hairball assembly graphs 
–  With long enough reads, assemble 

entire chromosomes into contigs 

Quality 

Errors obscure overlaps 
–  Reads are assembled by finding 

kmers shared in pair of reads 
–  High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.youtube.com/watch?v=l99aKKHcxC4 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Typical contig coverage 
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Imagine raindrops on a sidewalk 

Coverage 



Balls in Bins 1x 



Balls in Bins 2x 



Balls in Bins 4x 



Balls in Bins 8x 



Coverage and Read Length 
Idealized Lander-Waterman model 
•  Reads start at perfectly random 

positions 

•  Contig length is a function of 
coverage and read length 
–  Short reads require much higher 

coverage to reach same expected 
contig length 

•  Need even high coverage for 
higher ploidy, sequencing errors, 
sequencing biases 
–  Recommend 100x coverage 

Lander Waterman Expected Contig Length vs Coverage

Read Coverage

E
x
p
e
c
te

d
 C

o
n
ti
g
 L

e
n
g
th

 (
b
p
)

0 5 10 15 20 25 30 35 40

1
0
0

1
k

1
0
k

1
0
0
k

1
M

+dog mean

+dog N50

+panda mean

+panda N50

1000 bp

710 bp

250 bp

100 bp

52 bp

30 bp

Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  



Unitigging / Unipathing 

•  After simplification and correction, compress graph 
down to its non-branching initial contigs 
–  Aka “unitigs”, “unipaths”  
–  Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats 

Errors 



Errors in the graph 

(Chaisson, 2009) 

Clip Tips Pop Bubbles 
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Repetitive regions 

•  Over 50% of mammalian genomes are repetitive 
–  Large plant genomes tend to be even worse 
–  Wheat: 16 Gbp; Pine: 24 Gbp 

Repeat Type Definition / Example Prevalence 

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6 
CACACACACACACACACACA 

2% 

SINEs (Short Interspersed Nuclear 
Elements) 

Alu sequence (~280 bp) 
Mariner elements (~80 bp) 

13% 

LINEs (Long Interspersed Nuclear 
Elements) 

~500 – 5,000 bp 21% 

LTR (long terminal repeat) 
retrotransposons 

Ty1-copia, Ty3-gypsy, Pao-BEL 
(~100 – 5,000 bp) 

8% 

Other DNA transposons 3% 

Gene families & segmental duplications 4% 



Repeats and Coverage Statistics A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 



Scaffolding 
•  Initial contigs (aka unipaths, unitigs) terminate at 

–  Coverage gaps: especially extreme GC regions 
–  Conflicts: sequencing errors, repeat boundaries 

•  Iteratively resolve longest, ‘most unique’ contigs 
–  Both overlap graph and de Bruijn assemblers initially collapse 

repeats into single copies 
–  Uniqueness measured by a statistical test on coverage 



N50 size 
Def: 50% of the genome is in contigs as large as the N50 value 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



Break 
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Whole Genome Alignment 
with MUMmer 

 

Slides Courtesy of Adam M. Phillippy 
University of Maryland 

 
 



Goal of WGA 
•  For two genomes, A and B, find a mapping from 

each position in A to its corresponding 
position in B 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA 



Not so fast... 
•  Genome A may have insertions, deletions, 

translocations, inversions, duplications or SNPs 
with respect to B (sometimes all of the above) 

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA 

CCGCTAGGCTATTAAAACCCCGGAGGAG....GGCTGAGCA 



WGA visualization 
•  How can we visualize whole genome alignments? 

•  With an alignment dot plot 
–  N x M matrix 

•  Let i = position in genome A 
•  Let j = position in genome B 
•  Fill cell (i,j) if Ai shows similarity to Bj 

–  A perfect alignment between A and B would completely fill 
the positive diagonal 
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A 

A C C T 



B 

A 

B 

A 

Translocation Inversion Insertion 



SV Types 

•  Different structural 
variation types / 
misassemblies will be 
apparent by their 
pattern of breakpoints 

•  Most breakpoints will 
be at or near repeats 

•  Things quickly get 
complicated in real 
genomes 

http://mummer.sf.net/manual/ 
AlignmentTypes.pdf 



Seed-and-extend with MUMmer 
 How can quickly align two genomes? 

