Ancient and Modern Humans Michael Schatz

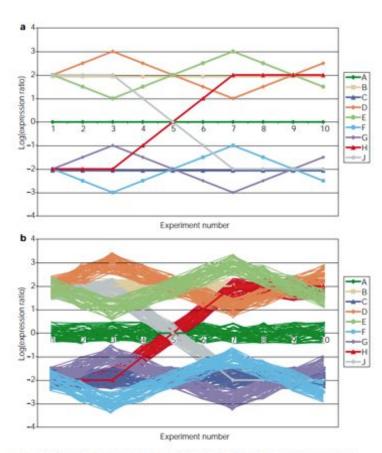
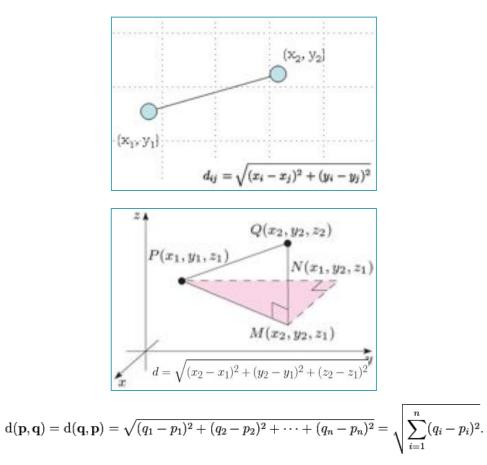
Oct 2, 2014 WSBS Genomics

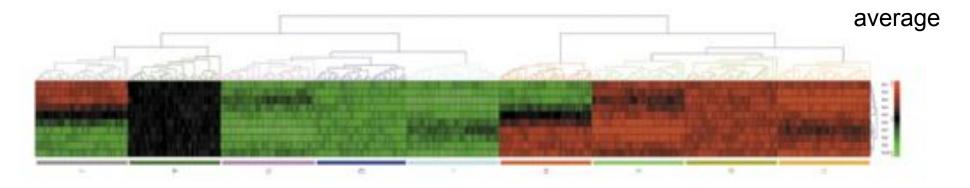
- I. Clustering Refresher
 - I. Hierarchical Clustering
 - 2. PCA

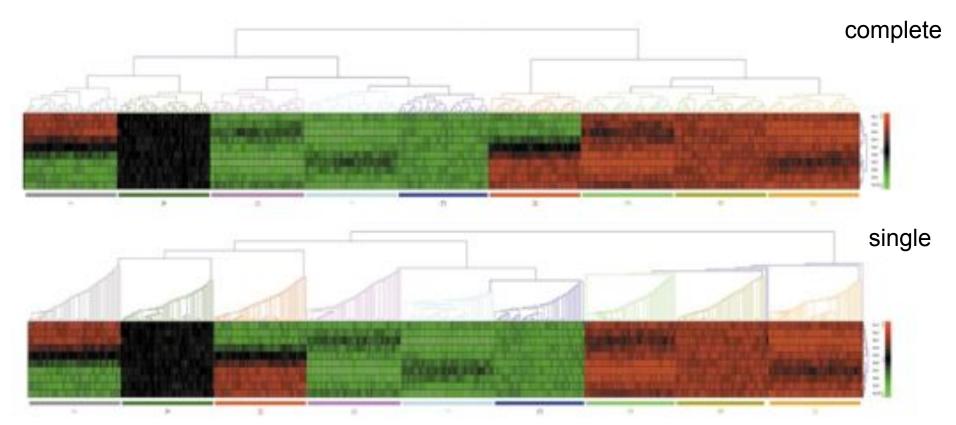
2. Ancient and Modern Human Evolution

- I. Modern Diversity
- 2. Ancient Hominids
- 3. Genetic Privacy
 - I. IobSTR and Microsatellites
 - 2. Surname inference

Clustering Refresher


Figure 2 | A synthetic gene-expression data set. This data set provides an opportunity to evaluate how various clustering algorithms reveal different features of the data. a | Nine distinct gene-expression patterns were created with log₂(ratio) expression measures defined for ten experiments. b | For each expression pattern, 50 additional genes were generated, representing variations on the basic patterns.


Euclidean Distance

Computational genetics: Computational analysis of microarray data Quackenbush (2001) *Nature Reviews Genetics*. doi:10.1038/35076576

Hierarchical Clustering

Principle Components Analysis (PCA)

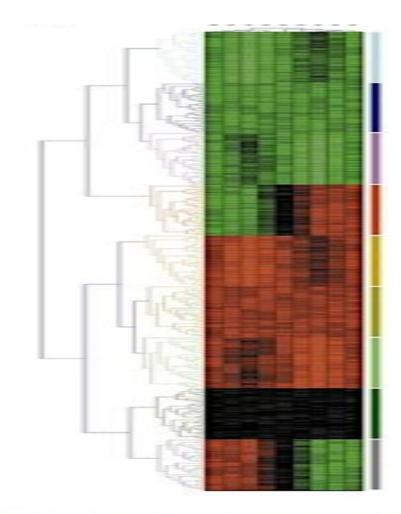
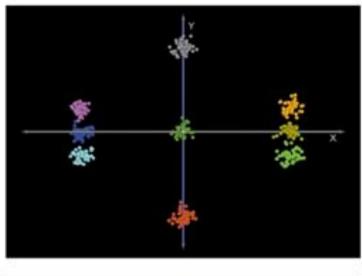
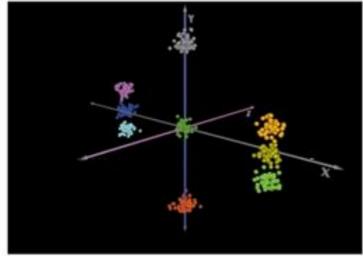




Figure 4 | **Principal component analysis.** The same demonstration data set was analysed using **a** | hierarchical (average-linkage) clustering and **b** | principal component analysis using Euclidean distance, to show how each treats the data, with genes colour coded on the basis of hierarchical clustering results for comparison.

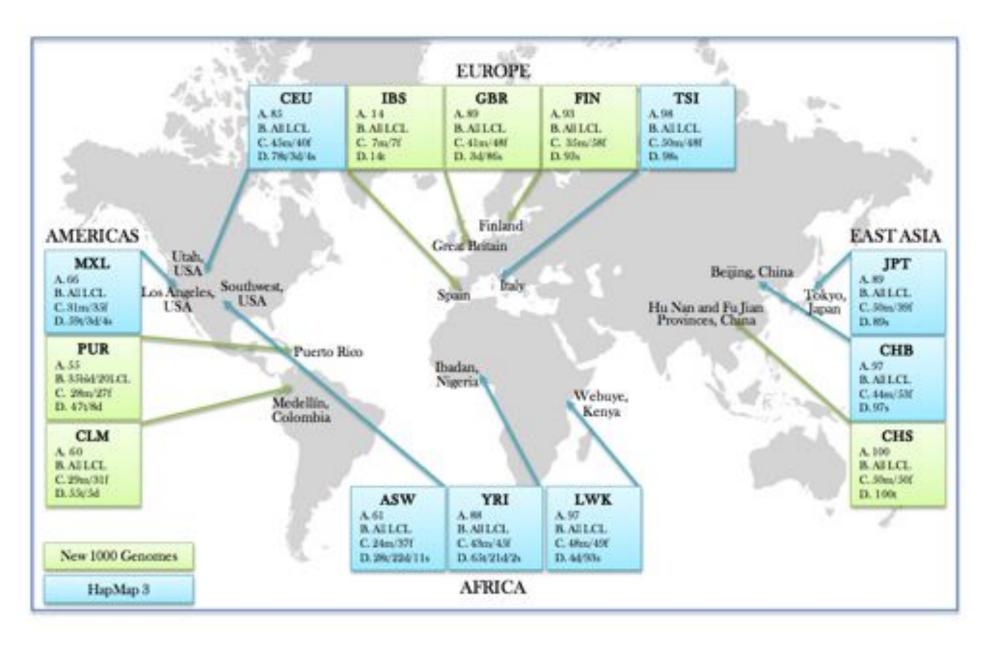
Agenda

- I. Clustering Refresher
 - I. Hierarchical Clustering
 - 2. PCA

2. Ancient and Modern Human Evolution

- I. Modern Diversity
- 2. Ancient Hominids
- 3. Genetic Privacy
 - I. lobSTR and Microsatellites
 - 2. Surname inference

ARTICLE


doi:10.1038/netwre11632

An integrated map of genetic variation from 1,092 human genomes

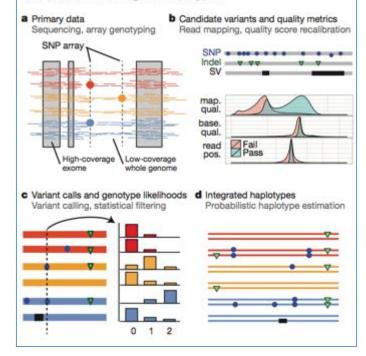
The 1000 Genomes Project Consortium*

By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations.

1000 Genomes Populations

1000 Genomes Populations

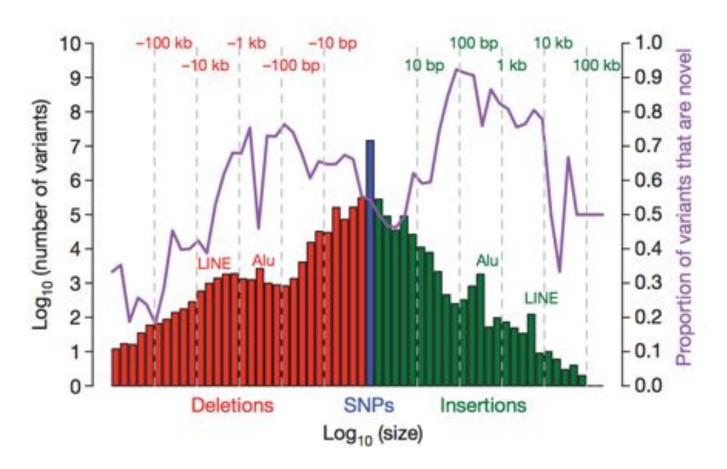
Population	DNA sequenced from blood	Offspring Samples from Trios Available	Pilot Samples	Phase 1 Samples	Final Phase Discovery Sample	Final Release Sample	Total
Chinese Dai in Xishuangbanna, China(CDX)	-	jets.	0	0	99	99	99
Han Chinese in Bejing, China (CHB)		80	51	97	105	100	306
Japanese in Tokyo, Japan (JPT)	160	80	94	89	104	304	305
Kinh in Ho Chi Minh City, Vietnam (KHV)	340	pee	0	0	101	98	301
Southern Han Chinese, China (CHS)	88	200	.0	100	108	105	112
Total East Asian Ancestry (EAS)			185	286	515	594	523
Bengali in Bangladesh (BEB)	-	908	0	0	86	86	86
Gujarati Indian in Houston,TX (GIH)	-	200	0	0	106	103	106
Indian Telugu in the UK (ITU)	909	jens .	0	0	105	102	103
Punjabi in Lahore Pakistan (PJL)	yes	566	0	0	96	96	96
Sri Lankan Tamil in the UK (STU)	yes	pes	0	0	103	100	103
Total South Asian Ancestry (SAS)					494	689	494
African Ancestry in Southwest US (ASW)	80	. 201	0	62	66		- 55
African Caribbean in Barbados (ACB)	705	908	0	0		96	96
Esan in Nigeria (ESN)	-	505	0	0	99	95	99
Gambian in Western Division, The Gambia (GWD)	-	549	0	0	10	113	113
Luhya in Webuye, Kenya (LWK)	100	2488	162	97	81	99	116
Mende in Siema Leone (MSL)	-	3488	0		85	85	85
Yoruba in Ibadan, Nigeria (YRI)		yes	106	88	109	108	116
Total African Ancestry (AFR)			208	346	667	661	691
British in England and Scotland (GBR)	-	202	0		92	90	94
Finnish in Finland (FIN)	-	200	0	93			300
Iberian populations in Spain (IBS)		398	0	14	107	105	107
Toscani in Italy (TSI)	80	80	55	58	108	107	110
Utah residents with Northern and Western European ancestry (CEU)	-	344	54	85	99	99	303
Total European Ancestry (EUR)		10000	100	379	900	540	514
Colombian in Medellin, Colombia (CLM)		244		60		- 94	95
Mexican Ancestry in Los Angeles, California (MXL)	80	348	.0	55		64	69
Peruvian in Lima, Peru (PEL)	765	969	0	0		85	86
Poerto Rican in Puerto Rico (PUR)	788	pies	0	95	105	104	309
Total Americas Ancestry (AMR)				181	312	347	395
Total				3892	2839	2904	2677


