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Building a library

• Break DNA into random fragments (8-10x coverage)

 

Actual situation



Building a library

• Break DNA into random fragments (8-10x coverage)
• Sequence the ends of the fragments

– Amplify the fragments in a vector
– Sequence 800-1000 (500-700) bases at each end of the fragment



Assembling the fragments



Assembling the fragments

• Break DNA into random fragments (8-10x coverage)
• Sequence the ends of the fragments
• Assemble the sequenced ends



Forward-reverse constraints
• The sequenced ends are facing towards each other 
• The distance between the two fragments is known 

(within certain experimental error) 
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Building Scaffolds

• Break DNA into random fragments (8-10x coverage)
• Sequence the ends of the fragments
• Assemble the sequenced ends
• Build scaffolds



Assembly gaps

sequencing gap - we know the order and orientation of the contigs and have at 
least one clone spanning the gap

physical gap - no information known about the adjacent contigs, nor about the DNA 
spanning the gap

Sequencing gaps

Physical gaps



Finishing the project

• Break DNA into random fragments (8-10x coverage)
• Sequence the ends of the fragments
• Assemble the sequenced ends
• Build scaffolds
• Close gaps



Unifying view of assembly

Contigs

Scaffolding



Shotgun sequencing statistics



Typical contig coverage
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Imagine raindrops on a sidewalk



Lander-Waterman statistics

L = read length
T = minimum overlap
G = genome size
N = number of reads
c = coverage (NL / G)
σ = 1 – T/L

E(#islands) = Ne-cσ

E(island size) = L(ecσ – 1) / c + 1 – σ
contig = island with 2 or more reads



Example
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Genome size: 1 Mbp   Read Length: 600    Detectable overlap:  40



Read coverage vs. Clone 
coverage

4 kbp

1 kbp

Read coverage = 8 x

Clone (insert) coverage = ?16

BAC-end 2x coverage implies 100x coverage by BACs 

(1 BAC clone = approx. 100kbp)



Theoretical Foundations



Given: S = {s1, …, sn}

Problem: Find minimal superstring of S

s1,s2,s3 = CACCCGGGTGCCACC 15 

s1,s3,s2 = CACCCACCGGGTGC 14

s2,s1,s3 = CCGGGTGCACCCACC 15

s2,s3,s1 = CCGGGTGCCACCC 13

s3,s1,s2 = CCACCCGGGTGC 12

s3,s2,s1 = CCACCGGGTGCACCC 15

s1 CACCC

s2 CCGGGTGC

s3 CCACC

Shortest Common 
Superstring

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH



Given: F = {f 1, …, fn}, error rate ε

Problem: Find minimal sequence S over F such that for all fi in F, 
there is a substring B of S such that:

min(ed(fi,B), ed(fi
c,B)) ≤ ε |fi|

f1
c GGGTG

f2
c GCACCCGG

f3
c GGTGG

ed(ACGTA, ACGGTA) =1

ed(ACGGGTA, ACGGTA) =1

ed(ACGCTA, ACGGTA) = 1

RECONSTRUCT

Also NP-complete: Take instance of SUPERSTRING, expand strings to force the 
original orientation, set ε = 0, and attempt to solve with RECONSTRUCT.



Overlap Graph

V = {s1, s2, s3}                  E = {si, sj} 

o(si,sj) = |v| | si = uv, sj = vw
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The overlap graph, Go, encodes the amount of overlap between all pair of strings. 



Paths through graphs and 
assembly

• Hamiltonian circuit: visit each node (city) 
exactly once, returning to the start
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GREEDY(S) ≤ 2.5 OPT(S)

Runtime O(         l2)

SUPERSTRINGis MAX SNP-hard, so one of the best 
approximation algorithms possible.
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Greedy Approximation



Greedy Assembly

Build a rough map of fragment 
overlaps

1. Pick the largest scoring overlap
2. Merge the two fragments
3. Repeat until no more merges can 

be done

• TIGR Assembler
• phrap
• gap



Overlap-layout-consensus

Main entity: read
Relationship between reads: overlap
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Repeats!

1 2 3R1 R2

1 2R1 + R2 3

True Layout of Reads

Greedy Reconstruction



Mis-assembled repeats
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Modern Assembly

Try to detect presence of repeats by

1. Unusual depth of coverage (arrival rate)
2. Mate Pair information

3. Forks in overlap graph

1 2R1 + R2 3



Modern Assembly

Try to detect presence of repeats by

1. Unusual depth of coverage (arrival rate) 
2. Mate Pair information

3. Forks in overlap graph

1 2R1 + R2 3



Modern Assembly

Try to detect presence of repeats by

1. Unusual depth of coverage (arrival rate)
2. Mate Pair information

3. Forks in overlap graph
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SCAFFOLDING



Scaffolding

• Given a set of non-overlapping contigs
order and orient them along a 
chromosome

III III IV

I

II
III

IV



Clone-mates
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Scaffolder output

Sequencing gaps

Physical gaps

• order and orientation of contigs
• size of gaps between contigs
• linking evidence: mate-pairs spanning gaps



Problems with the data

• Incorrect sizing of inserts
– cut from gel – sizing is subjective
– error increases with size

• Chimeras (ends belong to different inserts)
– biological reasons (esp. for large sized inserts)
– sample tracking (human error)

• Software must handle a certain error rate.



Theoretical abstraction

• Given a set of entities (reads/contigs) and  
constraints between them (overlaps/mate 
pairs) provide a linear/circular embedding 
that preserves most constraints.



Graph representation
• Nodes: contigs
• Directed edges: constraints on relative 

placement of contigs – relative order 
and relative orientation

• Embedding: order (coordinate along 
chromosome) and orientation (strand 
sampled)



Challenges

• Orientation – node coloring problem 
(forward/reverse)
– feasibility – no cycles with odd number of 

“reversal” edges

– optimality – remove minimum number of 
edges 
such that a solution exists (NP-hard)



Challenges

• Ordering – generate a linear embedding
– feasibility – lengths of parallel DAG paths 

are consistent
– optimality – remove minimum number of 

edges 
such that DAG is feasible (NP-hard)



The real world

• Use of scaffolds
– Analysis – longest unambiguous sub-graphs
– Finishing – present all “reliable” relationships 

between contigs

• Sources of error
– mis-assemblies
– sizing errors (increases with library size)
– chimeras



Ambiguous scaffold
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Repeats vs. Haplotypes
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Hierarchical scaffolding
1. For each contig pair, consolidate all 

linking data into a single relationship –
2 correct links required



Hierarchical scaffolding

2. Use most reliable links to build scaffolds

3. Repeatedly build super-scaffolds based on 
less reliable linking data



Linking information

• Overlaps

• Mate-pair links

• Similarity links

• Physical markers

• Gene synteny

reference genome

physical map



BAMBUS
(bamboo)

Best effort Attempt 
Multiple Branches allowed

Order, Orient
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