 

1.  Find maximal-unique-matches (MUMs) 
w  Match: exact match of a minimum length 
w  Maximal:  cannot be extended in either direction without a mismatch 
w  Unique 

w  occurs only once in both sequences (MUM) 
w  occurs only once in a single sequence (MAM) 
w  occurs one or more times in either sequence (MEM) 

2.  Cluster MUMs 
w  using size, gap and distance parameters 

3.  Extend clusters 
w  using modified Smith-Waterman algorithm 



WGA Alignment 

See manual at http://
mummer.sourceforge.net/manual 

 
nucmer –maxmatch CO92.fasta KIM.fasta 
-maxmatch  Find maximal exact matches (MEMs) 
 

delta-filter –m out.delta > out.filter.m 
-m  Many-to-many mapping 
 

show-coords -r out.delta.m > out.coords 
-r  Sort alignments by reference position 
 

dnadiff out.delta.m 
Construct catalog of sequence variations 
 

mummerplot --large --layout out.delta.m 
--large   Large plot 
--layout Nice layout for multi-fasta files 
--x11   Default, draw using x11 (--postscript, --png) 
*requires gnuplot 
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Genome assembly with ALLPATHS-LG 
 Iain MacCallum 



How ALLPATHS-LG works 

assembly 

reads 

unipaths 

corrected reads 

doubled reads 

localized data 

local graph assemblies 

global graph assembly 



ALLPATHS-LG sequencing model 

*See next slide. 
 
**For best results.  Normally not used for small genomes.   
   However essential to assemble long repeats or duplications. 
 
Cutting coverage in half still works, with some reduction in 
quality of results.   
 
All: protocols are either available, or in progress. 



Error correction 

Given a crystal ball, we could stack reads on the chromosomes they came from 
(with homologous chromosomes separate), then let each column ‘vote’: 

A 

C 
C 
C 

C 
C 
C 
C 
C 

chromosome 

change to C  

But we don’t have a crystal ball.... 



Error correction 

ALLPATHS-LG. For every K-mer, examine the stack of all reads containing the 
K-mer. Individual reads may be edited if they differ from the overwhelming 
consensus of the stack. If a given base on a read receives conflicting votes 
(arising from membership of the read in multiple stacks), it is not changed. 
(K=24) 
 

ß   K   à 

T 
T 
T 
T 
T 
T 
T 
T 
T 

columns inside the kmer are homogeneous 

A 

C 
C 
C 

C 
C 
C 
C 
C 

columns outside the kmer may be mixed 

Two calls at Q20 or better are enough to protect a base 

change to C  



Read doubling 

+ 
28 28 

More than one closure allowed (but rare). 

To close a read pair (red), we require the existence of another read pair (blue), 
overlapping perfectly like this:  



Unipath: unbranched part of genome – squeeze together 
perfect repeats of size ≥ K 

Unipaths 

R A B 

R C D 
parts of 
genome 

R 
A B 

C D 
unipaths from 
these parts 

R 
A B 

C D 
unipath graph 

Adjacent unipaths overlap by K-1 bases 



Localization 

reaches to other unipaths (CN = 1)  
directly and indirectly   

read pairs reach into repeats 

and are extended by other 
unipaths       

I. Find ‘seed’ unipaths, evenly spaced across genome 
(ideally long, of copy number CN = 1) 

seed unipath 
 

II. Form neighborhood around each seed 



Create assembly from global assembly graph 

A 

T 

G 

GG 

{A,T} G 

flatten 

{A,T} G 

scaffold 

{A,T} G 

patch 

fix 
{A,T} {G,GG} 



Large genome recipe: ALLPATHS-LG vs capillary 

Completeness 

genome 
(%) 

88.7 
94.2 

exome 
(%) 

96.7 97.3 

seg dups 
(%) 

42.3 

65.7 

Accuracy 

bases 
between 

base errors 

bases between 
local 

misassemblies 

8,300 

2,000 

4,500 
3,700 

Continuity 

contig 
N50 
(kb) 

17 
25 

scaffold 
N50 (Mb) 

17.5 16.9 

Cost 

$ 

Mouse Genome 



19+ vertebrates 
assembled with 
ALLPATHS-LG 

scaffold N50 (Mb) 

co
nt

ig
 N

50
 (k

b)
 