26 populations from 5 major population groups

1000 Genomes: Human Mutation Rate

- Phase I Release
 - 1092 individuals from 14 populations
 - Combination of low coverage WGS, deep coverage WES, and SNP genotype data
- Overall SNP rate between any two people is ~1/1200bp to ~1/1300
 - ~3M SNPs between me and you (.1%)
 - ~30M SNPs between human to Chimpanzees (1%)
- De novo mutation rate ~1/100,000,000
 - ~100 de novo mutations from generation to generation
 - ~1-2 de novo mutations within the protein coding genes

Constructing an integrated map of variation


The 1,092 haplotype-resolved genomes released as phase I by the 1000 Genomes Project are the result of integrating diverse data from multiple technologies generated by several centres between 2008 and 2010. The Box 1 Figure describes the process leading from primary data production to integrated haplotypes.

An integrated map of genetic variation from 1,092 human genomes

1000 genomes project (2012) Nature. doi:10.1038/nature11632

Human Mutation Types

- Mutations follows a "log-normal" frequency distribution
 - Most mutations are SNPs followed by small indels followed by larger events

A map of human genome variation from population-scale sequencing 1000 genomes project (2010) *Nature*. doi:10.1038/nature09534

Copy Number Variations

Large-Scale Copy Number Polymorphism in the Human Genome

Jonathan Sebat,¹ B. Lakshmi,¹ Jennifer Troge,¹ Joan Alexander,¹ Janet Young,² Fär Lundin,³ Susanne Mänér,³ Hillary Massa,² Megan Walker,2 Maoyen Chi,3 Nicholas Navin,3 Robert Lucito,3 John Healy," James Hicks," Kenny Ye,4 Andrew Reiner," T. Conrad Gilliam,⁵ Barbara Trask,² Nick Patterson,⁶ Anders Zetterberg,3 Michael Wigler1*

The extent to which large duplications and deletions contribute to human genetic variation and diversity is unknown. Here, we show that large-scale copy number polymorphisms [CNPs] (about 100 kilobases and greater) contribute substantially to genomic variation between normal humans. Representational oligonucleotide microarray analysis of 20 individuals revealed a total of 221 copy number differences representing 76 unique CNPs. On average, individuals differed by 11 CNPs. and the average length of a CNP interval was 465 kilobases. We observed copy number variation of 70 different genes within CNP intervals, including genes involved in neurological function, regulation of cell growth, regulation of metabolism, and several genes known to be associated with disease.

Many of the genetic differences between humans and other primates are a result of large daplications and deletions (1-3). From these observations, it is reasonable to expect that differences in gene copy number could be a significant source of genetic variation between humans. A few examples of large diplication polymorphisms have been reported (4). However, because of previous limitations in the power to determine DNA copy number at high resolution throughout the genome, the extent to which copy number polymorphisms (CNPs) contribute to human genetic divenity is unknown.

In our previous studies of human cancer with the use of representational oligonucleotide microarray analysis (ROMA), we have detected many genomic amplifications and deletions in tumor genomes when analyzed in comparison to an unrelated normal genome (3), but some of these genetic differences could be due to germline CNPs. To correctly interpret genomic data relating to cancer and other diseases, we must distinguish absormal genetic lesions from normal CNPs.

We used ROMA to investigate the extent of copy number variation between normal

ciencemag.org SCIENCE VOL 305 23 JULY 2004

Strong Association of De Novo Copy Number Mutations with Autism

Jonathan Sebat, 1* B. Lakshmi, 1 Dheeraj Malhotra, 1+ Jennifer Troge, 1+ Christa Lese Martin, 2 Tom Walsh,3 Boris Yamrom,3 Seungtai Yoon,3 Alex Krasnitz,3 Jude Kendall,3 Anthony Leotta,3 Deepa Pai,¹ Ray Zhang,¹ Yoon-Ha Lee,³ James Hicks,¹ Sarah J. Spence,⁴ Annette T. Lee,⁴ Kaija Poura," Terho Lehtimäki," David Ledbetter," Peter K. Gregersen," Joel Bregman, James S. Sutcliffe," Valdehi Jobanputra,³⁰ Wendy Chung,³⁰ Dorothy Warburton,³ Mary Claise King,³ David Skuse,¹³ Daniel H. Geschwind,¹² T. Conrad Gilliam,¹³ Kenny Ye,14 Michael Wigler¹†

We tested the hypothesis that de novo copy number variation (CNV) is associated with autism spectrum disorders (ASDs). We performed comparative genomic hybridization (CGH) on the genomic DNA of patients and unaffected subjects to detect copy number variants not present in their respective parents. Candidate genomic regions were validated by higher-resolution CGH, paternity testing, cytogenetics, fluorescence in situ hybridization, and microsatellite genotyping. Confirmed de novo CNVs were significantly associated with autism (P = 0.0005). Such CNVs were identified in 12 out of 118 (10%) of patients with sporadic autism, in 2 out of 77 (3%) of patients with an affected first-degree relative, and in 2 out of 196 (1%) of controls. Most de novo CNVs were smaller than microscopic resolution. Affected genomic regions were highly heterogeneous and included mutations of single genes. These findings establish de novo germline mutation as a more significant risk factor for ASD than previously recognized.

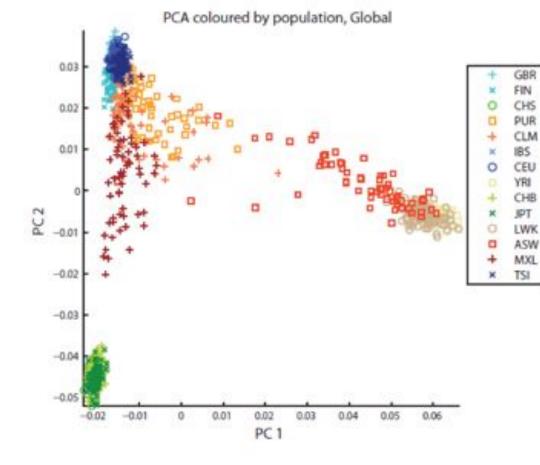
ments, social deficits, and repetitive behaviors. cific genes involved. The onset of symptoms occurs by the age of 3 and hardes to society.

whereas the concordance rates in dizygotic twins

utian spectrum disorders (ASDs) [Men-sclerosis (5), mutations in a single gene have delian Inheritance in Man (MIM) 209850[been identified. Otherwise, neither linkage nor A delan Inheritance in Mas (MIM) 20950; cytogenetics has unambiguously identified spe-

Genetic heterogeneity poses a considerable usually requires extensive support for the lifetime challenge to traditional approaches for gene of the afficted. The prevalence of ASD is es- mapping (6). Some of these limitations are timated to be 1 in 166 (7), making it a major everyonne by methods that rely on the direct detection of functional variants, which in most Genetics plays a major role in the etiology of cases are de novo events. New array-based autism. The concordance rates in monozygotic technologies can detect differences in DNA copy twins are 70% for autism and 90% for ASD, number at much higher resolution than cytogenetic methods (7) and, hence, might reveal are 5% and 10%, respectively. Previous studies spontaneous mutations that were previously suggest autism displays a high degree of genetic unidentified. These techniques have shown an heterogeneity. Efforts to map disease genes using abundance of copy number variants (CNVs) in linkage analysis have found evidence for autism humans (8, 9), and the same methods have been loci on 20 different chromosomes. Regions used to find de novo chromosome aberrations implicated by multiple studies include 1p, 5q, below the resolution of microscopy in children 7q, 15q, 14p, 17q, 19p, and Xq (2). Moreover, with mental retardation and dysmorphic features. microscopy studies have identified cytogenetic (10-14), including patients with syndromic abnormalities in >5% of affected children. forms of autism (15). Yet, the association of involving many different loci on all chromo-spontaneous CNVs in idiopathic aution has not somes (7). In some rare syndromic forms of bren systematically investigated. Thus, a largeautism, such as Rett syndrome (4) and taberous scale study of genome copy number variation in

www.sciencemag.org SCIENCE VOL 316 20 APR


While fewer numbers of CNVs occur per person, the total number of bases involved can be much greater and have profound effect.

dbSNP

S NCBI	dbSNP Short Genetic Variations			ons	5 TH	科				
PubMed Nucleotid		-				OMIM Books SN	IP			
Search Entrez SNP	Search for SNP		Referenc	Co	-		-			
	- 1.00			1000						
Have a question	dbSNP Summary									
about db5NP7 Try	RELEASE: NC	BI dbS	NP Buil	ld 141						
FAQ Archivel	dbSNP Component	Availabil	ity Dates:							
Ga	Compon	ent	Dab	e available						
1. Start 1.	dbSNP web query	for build	141: May	21, 2014						
ENERAL SS Feed	ftp data for build 1		00000000	21, 2014						
ontact Us				21, 2014						
	BLAST database fr	or build 1	41: May	21, 2014						
bSNP Homepage announcements bSNP Summary TP Download NMAN VARIATION	BLAST database fr - The complete data - All formats and cor - Please address an	for build wentions	141 are av are descrit	ailable at <u>fip</u> bed in <u>fip.iff</u>	to nob	i nim nih govisnpi0	Dreadn	ne.bd		
ite Map IbSNP Homepage Innouncements IbSNP Summary TP Download IUMAN VARIATION INP SUBMISSION DOCUMENTATION	- The complete data - All formats and cor	for build iventions y question	141 are aw are descrit ns or comm	ailable at <u>fip</u> bed in <u>fip://fi</u> nents regard	to nob	i nim nih govisnpi0	Dreadn	ne.bd		
bSNP Homepage mouncements bSNP Summary TP Download ruman VARIATION NP SUBMISSION IOCUMENTATION EARCH	The complete data All formats and cor Please address an	for build iventions y question	141 are av are descrit ns or comm ous build New Sub	eilable at fip bed in fip./fft nents regard	lo.ncb sing th	i nim nih govisnpi0	New	ne.txt bi.nim.nih.g		
bSNP Homepage mouncements bSNP Summary TP Download ruman VARIATION NP SUBMISSION IOCUMENTATION EARCH	The complete data All formats and cor Please address an New Submission si	for build tventions y question nce previ Current	141 are ew are descrit ns or comm ous build New Sub (se	eitable at <u>fip</u> bed in <u>fip./fit</u> nents regard : : : :	lo.ncb sing th	a nim nih govisno/O ne data to <u>snp-admir</u> RefSNP Clusters	New	ne.txt. bi.nim.nih.g ss# with 1	ov. New ss# with	
bSNP Homepage Innouncements bSNP Summary TP Download IUMAN VARIATION INP SUBMISSION INP SUBMISSION INCLIMENTATION EARCH	The complete data All formats and cor Please address an New Submission si Organism	for build iventions y question nce previ Current Build	141 are ev are descrit ns or comm ous build New Sub (se	ailable at fip bed in <u>flourf</u> nents regard : smissions sf"s)	lo.ncb sing th	e data to <u>snp-admir</u> RefSNP Clusters Ps) (# validated)	New	ne.txt. bi.nim.nih.g ss# with 1	ov. New ss# with	
bSNP Homepage mouncements bSNP Summary TP Download ruman VARIATION NP SUBMISSION IOCUMENTATION EARCH	The complete data All formats and cor Please address an New Submission si Organism Homo sepiens	for build iventions y question nce previ Current Build 141	141 are aw are descrit ns or comm ous build New Sub (so 2	allable at fig bed in figurith nents regard : seriasions sers) 20.706.470 20.706.470	lo nob Sing th New (rsd	RefSNP Clusters (# validated) 137 (0) 137 ()	New : Ger	ne.bd. bi.nim.nih.g ss# with i notype	DV. Frequency 4 4	
IbSNP Homepage Innouncements IbSNP Summary TP Download IUMAN VARIATION INP SUBMISSION XOCUMENTATION EARCH	The complete data All formats and cor Please address an New Submission si Organism Homo_sepiens Total: 1 Organisms *Submissions receive	for build iventions y question nce previ Current Build 141	141 are aw are descrit ns or comm ous build New Sub (so 2	allable at fig bed in figurith nents regard : seriasions sers) 20.706.470 20.706.470	ing the number of ons	RefSNP Clusters (# validated) 137 (0) 137 ()	New Ger	ne.bd. bi.nim.nih.g ss# with i notype	New ss# with Frequency 4 4 4	Number of (ss#'s) with frequence
IbSNP Homepage Innouncements IbSNP Summary TP Download IUMAN VARIATION INP SUBMISSION	The complete data All formats and cor Please address an New Submission si Organism Homo sepiens Total: 1 Organisms 'Submissions receive BUILD STATISTICS	for build iventions y question nce previ Current Build 141 141	141 are aw are descrit ous build New Sub (sa clustering Genome	eliable at fig bed in fig.m nents regard : omissions #Fs) 20.708.470 20.708.470 of current be Submissions (ss#s)	lonob sing th (rsill usid w of ons	RefSNP Clusters Fs) (# validated) 137 (0) 137 () will appear as new rs Number of RefSNP Cluster	New Ger d clus ed)	ne bil ss# with 1 notype tors in the i (rs#'s) in gene	New ss# with Frequency 4 4 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ss#'s) with

