Reducing INDEL calling errors in whole genome and exome sequencing data.

Han Fang

November 8, 2014
CSHL Biological Data Science Meeting
Acknowledgments

Lyon Lab
Yiyang Wu
Jason O’Rawe
Laura J Barron
Max Doerfel
Constantine Hartofilis

Schatz Lab
Giuseppe Narzisi
Hayan Lee
James Gurtowski
Tyler Garvin
Maria Nattestad
Srividya Ramakrishnan

Colleagues from Cold Spring Harbor Laboratory
Sara Ballouz
Wim Verleyen
Jesse Gillis
Shane McCarthy
Eric Antoniou
Elena Ghiban
Melissa Kramer
Stephanie Muller
Senem M Eskipehlivan
Michael Wigler
Ivan lossifov
Michael Ronemus
Julie Rosenbaum
Rob Aboukhalil
IT department
Significantly higher rates of *de novo* frame-shifts & LGDs in the affected vs. unaffected siblings

The contribution of *de novo* coding mutations to autism spectrum disorder.
Sources of INDEL calling errors?
Scalpel: Haplotype Microassembly

- Extract reads mapping within the exon including (1) well-mapped reads, (2) soft-clipped reads, and (3) anchored pairs.
- Decompose reads into overlapping k-mers and construct de Bruijn graph from the reads.
- Find end-to-end haplotype paths spanning the region.
- Align assembled sequences to reference to detect mutations.

Accurate de novo and transmitted indel detection in exome-capture data using microassembly.
Nature Methods. doi: [10.1038/nmeth.3069](https://doi.org/10.1038/nmeth.3069)
Scalpel INDEL Validation

- 1000 INDELs selected for validation
 - 200 Scalpel-specific
 - 200 GATK HapCaller-specific
 - 200 SOAPindel-specific
 - 200 within the intersection
 - 200 long indels (>30bp)

77% PPV
50% PPV
22% PPV

- Scalpel
- SOAPindel
- HaplotypeCaller

Venn diagram: 454 (10.3%), 239 (5.4%), 223 (5.1%), 1,397 (31.7%), 1,633 (37.1%), 304 (6.8%)
Concordance between WGS and WES data.

Reducing INDEL errors in whole genome and exome sequencing data.
Validation results

- The validation rate of WGS-WES intersection INDELs was in fact very high (95%).
- Accuracy of INDEL detection with WES is much lower than that with WGS.
- The WES-specific set had a much smaller fraction of large INDELs.

<table>
<thead>
<tr>
<th></th>
<th>INDELs</th>
<th>Valid</th>
<th>PPV</th>
<th>INDELs (>5bp)</th>
<th>Valid (>5bp)</th>
<th>PPV (>5bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS-WES intersection</td>
<td>160</td>
<td>152</td>
<td>95.0%</td>
<td>18</td>
<td>18</td>
<td>100%</td>
</tr>
<tr>
<td>WGS-specific</td>
<td>145</td>
<td>122</td>
<td>84.1%</td>
<td>33</td>
<td>25</td>
<td>75.8%</td>
</tr>
<tr>
<td>WES-specific</td>
<td>161</td>
<td>91</td>
<td>56.5%</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
</tbody>
</table>
Example of WES missing a large INDEL
Coverage distributions (WGS-specific INDELs regions)

\[C_v = 75.3\% \]

\[C_v = 281.5\% \]

Coefficient of variation (Cv)

\[C_v^* = \left(1 + \frac{1}{4n}\right) \cdot \frac{\bar{X}}{X} \]
Introducing the k-mer Chi-Square scores in Scalpel

The k-mer Chi-Square scores \(\chi^2 = \frac{(C_0^\text{Ref} - C_e^\text{Ref})^2}{C_e^\text{Ref}} + \frac{(C_0^\text{Alt} - C_e^\text{Alt})^2}{C_e^\text{Alt}} \), where \(C_0^\text{Ref} \) and \(C_0^\text{Alt} \) are the observed k-mer coverage for the reference and alternative alleles, \(C_e^\text{Ref} \) and \(C_e^\text{Alt} \) are the expected k-mer coverage, i.e. \(C_e^\text{Ref} = C_e^\text{Alt} = \frac{C_0^\text{Ref} + C_0^\text{Alt}}{2} \).

In a), \(C_0^\text{Ref} = 52, C_0^\text{Alt} = 48 \),
\[\chi^2 = \frac{(52-50)^2}{50} + \frac{(48-50)^2}{50} = 0.16 \]

In b), \(C_0^\text{Ref} = 90, C_0^\text{Alt} = 10 \),
\[\chi^2 = \frac{(90-50)^2}{50} + \frac{(10-50)^2}{50} = 64 \]

Figures are customized from http://cdn.vanillaforums.com/gatk.vanillaforums.com/FileUpload/a4/5ac06fc8af4b1b0c474f03e45f9017.png
Benchmarking

Effectively distinguish behaviours of problematic INDEL calls from likely true-positives. Can be easily applied to screen INDEL calls and understand their characteristics.

High quality INDELs (low error-rate - 7%):

$$\begin{align*}
\chi^2 &\leq 2.0 & \text{if } C_{o}^{\text{Alt}} &\leq 5 \\
\chi^2 &\leq 4.5 & \text{if } C_{o}^{\text{Alt}} &\leq 10 \\
\chi^2 &\leq 10.8 & \text{if } C_{o}^{\text{Alt}} &> 10
\end{align*}$$

Low quality INDELs (high error-rate - 51%):

$$\chi^2 \geq 10.8 \quad \text{if } C_{o}^{\text{Alt}} \leq 10$$
WGS yielded more high-quality INDELs than WES. Poly-A/T is a major contributor to the low quality INDELs, which gives rise to much more errors in the WES-specific set.
Concordance between standard WGS & PCR-free data

- Standard WGS: 538 (15.4%)
- PCR-Free: 2651 (75.8%)
- Position-match: 310 (8.8%)
PCR-free data yielded more high-quality INDELs.
PCR amplification induced many error-prone poly-A/T INDELs to the library; reducing the rate of amplification could effectively increase calling quality.
60X WGS is needed to recover 95% of INDEL. Detection of het INDELs requires higher coverage.
60X WGS is needed to recover 95% of INDEL.
Detection of het INDELs requires higher coverage.
Summary

• **Discussed:**
 1) Introducing a highly accurate & open-source algorithm, Scalpel (http://scalpel.sourceforge.net/)
 2) Higher accuracy of INDEL detection with WGS data than that with WES data.
 3) WES data has more false-positives, and misses a lot of large INDELs.
 4) STR regions: major sources of INDEL errors, especially near A/T homopolymers.
 5) Identify the errors introduced by PCR amplifications and caution about them.

• **Implications:**
 1) Recommend WGS data for INDEL analysis (60X PCR-free).
 2) Classification scheme of INDEL calls based off of Chi-Square scores and alternative allele coverage.