B6 

129 

bushbaby 

tenrec 

ground squirrel 

N. brichardi 

NA12878 

coelacanth 

stickleback 

shrew 

A. burtoni 

P. nyererei 

M. zebra 

female ferret 

tilapia 

spotted gar 
    69 kk 

male ferret 
     67 kb 

squirrel monkey 
            19 Mb 

chinchilla 



Genome assembly with the  
Celera Assembler 



Celera Assembler 

1.  Pre-overlap 
–  Consistency checks 
 

2.  Trimming 
–  Quality trimming & partial overlaps 

3.  Compute Overlaps 
–  Find high quality overlaps 

4.  Error Correction 
–  Evaluate difference in context of 

overlapping reads 

5.  Unitigging 
–  Merge consistent reads 

6.  Scaffolding 
–  Bundle mates, Order & Orient 

7.  Finalize Data 
–  Build final consensus sequences 

 

http://wgs-assembler.sf.net 



Hybrid Sequencing 

Illumina 
Sequencing by Synthesis 

 
High throughput (60Gbp/day) 

High accuracy (~99%) 
Short reads (~100bp) 

Pacific Biosciences 
SMRT Sequencing 

 
Lower throughput (600Mbp/day) 

Lower accuracy (~85%) 
Long reads (2-5kbp+) 

  



SMRT Sequencing 

Time 

In
te

ns
ity

 

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf 

Imaging of fluorescently phospholinked labeled nucleotides as they are 
incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW). 



SMRT Sequencing Data 
TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG!
||||||||||||||||||||||||| ||||||| |||||||||||| |||!
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG!
!
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG!
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||!
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG!
!
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG!
| |||||| |||| ||  ||||||||||||||||||||||||||||||||!
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG!
!
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA!
| ||||||| |||||||||||||| || ||    |||||||||| |||||!
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA!
!
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA!
 ||||||   ||     |||||||| || |||||||||||||| || |||!
GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA!
!
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT!
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||!
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT!
!
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA!
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||!
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA!
!
ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG!
||||||| |||||||||  |||||| ||||| ||||||||||||||||||!
ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG!
!

Sample of 100k reads aligned with BLASR requiring >100bp alignment 

Match 83.7% 

Insertions 11.5% 

Deletions 3.4% 

Mismatch 1.4% 



Consensus Accuracy and Coverage 

Coverage can overcome random errors 
•  Dashed: error model from binomial sampling 
•  Solid: observed accuracy  
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Koren, Schatz, et al (2012)  
Nature Biotechnology. 30:693–700 



PacBio Assembly Algorithms 

PacBioToCA 
& ECTools 

Hybrid/PB-only Error 
Correction 

 
Koren, Schatz, et al (2012)  
Nature Biotechnology. 30:693–700 

HGAP & Quiver 

PB-only Correction & 
Polishing 

 
Chin et al (2013)  
Nature Methods. 10:563–569 

PBJelly 

Gap Filling  
and Assembly Upgrade 

 
English et al (2012)  
PLOS One. 7(11): e47768 

< 5x > 50x PacBio Coverage 



S. cerevisiae W303 

83x over 10kbp 

8.7x over 20kb 

PacBio RS II sequencing at CSHL by Dick McCombie 

•  Size selection using an 7 Kb elution window on a BluePippin™ 
device from Sage Science 

Max: 36,861bp  

Mean: 5910 

Over 175x coverage in  
16 SMRTcells / 2 days 

using P5-C3 



S. cerevisiae W303 
S288C Reference sequence 
•  12.1Mbp; 16 chromo + mitochondria; N50: 924kbp 
 

PacBio assembly using HGAP + Celera Assembler 

•  12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id 



S. cerevisiae W303 
S288C Reference sequence 
•  12.1Mbp; 16 chromo + mitochondria; N50: 924kbp 
 

PacBio assembly using HGAP + Celera Assembler 

•  12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id 

Near-perfect assembly:  
All but 1 chromosome 
assembled as a single contig 

35kbp repeat cluster 



A. thaliana Ler-0 
http://blog.pacificbiosciences.com/2013/08/new-data-release-arabidopsis-assembly.html 

A. thaliana Ler-0 sequenced at PacBio 
 

•  Sequenced using the previous P4 
enzyme and C2 chemistry 

 

•  Size selection using an 8 Kb to 50 Kb 
elution window on a BluePippin™ 
device from Sage Science 

•  Total coverage >119x 
 

Genome size:   124.6 Mbp 
Chromosome N50:  23.0 Mbp 
Corrected coverage:  20x over 10kb 