- Periodic release of databases of known variants and their population frequencies
- Generally assumed to be non-disease related
- However, as catalog grows, almost certainly to contain some medically relevant SNPs.

Variation across populations

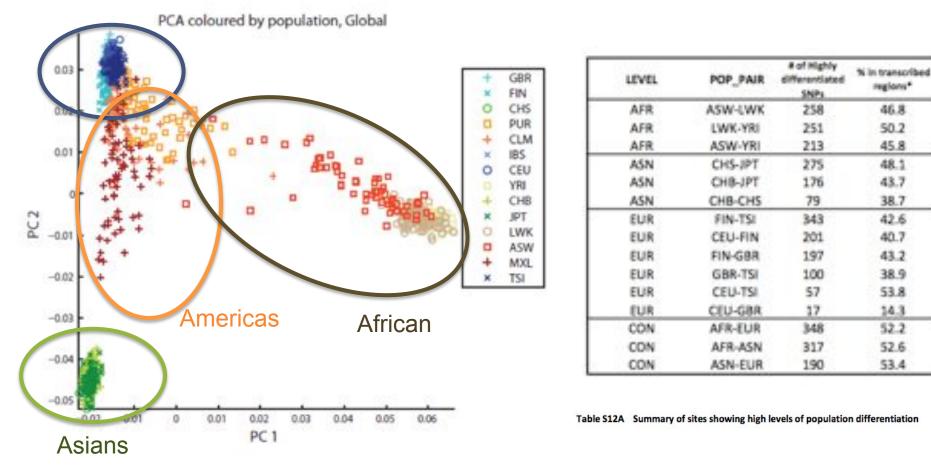
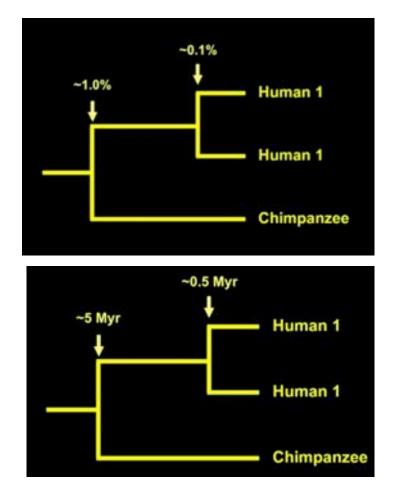

	LEVEL	POP_PAIR	# of Highly differentiated SNPs	% in transcribed regions*
	AFR	ASW-LWK	258	46.8
1	AFR	LWK-YRI	251	50.2
	AFR	ASW-YRI	213	45.8
	ASN	CHS-JPT	275	48.1
	ASN	CH8-JPT	176	43.7
1	ASN	CHB-CH5	79	38.7
	EUR	FIN-TSI	343	42.6
1	EUR	CEU-FIN	201	40.7
1	EUR	FIN-GBR	197	43.2
1	EUR	GBR-TSI	100	38.9
1	EUR	CEU-TSI	57	53.8
	EUR	CEU-GBR	17	14.3
	CON	AFR-EUR	348	52.2
	CON	AFR-ASN	317	52.6
1	CON	ASN-EUR	190	53.4

Table S12A Summary of sites showing high levels of population differentiation

- Not a single variant 100% unique to a given population
- 17% of low-frequency variants (.5-5% pop. freq) observed in a single ancestry group
- 50% of rare variants (<.5%) observed in a single population


Variation across populations

Europeans

- Not a single variant 100% unique to a given population
- 17% of low-frequency variants (.5-5% pop. freq) observed in a single ancestry group
- 50% of rare variants (<.5%) observed in a single population

Mutation Rates and Evolutionary Time

Since mutation occur as a function of time we can use the number of mutation to age when different populations split

Interestingly, there is much more variability within Africa than outside of Africa despite the much smaller population

We see "African" alleles all around the world

- Only 12 SNPs across the entire genome 'unique' to Africa (allowing 95% tolerance)
- We are all African (either currently living in Africa or recent exiles)!

Open question if/how early modern humans interacted with earlier hominid

DNA clues to our inner neanderthal

Svante Pääbo (2011). TED Global. https://www.ted.com/talks/svante_paeaebo_dna_clues_to_our_inner_neanderthal

Sequencing ancient genomes Janet Kelso Max-Planck Institute

G

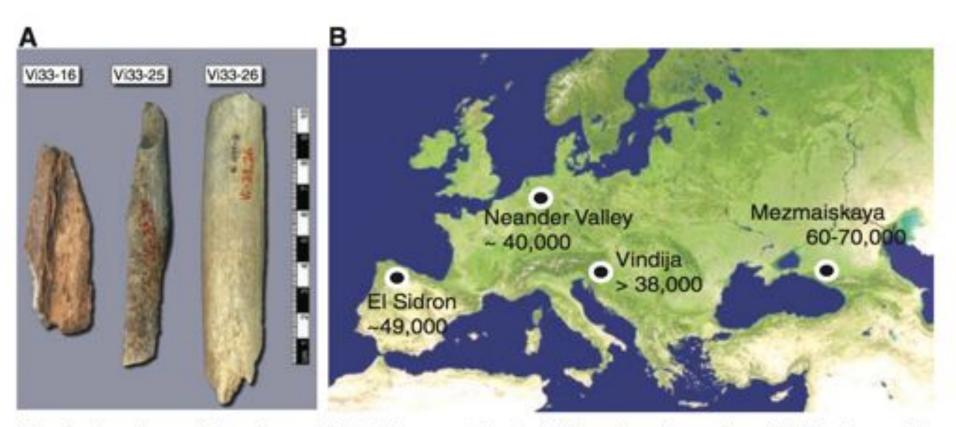
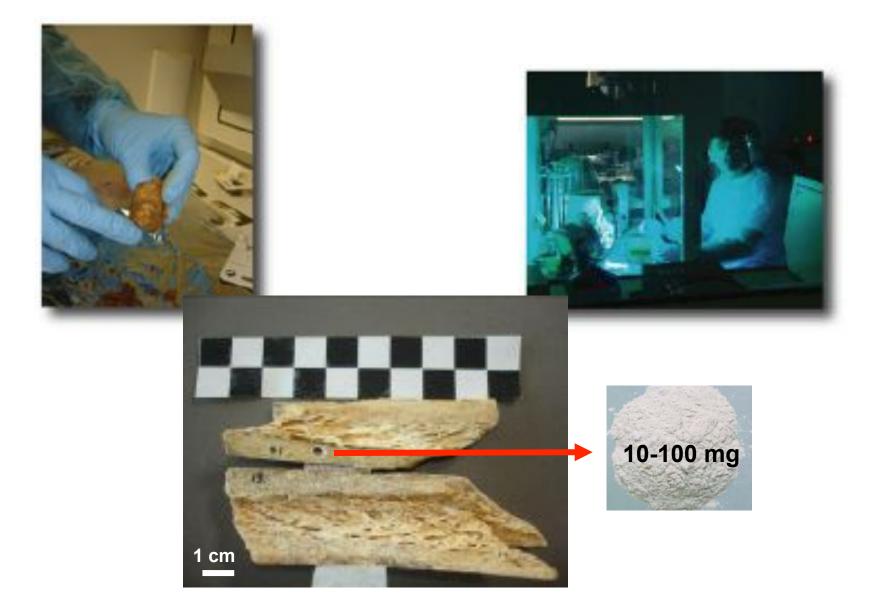
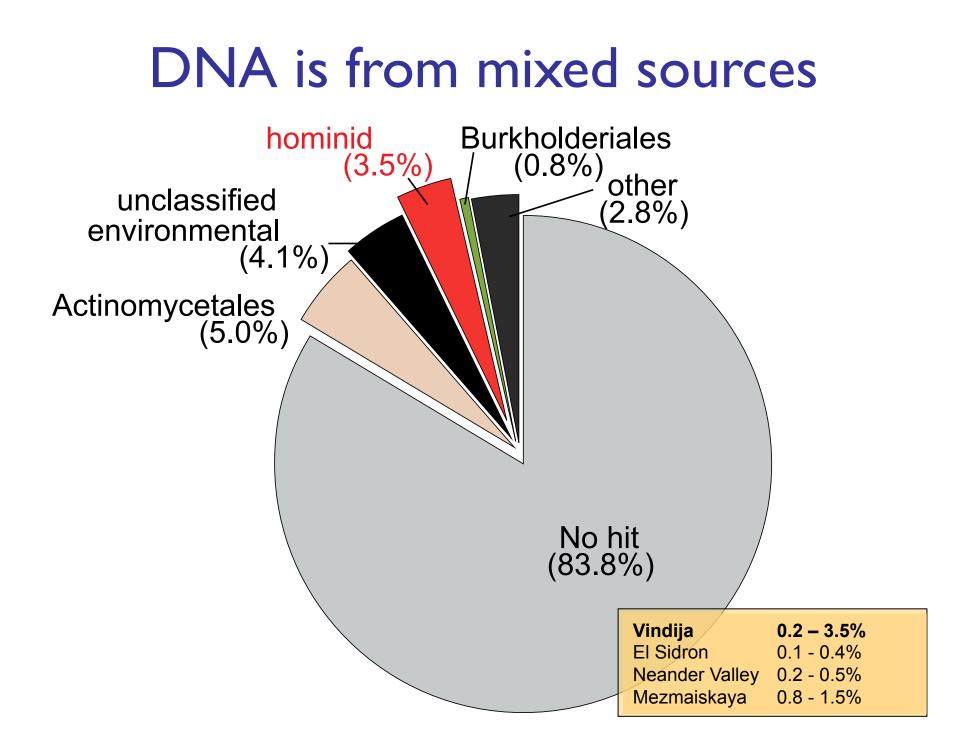
Homo neanderthalensis

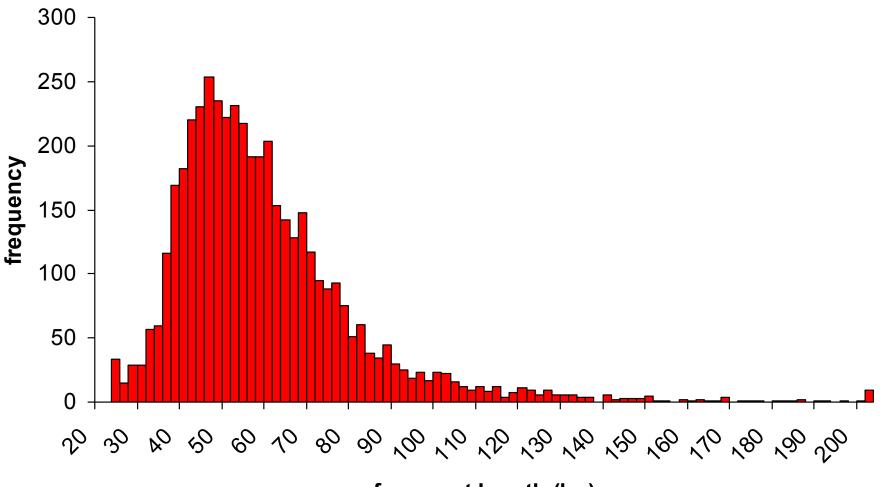
- Proto-Neanderthals emerge around 600k years ago
- "True" Neanderthals emerge around 200k years ago
- Died out approximately 40,000 years ago
- Known for their robust physique
- Made advanced tools, probably had a language (the nature of which is debated and likely unknowable) and lived in complex social groups

Homo sapiens sapiens

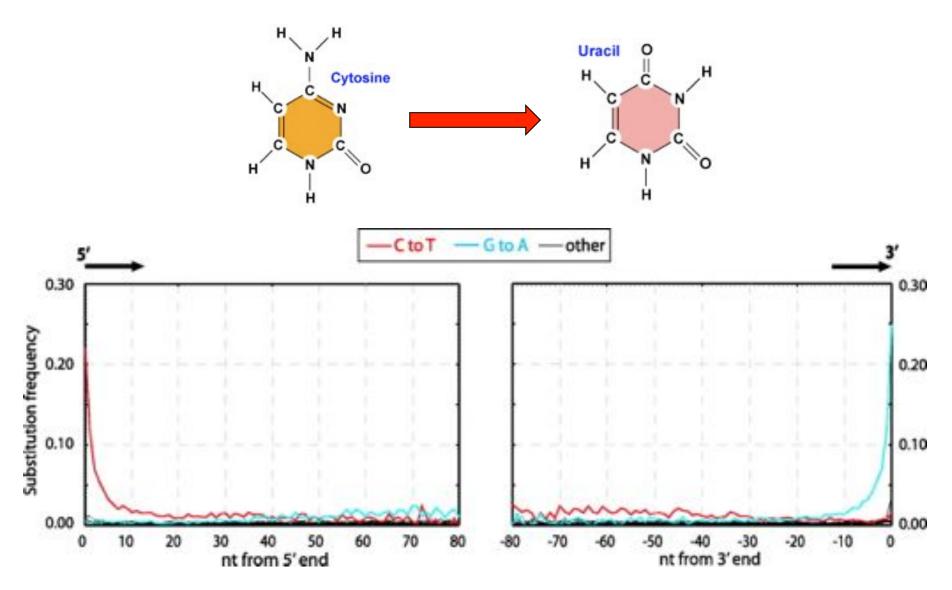
- Apparently emerged from earlier hominids in Africa around 50k years ago
- Capable of amazing intellectual and social behaviors
- Mostly Harmless ③

A Draft Sequence of the Neandertal Genome Richard E. Green, et al. Science 328, 710 (2010); DOI: 10.1126/science.1188021


Fig. 1. Samples and sites from which DNA was retrieved. (A) The three bones from Vindija from which Neandertal DNA was sequenced. (B) Map showing the four archaeological sites from which bones were used and their approximate dates (years B.P.).

Extracting Ancient DNA

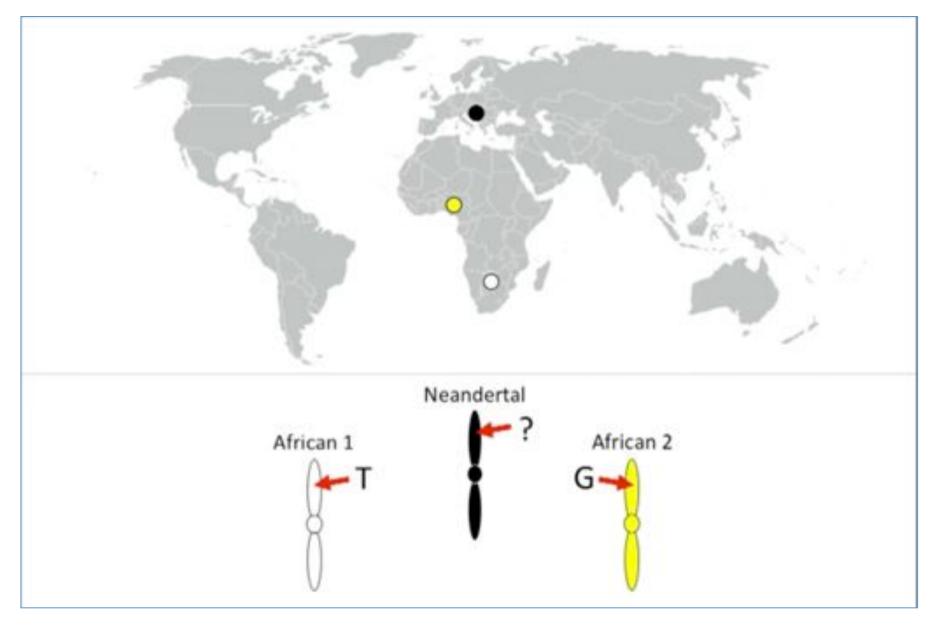


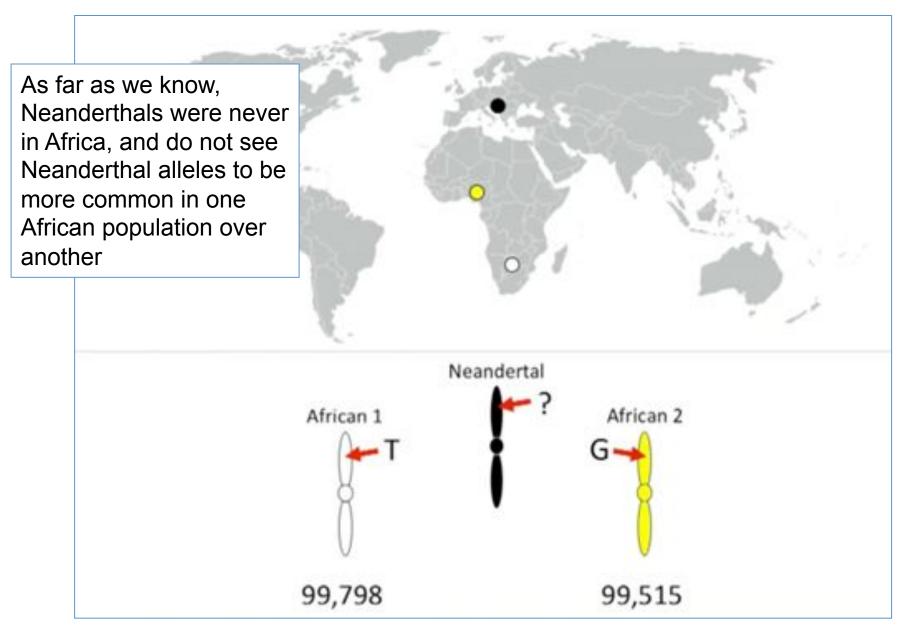
DNA is degraded

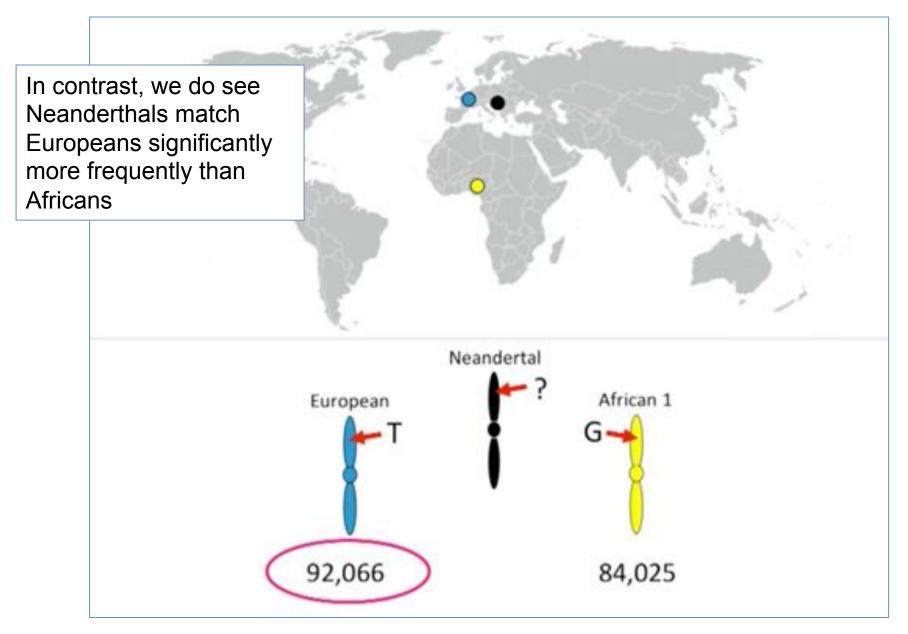
fragment length (bp)