Sum of Contig Lengths:  149.5Mb 
N50 Contig Length:   8.4 Mb 
Number of Contigs:   1788 

High quality assembly of chromosome arms 
Assembly Performance: 8.4Mbp/23Mbp = 36%  

MiSeq assembly: 63kbp/23Mbp = .2% 



ECTools: Error Correction with pre-assembled reads 

Short	
  Reads	
  -­‐>	
  Assemble	
  Uni5gs	
  -­‐>	
  Align	
  &	
  Select	
  -­‐	
  >	
  Error	
  Correct	
  	
  
	
  
	
  

Can	
  Help	
  us	
  overcome:	
  
1.  Error	
  Dense	
  Regions	
  –	
  Longer	
  sequences	
  have	
  more	
  seeds	
  to	
  match	
  
2.  Simple	
  Repeats	
  –	
  Longer	
  sequences	
  easier	
  to	
  resolve	
  
	
  

However,	
  cannot	
  overcome	
  Illumina	
  coverage	
  gaps	
  &	
  other	
  biases	
  
	
  

https://github.com/jgurtowski/ectools 



A. thaliana Ler-0 
http://blog.pacificbiosciences.com/2013/08/new-data-release-arabidopsis-assembly.html 



O. sativa pv Indica (IR64) 

12.34x over 10kbp 

4.1x over 20kb 

PacBio RS II sequencing at PacBio 

•  Size selection using an 10 Kb elution window on a 
BluePippin™ device from Sage Science 

Max: 54,288bp  

Mean: 10,232bp 

Over 14.1x coverage in 47 
SMRTcells using P5-C3 



O. sativa pv Indica (IR64) 
Genome size:   ~370 Mb 
Chromosome N50:  ~29.7 Mbp 

Assembly Contig 
NG50 

MiSeq Fragments 
25x 456bp   
(3 runs 2x300 @ 450 FLASH) 

19,078 

“ALLPATHS-recipe” 
50x 2x100bp @ 180 
36x 2x50bp @ 2100 
51x 2x50bp @ 4800  
 

18,450 
 
 

ECTools 
10.7x @ 10kbp 

271,885 

ECTools Read Lengths 
Mean: 9,348 

Max: 54,288bp  
10.75x over 10kbp 



What should we expect from an assembly? 

https://en.wikipedia.org/wiki/Genome_size 



Assembly Complexity of Long Reads 
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SVR Fit :  Genome Assembly Using Genome Size and Read Length
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M
.ja

nn
as

ch
ii

(E
ur

ya
rc

ha
eo

ta
)

C
.h

yd
ro

ge
no

fo
rm

an
s

(F
irm

ic
ut

es
)

E.
co

li(
Eu

ba
ct

er
ia

)
Y.

pe
st

is
(P

ro
te

ob
ac

te
ria

)
B.

an
th

ra
ci

s(
Fi

rm
ic

ut
es

)

A.
m

iru
m

(A
ct

in
ob

ac
te

ria
)

S.
ce

re
vi

si
ae

(Y
ea

st
)

Y.
lip

ol
yt

ic
a(

Fu
ng

us
)

D
.d

is
co

id
eu

m
(S

lim
e 

m
ol

d)
N

.c
ra

ss
a

(R
ed

 b
re

ad
 m

ol
d)

C
.in

te
st

in
al

is
(S

ea
 s

qu
irt

)
C

.e
le

ga
ns

(R
ou

nd
w

or
m

)
C

.re
in

ha
rd

tii
(G

re
en

 a
lg

ae
)

A.
ta

lia
na

(A
ra

bi
do

ps
is

)
D

.m
el

an
og

as
te

r(F
ru

itf
ly

)

P.
pe

rs
ic

a(
Pe

ac
h)

O
.s

at
iv

a(
R

ic
e)

P.
tri

ch
oc

ar
pa

(P
op

la
r)

S.
ly

co
pe

rs
ic

um
(T

om
at

o)
G

.m
ax

(S
oy

be
an

)
M

.g
al

lo
pa

vo
(T

ur
ke

y)

D
.re

rio
(Z

eb
ra

fis
h)

A.
ca

ro
lln

en
si

s(
Li

za
rd

)
Z.

m
ay

s(
C

or
n)

M
.m

us
cu

lu
s(

M
ou

se
)

H
.s

ap
ie

ns
(H

um
an

)