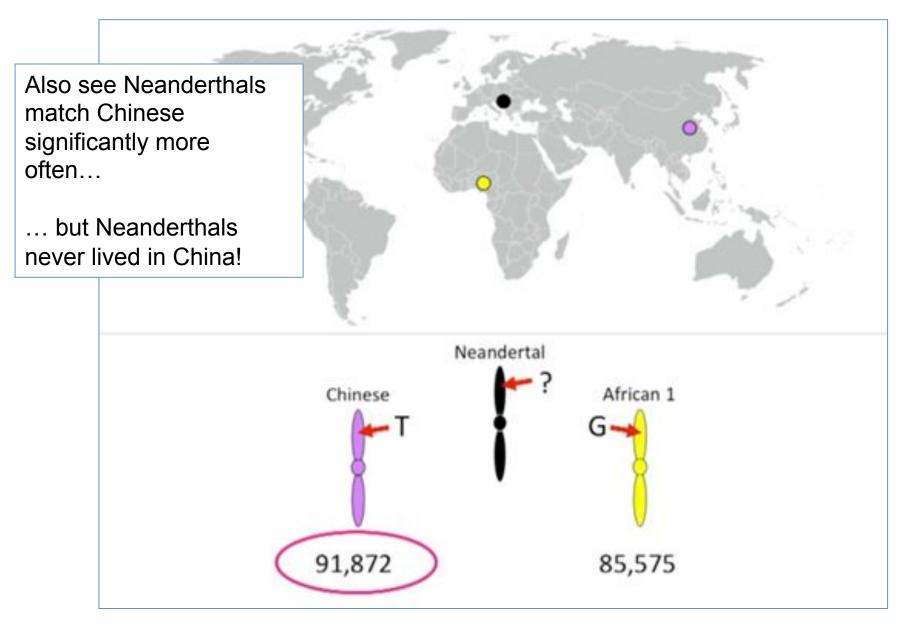
DNA is chemically damaged

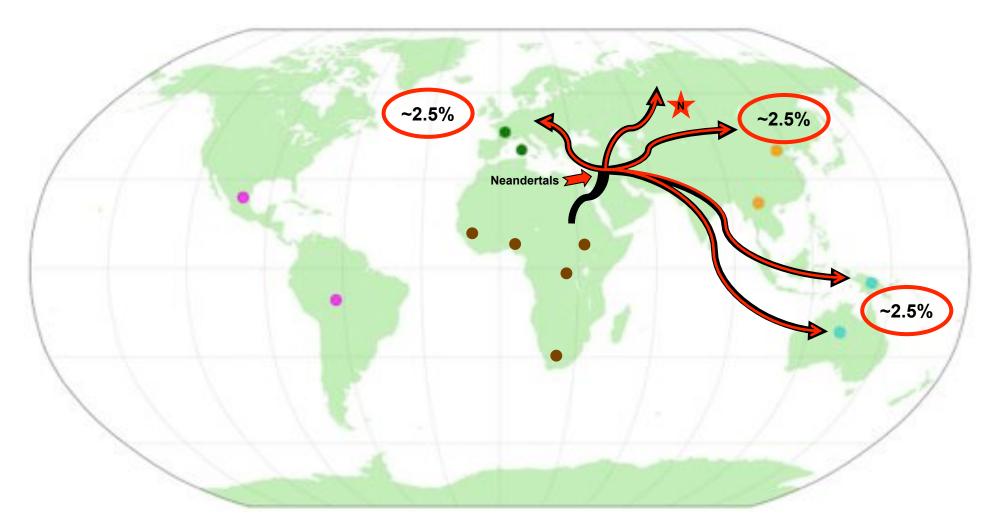
Briggs A W et al. PNAS 2007;104:14616-14621


Vindija 33.16 ~1.2 Gb 33.25 ~1.3 Gb 33.26 ~1.5 Gb


El Sidron (1253) ~2.2 Mb Feldhofer 1 ~2.2 Mb Mezmaiskaya 1 ~56.4 Mb


Green et al. 2010


~35 Illumina flow cells

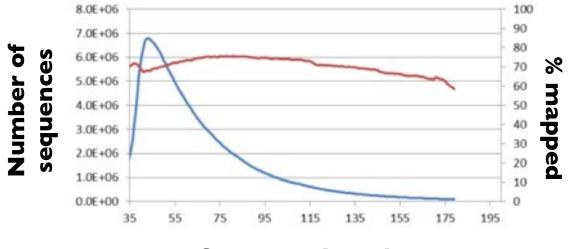


Neanderthal Interbreeding

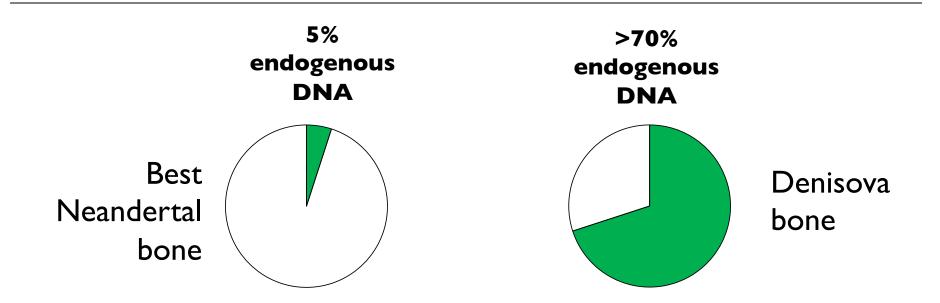
As modern humans migrated out of Africa, they apparently interbred with Neanderthal's so we see their alleles across the rest of the world and carry about 2.5% of their genome with us!

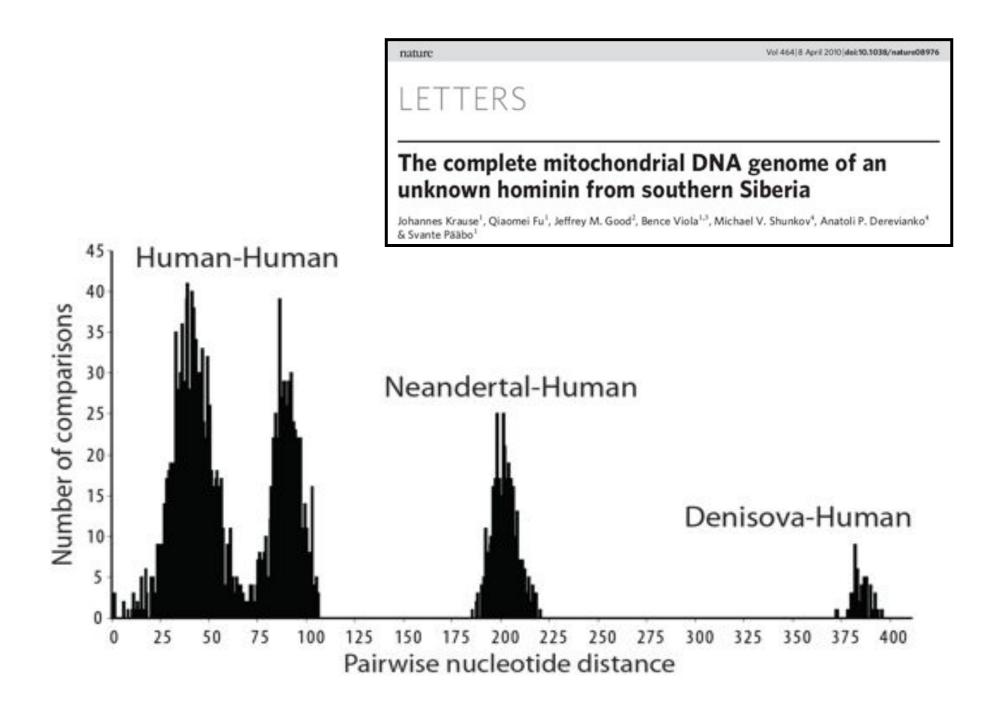

What about other ancient hominids?

Denisova cave Altai mountains Russia

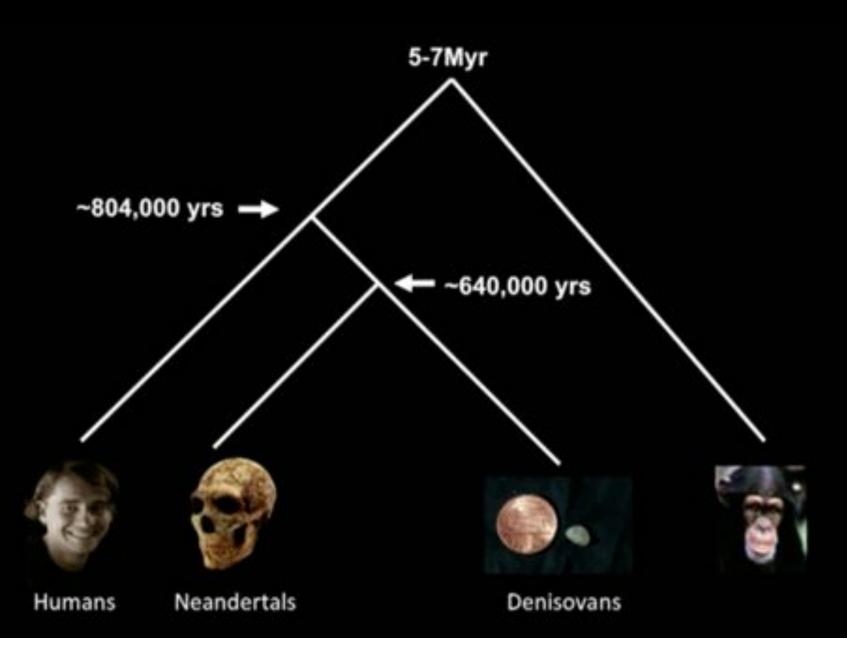


Academician A.P. Derevianko

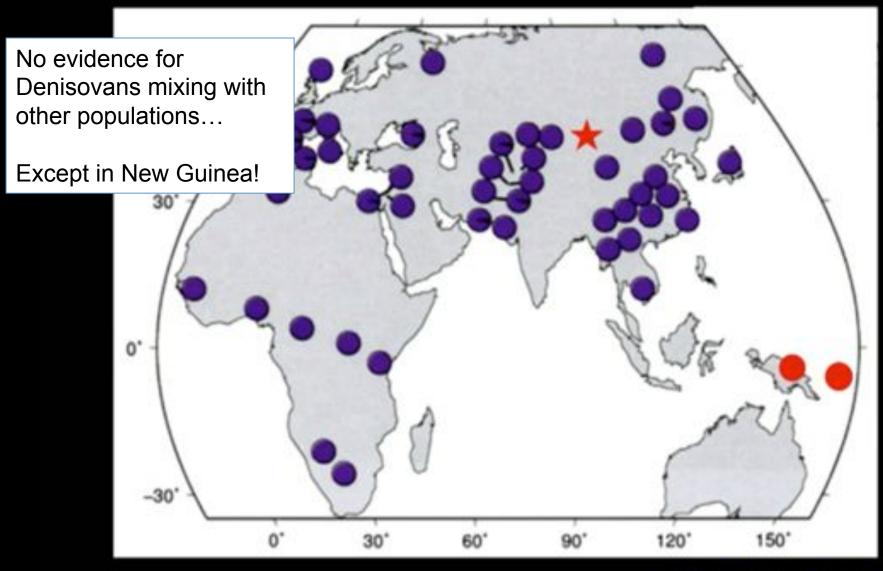


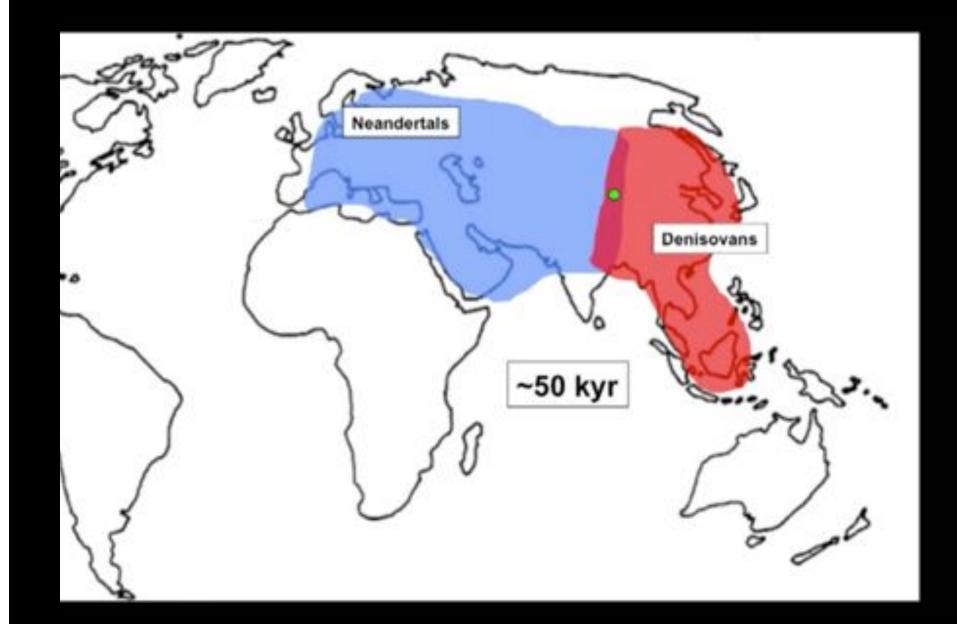


Extraordinary preservation

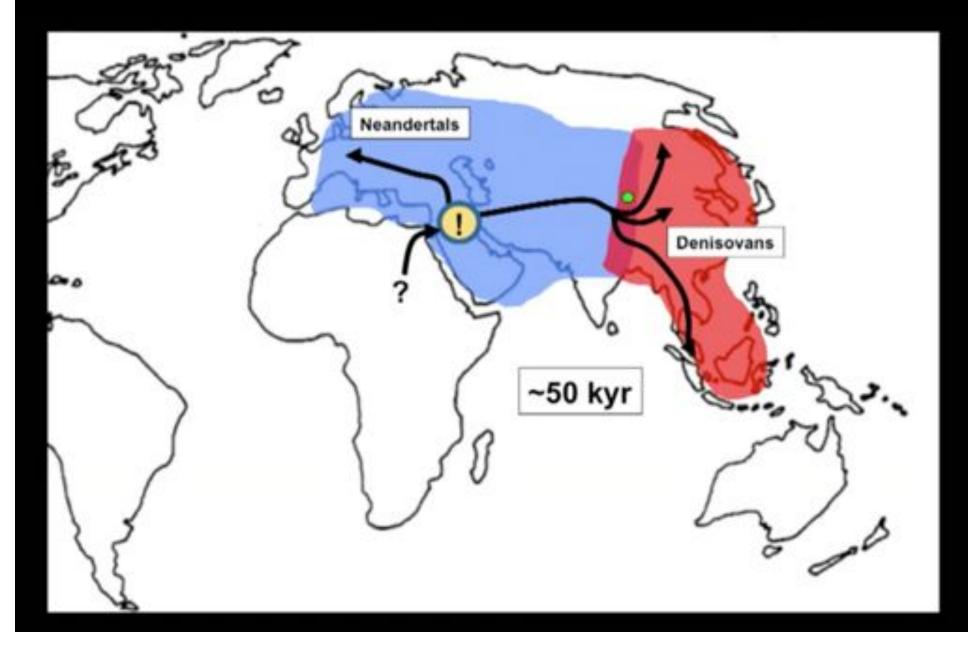


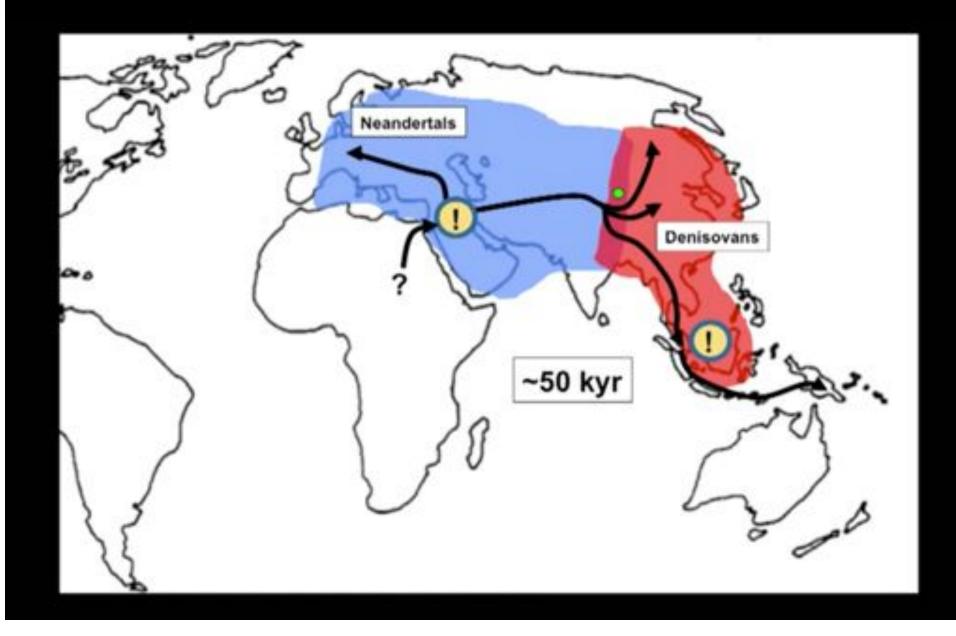
Sequence length

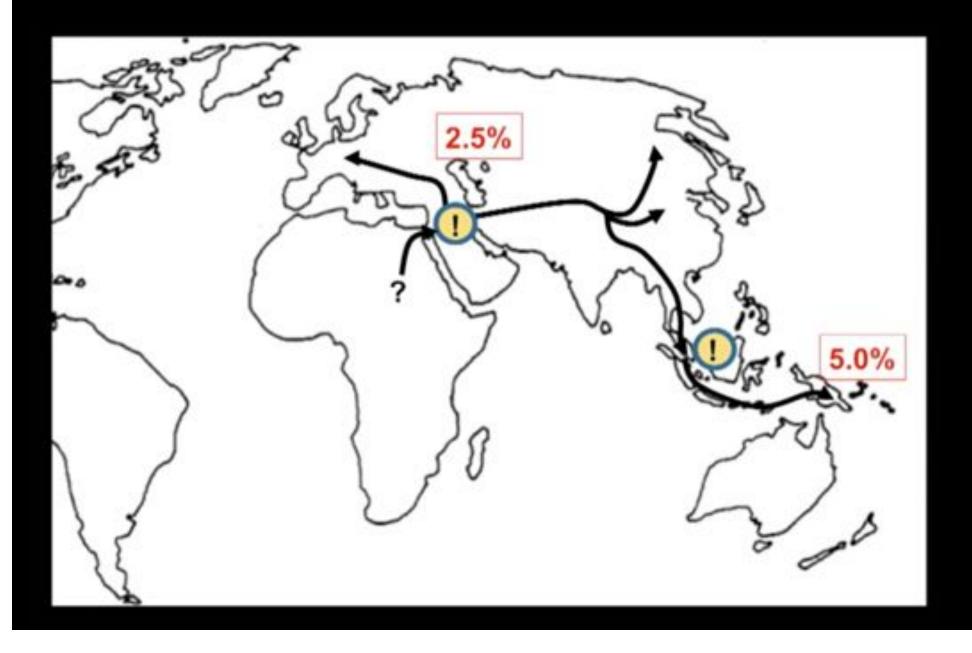


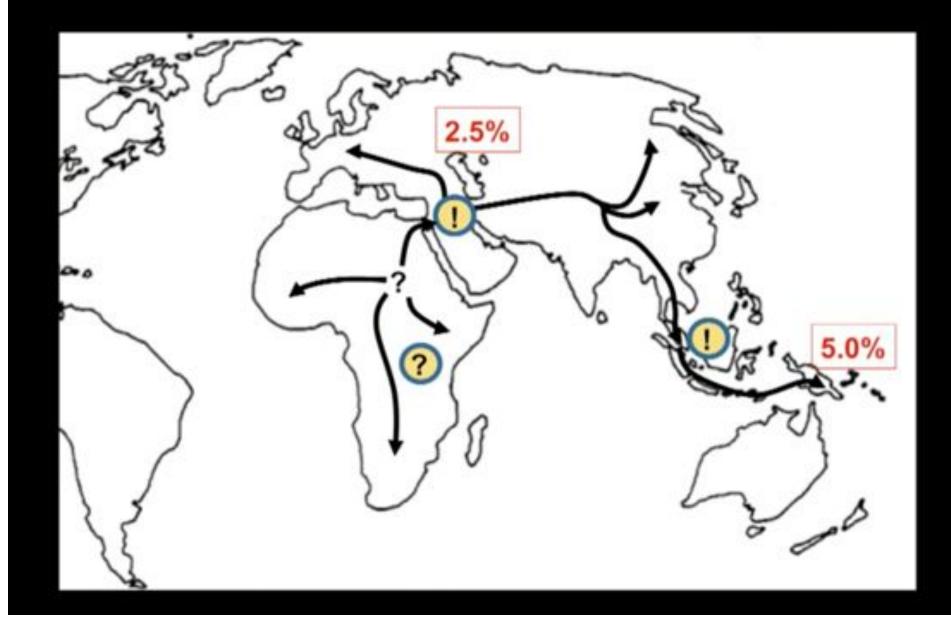

Denisovans & Neandertals




Did we mix?




Map after Pickrell et al., 2009

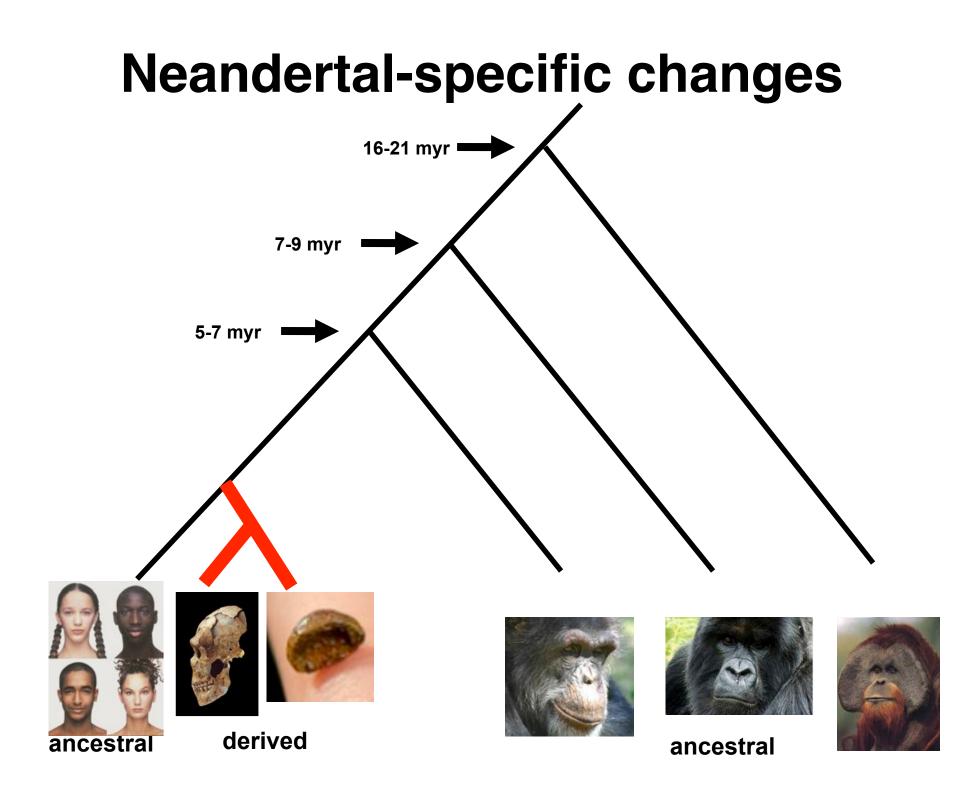


We have always mixed!