Genome Size

Ta
rg

et
 P

er
ce

nt
ag

e

SVR Fit :  Genome Assembly Using Genome Size and Read Length

 

 

106 107 108 109

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

mean2 ( 7,400 ± 245bp)
mean1 ( 3,650 ± 140bp)
SVR Fit ( 7,400 ± 245bp)
SVR Fit ( 3,650 ± 140bp)

Assembly complexity of long read sequencing 
Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz MC (2014) In preparation 

A
ss

em
bl

y 
N

50
 / 

 
C

hr
om

os
om

e 
N

50
 

“C3” 2013 
“C2” 2012 



Assembly Complexity of Long Reads 

M
.ja

nn
as

ch
ii

(E
ur

ya
rc

ha
eo

ta
)

C
.h

yd
ro

ge
no

fo
rm

an
s

(F
irm

ic
ut

es
)

E.
co

li(
Eu

ba
ct

er
ia

)
Y.

pe
st

is
(P

ro
te

ob
ac

te
ria

)
B.

an
th

ra
ci

s(
Fi

rm
ic

ut
es

)

A.
m

iru
m

(A
ct

in
ob

ac
te

ria
)

S.
ce

re
vi

si
ae

(Y
ea

st
)

Y.
lip

ol
yt

ic
a(

Fu
ng

us
)

D
.d

is
co

id
eu

m
(S

lim
e 

m
ol

d)
N

.c
ra

ss
a

(R
ed

 b
re

ad
 m

ol
d)

C
.in

te
st

in
al

is
(S

ea
 s

qu
irt

)
C

.e
le

ga
ns

(R
ou

nd
w

or
m

)
C

.re
in

ha
rd

tii
(G

re
en

 a
lg

ae
)

A.
ta

lia
na

(A
ra

bi
do

ps
is

)
D

.m
el

an
og

as
te

r(F
ru

itf
ly

)

P.
pe

rs
ic

a(
Pe

ac
h)

O
.s

at
iv

a(
R

ic
e)

P.
tri

ch
oc

ar
pa

(P
op

la
r)

S.
ly

co
pe

rs
ic

um
(T

om
at

o)
G

.m
ax

(S
oy

be
an

)
M

.g
al

lo
pa

vo
(T

ur
ke

y)

D
.re

rio
(Z

eb
ra

fis
h)

A.
ca

ro
lln

en
si

s(
Li

za
rd

)
Z.

m
ay

s(
C

or
n)

M
.m

us
cu

lu
s(

M
ou

se
)

H
.s

ap
ie

ns
(H

um
an

)

Genome Size

Ta
rg

et
 P

er
ce

nt
ag

e

SVR Fit :  Genome Assembly Using Genome Size and Read Length

 

 

106 107 108 109

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

mean8 (30,000 ± 692bp)
mean4 (15,000 ± 435bp)
mean2 ( 7,400 ± 245bp)
mean1 ( 3,650 ± 140bp)
SVR Fit (30,000 ± 692bp)
SVR Fit (15,000 ± 435bp)
SVR Fit ( 7,400 ± 245bp)
SVR Fit ( 3,650 ± 140bp)

Assembly complexity of long read sequencing 
Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz MC. (2014) In preparation 

A
ss

em
bl

y 
N

50
 / 

 
C

hr
om

os
om

e 
N

50
 

“C5” ???? 
“C4” ???? 
“C3” 2013 
“C2” 2012 



 Assembly Recommendations 

•  Long read sequencing of eukaryotic genomes is here 

•  Recommendations 
< 100 Mbp:  HGAP/PacBio2CA @ 100x PB C3-P5 

   expect near perfect chromosome arms 
 

< 1GB:   HGAP/PacBio2CA @ 100x PB C3-P5 
   expect high quality assembly:  contig N50 over 1Mbp 

 

> 1GB:   hybrid/gap filling 
   expect contig N50 to be 100kbp – 1Mbp 

 

> 5GB:   Email mschatz@cshl.edu 
 

•  Caveats 
–  Model only as good as the available references (esp. haploid sequences) 
–  Technologies are quickly improving, exciting new scaffolding technologies 



Assembly Summary 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

•  Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  
–  Extensive error correction is the key to getting the best assembly possible 

from a given data set 

•  Watch out for collapsed repeats & other misassemblies 
–  Globally/Locally reassemble data from scratch with better parameters & 

stitch the 2 assemblies together 
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