Recipe for a modern human

- **109,295** single nucleotide changes (SNCs)
 - 7,944 insertions and deletions

Changes in protein coding genes


277	cause fixed amino acid substitutions
87	affect splice sites

Changes in Non-coding & regulatory sequences

26 affect well-defined motifs inside regulatory regions

Enrichment analysis


Nonsynonymous	None	Giant melanosomes in melanocytes (p-6.77e-6; FWER=0.091;	
Splice sites	skin pigmentatio	n	
3 [°] UTR	None	 1-3 toe syndactyly (p=1.34288e-05; FWER=0.538; FDR=0.0887928 1-5 toe syndactyly (p=1.34288e-05; FWER=0.538; FDR=0.0887928 Aplasia/Hypoplasia of the distal phalanx of the thumb (p=1.34288e-05; FWER=0.538; FDR=0.0887928) Bifid or hypoplastic epiglottis (p=1.34288e-05; FWER=0.538; FDR=0.0887928) Central polydactyly (feet) (p=1.34288e-05; FWER=0.538; FDR=0.0887928) 	9
skeletal mo	orphologies (lim	b length, digit development) - Distai uretural duplication (p=1.342886-05; FWER=0.538; FDR=0.0887928) - Dysplastic distal thumb phalanges with a central hole (p=1.34288e-0	05;
morpholog	ies of the laryn	x and the epiglottis FWER-0.538;	
		 FDR=0.0887928) Laryngeal cleft (p=1.34288e-05; FWER=0.538; FDR=0.0887928) Midline facial capillary hemangioma (p=1.34288e-05; FWER=0.538; FDR=0.0887928) Preductal coarctation of the aorta (p=1.34288e-05; FWER=0.538; FDR=0.0887928) Radial head subluxation (p=1.34288e-05; FWER=0.538; FDR=0.083; Short distal phalanx of the thumb (p=1.34288e-05; FWER=0.538; FDR=0.0887928) 	

Enrichment analysis

	Nonsynonymous No	- Aplasia - Facial c - Wide pu	 Abnormality of the thumb (p=3.01e-5; FWER=0.025; FDR=0.02) Aplasia/Hypoplasia of the thumb (p=6.31-5; FWER=0.054; FDR=0.024) Facial cleft (p=0.0004; FWER=0.36; FDR=0.098) Wide pubic symphysis (p=0.0004; FWER=0.36; FDR=0.098) Abnormality of the frontal hairline (p=0.00042; FWER=0.39; FDR=0.096) 						
	Skelet	- Abnorm	· · · · · · · · · · · · · · · · · · ·	p=0.0005; FWE	84) R=0.44; FDR=0.08) R=0.48; FDR=0.088)				
Protein	Ensembl ID	Protein position	Ancestral amino acid	Derived amino acid	Description				
ABCA12	ENSP00000272895	199	W	С	ATP-binding cassette, sub-family A (ABC1)				
FRAS1	ENSP00000264895	209	Р	S	Fraser syndrome 1				
GL13	ENSP00000379258	1537	R	С	GLI family zinc finger 3				
LAMB3	ENSP00000355997	926	А	D	Laminin, beta 3				
MOGS	ENSP00000233616	495	R	Q	Mannosyl-oligosaccharide glucosidase				

FOXP2 Analysis

Molecular evolution of FOXP2, a gene involved in speech and language

Enard et al (2002) Nature. doi:10.1038/nature01025


What makes us human? "Human Accelerated Regions"

Systematic scan of recent human evolution identified the gene *HAR1F* as the most dramatic "human accelerated region".

Follow up analysis found it was specifically expressed in Cajal-Retzius neurons in the human brain from 6 to 19 gestational weeks.

(Pollard et al., Nature, 2006)

Agenda

- I. Clustering Refresher
 - I. Hierarchical Clustering
 - 2. PCA
- 2. Ancient and Modern Human Evolution
 - I. Modern Diversity
 - 2. Ancient Hominids
- 3. Genetic Privacy
 - I. IobSTR and Microsatellites
 - 2. Surname inference

Identifying Personal Genomes by Surname Inference Melissa Gymrek *et al. Science* **339**, 321 (2013); DOI: 10.1126/science.1229566

What are microsatellites

Tandemly repeated sequence motifs

- Motifs are I 6 nt long
- So far, min. 8 nt length, min. 3 tandem repeats for our analyses

Ubiquitous in human genome

>5.7 million uninterrupted microsatellites in hgl9

Extremely unstable

- Mutation rate thought to be $\sim 10^{-3}$ per generation in humans

• Unique mutation mechanism

- Replication slippage during mitosis and meiosis

• May be under neutral selection

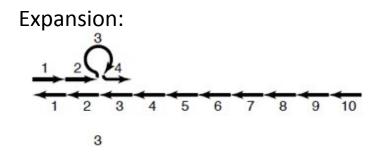
 $\mathsf{cCTCTCTCTCTCTCTCTCTCTCTC} \twoheadrightarrow (\mathsf{CT})_{13} \qquad \mathsf{tCAACAACAACAACAACAACAA} \twoheadrightarrow (\mathsf{CAA})_7$

tTTGTCTTGTCTTGTCTTGTCTTGTCTTGTCC \rightarrow (TTGTC)₆ cCATTCATTCATTCATTa \rightarrow (CATT)₄

Microsatellites: Simple Sequences with Complex Evolution Ellegren (2004) *Nature Reviews Genetics*. doi:10.1038/nrg1348

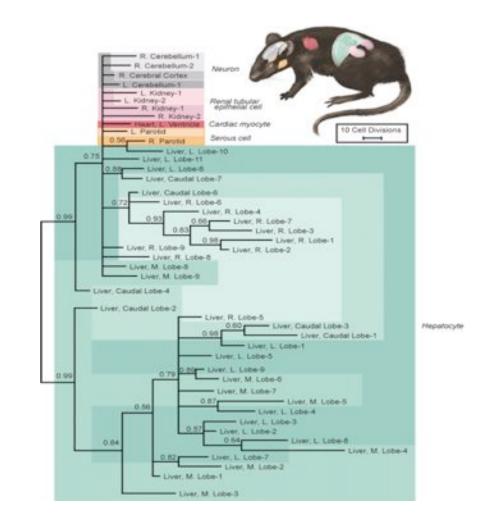
Replication slippage

• Out-of-phase re-annealing


- Nascent and template strands dissociate and re-anneal out-of-phase
- Loops repaired by mismatch repair machinery (MMR)
 - Very efficient for small loops
 - Possible strand-specific repair

• Stepwise process

- Nascent strand gains or loses full repeat units
- Typically single unit mutations
- Varies by motif length, motif composition, etc.


Ellegren (2004) Nature Reviews Genetics. doi:10.1038/nrg1348

Contraction:

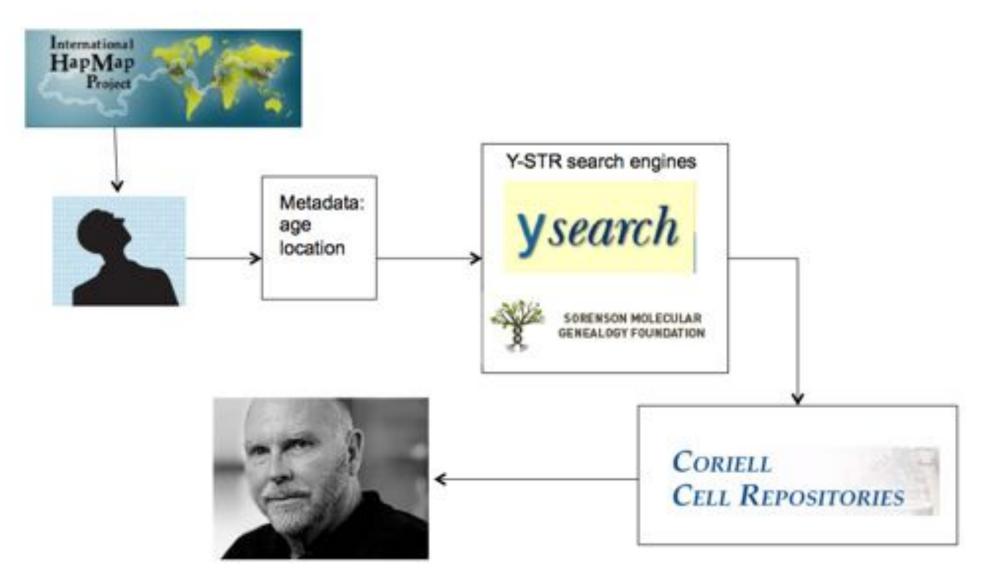
Why should we care about microsatellites?

- Polymorphism and mutation rate variation
- Disease
 - Huntington's Disease
 - Fragile X syndrome
 - Friedrich's ataxia
- Mutations as lineage
 - Organogenesis/embryonic development
 - Tumor development

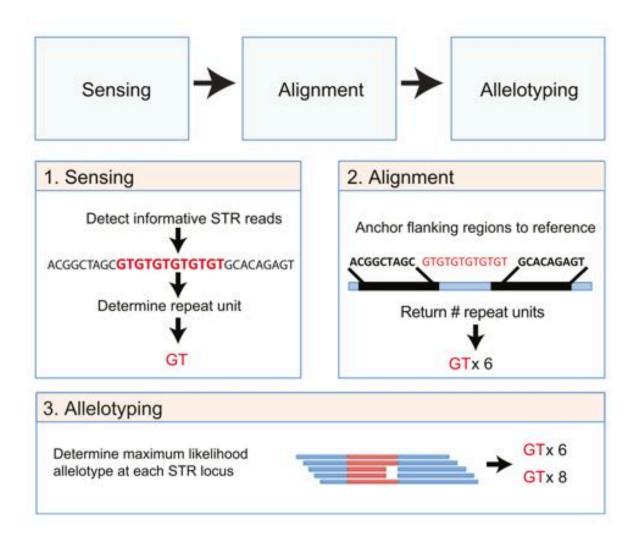
Phylogenetic fate mapping

Salipante (2006) PNAS. doi: 10.1073/pnas.0601265103

Genealogy Databases



GENETICS


CELL REPOSITORIES

Genealogy Databases Enable Naming Of Anonymous DNA Donors

Surname Inference Overview

lobSTR Algorithm Overview

lobSTR:A short tandem repeat profiler for personal genomes

Gymrek et al. (2012) Genome Research. doi:10.1101/gr.135780.111

IobSTR Accuracy

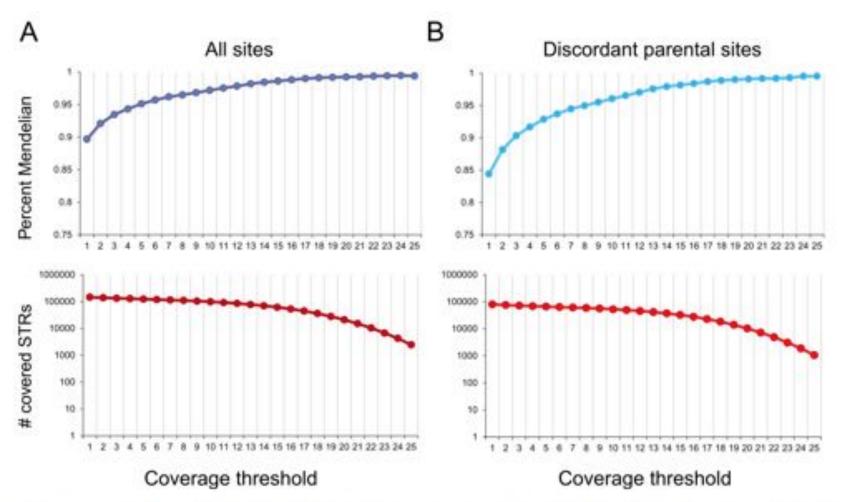
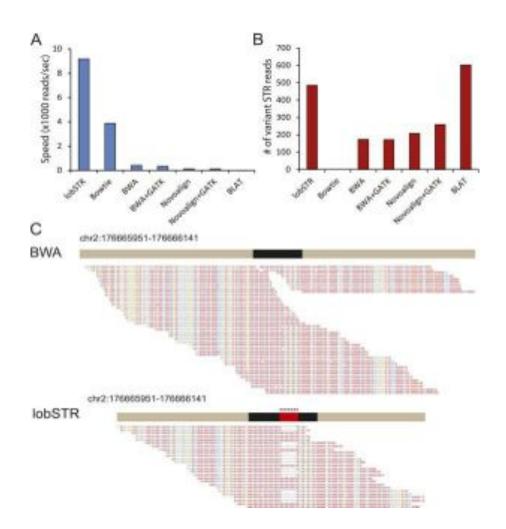



Figure 4. Validating lobSTR by Mendelian inheritance in a HapMap trio. Mendelian inheritance (blue and cyan) rose to 99% above 17× coverage. (Dark and light red) The number of covered loci at each coverage threshold. (A) Mendelian inheritance of all covered loci. (B) Mendelian inheritance of loci with discordant parental allelotypes.

lobSTR Performance

- LobSTR processes reads between 2.5 and 1000 times faster than mainstream aligners.
- Only BLAT detected more STR variations than lobSTR.
- LobSTR accurately detects pathogenic trinucleotide expansions that are normally discarded by mainstream aligners.
 - BWA only reports normal allele.
 - LobSTR identifies both alleles present at the simulated loci.

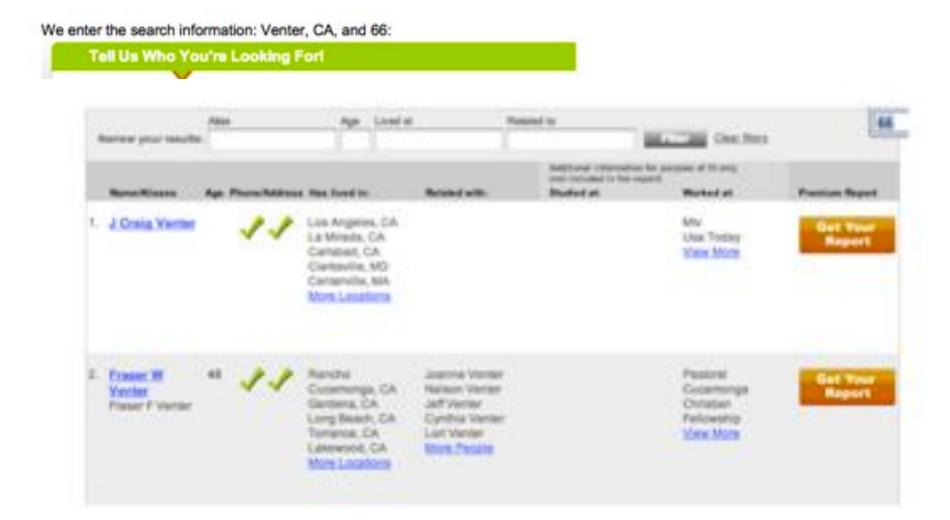
Surname Inference

Identifying Personal Genomes by Surname Inference

Gymrek et al (2013) Science. doi: 10.1126/science.1229566

Step I. Profile Y-STRs from the individual's genome.

DYS458: 17 repeats

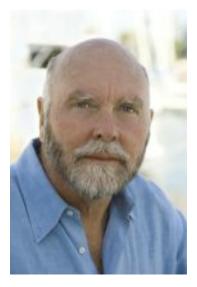

The human reference genome contains 16 copies of "TTTC". Venter has an extra copy of "TTTC", giving him a genotype of "17" at this marker. In a similar way, we can profile all other genealogical STR markers on the Y-chromosome where we know Venter's genome sequence to get the value of a whole panel of these markers.

Step 2. Search for a surname hit in online genetic genealogy databases.

016 310	015 300	DYE 19394	0vs +90*	0V5 391	DVS Sets	015 5855	0Y5 428	DVS 388	010 430
DVS 369-1**	01/8 392	010 300 2**	07/8-458 17 10	9	DYS 4500	DVS 455	11 11	EYS-647	0Y/5 437
DY3 448	DVS 449	DYS 464a	DYB 4640	DYS ABA	DYS 4944	075-664s*	DVD 484*	- 4	CY15 460
GATANH	YCA Ne ⁴⁴⁴	VCA III) ⁴⁴⁴	DYS-450	0V5 607	DVIS 575	098 570	COV +	00Y 8	0Y5 442
DVS 438	0V5 631	9 10	DYS 399874	DVS 385515	0115 580	1015 537 18 4	DY3-641	prvs atg	EV18-40651
DVS 511	EVS 425	0Y8 413a 23 4	045-413t	0YS 557	0+5 504 00-00	0YS 438 12 4	DYS-490	DVS SH	CYS 450
DVB 444	22 B	DVS 520	0793.448	0YS 617	0115 588 41	DVS 487	0Y0 572	075 640	0YB 492
0Y8 545	DVS 401-	0115 452	0 4	015 635	GAAT 1907	DVS 441	013 445	OVIS 452	0YIS 463
DYS ADA	0YB 435	0YE 485	0V8-454 9 4	DYS 485	048 505	DVS 522	0vs sto - 4	DYS 548	DV6 554
ova sta	CY3 549	DVD 836	DV8-438	DV5-843	25 14	01/5 718	DY8.717	CYVS 728	Divisio v

http://www.ysearch.org

Step 3. Search with additional metadata to narrow down the individual.


http://www.ussearch.com

Surname Inference

It's Craig Venter!

Identifying Personal Genomes by Surname Inference

Gymrek et al (2013) Science. doi: 10.1126/science.1229566

Can we identify Jim Watson?

- 187 fasta reads acquired from <u>ftp://ftp.ncbi.nih.gov/pub/TraceDB/</u> <u>Personal_Genomics/Watson/</u>
- 741,131,864 reads mapped.
- 24 markers identified.

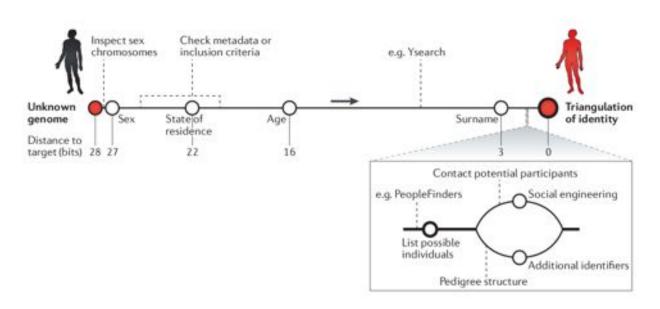
DYS 393	DYS 390	DYS 19/394	DYS 196*	DYS 391	DYS 385a***	DYS 3856***	DYS 426	DYS 388 12 •	DYS 439
DYS 389-1**	DYS 392 13 •	DYS 389-2**	DYS 458	DYS 459a	DYS 459b	DYS 455***	DYS 454***	DYS 447	DYS 437
DYS 448	DYS 449	DYS 464a	DYS 464b	DYS 464c	DYS 464d	DYS 464e*	DYS 4641*	DYS 464g*	DYS 460
GATA H4***	YCA lla***	YCA IIb***	DYS 456	DYS 607	DYS 576	DYS 570	CDY a	CDY b	DYS 442
DYS 438	DYS 531	DYS 578	DYS 395S1a	DYS 395S1b	DYS 590	DYS 537 9 •	DYS 641	DYS 472	DYS 406S1 10 ·
DYS 511 12 ·	DYS 425	DYS 413a	DYS 413b	DYS 557	DYS 594	DYS 436	DYS 490	DYS 534	DYS 450
DYS 444 13 •	DYS 481	DYS 520	DYS 446	DYS 617	DYS 568	DYS 487	DYS 572	DYS 640 9 •	DYS 492
DYS 565	DYS 461*** 12 •	DYS 462	GATA A10	DYS 635	GAAT1B07	DYS 441	DYS 445	DYS 452	DYS 463
DYS 434 9 •	DYS 435	DYS 485	DYS 494	DYS 495	DYS 505	DYS 522	DYS 533 12 •	DYS 549	DYS 556
DYS 575	DYS 589	DYS 636	DYS 638	DYS 643	DYS 714	DYS 716	DYS 717	DYS 726	DXYS156-Y

• ySearch returns inconclusive search result:

Compare	User ID	Pedigree	Last Name	Origin	Haplogroup	Tested With	Markers Compared	Genetic Distance
	<u>A424J</u>			Union, South Carolina, USA	R1b*	Ancestry.com	8	0

- Possible errors?
 - Insufficient family data for Watson's relatives online
 - Unreliable sequence reads
 - Potential LobSTR mistake, misalignment error or not enough input data

Identifiers and Quasi-identifiers


Quasi-identifier	Expected information content (bits)			
Sex*	1.0			
Ethnic group**	1.4			
Eye colour ⁶	1.4			
Blood group (ABO and Rhesus systems)	2.2			
State of residence*	5.0			
Height	5.0			
Year of birth*	6.3			
Day and month of birth	8.5			
Surname*	12.9			
Zip code**	13.8			

- What are Quasi-Identifiers?
 - Pieces of information that are not unique by themselves, but when combined with other quasiidentifiers, may create a unique identifier.
- What is Entropy?
 - Entropy measures the degree of uncertainty in the outcome of a random variable, where 1 bit equates to the chances of tossing a single fair coin.
 - Complete identification is guaranteed when expected information bits reaches 0.

Routes for breaching and protecting genetic privacy

Erlich and Narayanan (2014) Nature Reviews Genetics. doi: 10.1038/nrg3723

Possible route for identity tracing

- US population: ~313.9 million individuals
- log₂ 313,900,000 = 28.226 bits
- Sex ~ 1.0 information bits
- log₂ 156,950,000 = 27.226 bits

- Tracing attacks combine metadata and surname inference to triangulate the identity of an unknown individual.
- With no information, there are roughly 300 million matching individuals in the US, equating to 28.0 bits of entropy.
- Sex reduces entropy by 1 bit, state of residence and age reduces to 16, successful surname inference reduces to ~3 bits.

The risks of big data?

Predicting Social Security numbers from public data

Alessandro Acquisti¹ and Ralph Gross

Carnegie Mellon University, Pittsburgh, PA 15213

PNAS PNAS

Communicated by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, May 5, 2009 (received for review January 18, 2009)

Information about an individual's place and date of birth can be exploited to predict his or her Social Security number (SSN). Using only publicly available information, we observed a correlation between individuals' SSNs and their birth data and found that for younger cohorts the correlation allows statistical inference of private SSNs. The inferences are made possible by the public availability of the Social Security Administration's Death Master

File and the widespread accessibility of persona multiple sources, such as data brokers or pro working sites. Our results highlight the unexp sequences of the complex interactions ame sources in modern information economies an risks associated with information revelation in

identity theft | online social networks | privacy | stati

n modern information economies, sensitive p plain sight amid transactions that rely on their their unhindered circulation. Such is the case v numbers in the United States: Created as iden tracking individual earnings (1), they have tu authentication devices (2), becoming one of the tion most often sought by identity thieves. T Administration (SSA), which issues them, has u keep SSNs confidential (3), coordinating with 1 their public exposure (4).* After embarrassin sector entities also have attempted to strengthe their consumers' and employees' data (7).' How have already left the barn: We demonstrate ti number (SN). The SSA openly provides information about the process through which ANs, GNs, and SNs are issued (1). ANs are currently assigned based on the zipcode of the mailing address provided in the SSN application form [RM00201.030] (1). Low-population states and certain U.S. possessions are allocated 1 AN each, whereas other states are allocated sets of ANs (for instance, an individual applying from a zipcode within

publish on social networking sites (10). Using this method, we identified with a single attempt the first 5 digits for 44% of DMF records of deceased individuals born in the U.S. from 1989 to 2003 and the complete SSNs with <1,000 attempts (making SSNs akin to 3-digit financial PINs) for 8.5% of those records. Extrapolating to the U.S. living population, this would imply the potential identification of millions of SSNs for individuals whose birth data were available. Such findings highlight the hidden privacy costs of widespread information dissemination and the complex interactions among multiple data sources in modern information economies (11), underscoring the role of public records as breeder documents (12) of more sensitive data.

ters' and em v left the bi

Broader Privacy Implications

Nature Reviews | Genetics

Next class

• Gene Finding and HMMs

• Review!

• Homework due Monday